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Introduction

Recent estimates indicate that COPD is the third leading cause of death globally [1]. The disease affects
between 300 million and 400 million people worldwide [2, 3] and its prevalence is rising [1, 4]. As COPD
progresses in severity, gas exchange and mechanical deficits become more pronounced, decreasing the
ability of the respiratory system to remove carbon dioxide (CO,). The resultant increase in arterial CO,
partial pressure (P,co,) eventually becomes persistent, resulting in the development of chronic hypercapnic
respiratory failure [5].

The development of chronic hypercapnia in COPD signals advanced disease, carrying an increased risk of
death [6]. This has triggered widespread interest in investigating treatment approaches aimed at normalising
P,co, in this patient subpopulation. Noninvasive ventilation (NIV) was initially explored as an approach
for treating acute hypercapnia in COPD patients in a few centres in the 1960s [7], followed by more
widespread use of the treatment of acute respiratory failure in patients with COPD in the 1990s [8]. More
recently, the use of nocturnal NIV in COPD patients with chronic hypercapnic respiratory failure has
gained renewed momentum owing to the positive documented effects of higher pressure support
(difference between inspiratory and expiratory pressures) increasing minute ventilation and reducing P,co,
[9-14]. Accordingly, the European Respiratory Society (2019), the American Thoracic Society (2020) and
a the Canadian Thoracic Society (2021) published clinical practice guidelines recommending the use of
— nocturnal NIV in stable hypercapnic COPD patients [15-17].
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Despite these clinical advances, our knowledge of the complex physiological mechanisms that interact to
determine P,co, in hypercapnic patients with COPD remains limited. This is particularly true during sleep,
when the ventilatory neural drive is diminished [18]. Ventilatory neural drive refers to the efferent
signalling from the medulla and motor cortex to the respiratory system which controls inspiratory muscle
activity and can assist with understanding the physiological mechanisms behind respiratory disease states
and symptoms [19]. Abnormalities in gas diffusion and the mechanics of ventilation which characterise
COPD may worsen during sleep [20]. Shedding light on the influence of sleep on the ventilatory neural
drive and its translation to the mechanical act of breathing is of foremost relevance to create a solid
rationale for the use of nocturnal NIV in these patients. After a brief discussion of the mechanisms
responsible for ventilatory neural drive in awake and asleep healthy subjects, we outline how sleep may
influence ventilatory neural drive in hypercapnic patients with COPD. Based on this conceptual
framework, we subsequently review the extant literature on the effects of nocturnal NIV on these
outcomes, highlighting the open avenues for further investigation.

Ventilatory neural drive and mechanical output in healthy subjects: wakefulness and sleep
Ventilatory neural drive and mechanical output in awake healthy subjects

For diaphragm contraction to occur, efferent signals from the innervating phrenic nerve are required; they
are the result of central rhythm generation modulated by integrated input from mechanoreceptors within the
lungs and airways and chemoreceptors which respond to the partial pressure of dissolved gasses in the
blood. In addition, inputs from cortical centres contribute to voluntary respiratory signalling and
“wakefulness drive” to breathe [21, 22]. As described earlier, the total efferent signalling from the
respiratory centres in the brain to the respiratory muscles is referred to as ventilatory neural drive, and it is
often assessed through the surrogate measurement of diaphragmatic activation via diaphragmatic
electromyography (EMGg;) [19, 23]. Understanding ventilatory neural drive is useful when studying
respiratory diseases, providing information on the efficiency of the ventilatory pump, when used in
conjunction with mechanical outputs such as volume and flow.

As the largest and most utilised inspiratory muscle, the diaphragm’s electrical activity is frequently used to
indirectly assess neural output, i.e. drive, from the brain’s respiratory centres. EMGyg;, measured using an
oesophageal catheter placed to assess electrical activity within the crural diaphragm, is currently the
predominant metric used to assess diaphragmatic activation [18, 24, 25]. The oesophageal catheter
technique has been refined to involve multiple electrode pairs to reduce interfering EMG signals and
several studies have verified its validity as a measure of diaphragmatic activation [23, 26, 27].
Measurement of diaphragmatic activation using EMG is especially important in patients with mechanical
constraint, given that the inaccuracy of approximating ventilatory neural drive from respiratory output
(using variables such as minute ventilation) is exacerbated in these patients, who often exhibit higher levels
of disconnect between drive to breathe and ability of the respiratory muscles to respond, known as
neuromechanical uncoupling [28, 29].

The respiratory pump includes additional muscles that help to facilitate inspiration, especially during more
vigorous ventilation in response to increased mechanical loading. These include the external intercostal
muscles, scalene muscles and sternocleidomastoid, which aid in elevating the ribcage during inspiration. In
addition, inspiration is aided by muscles supporting the upper airway, including the genioglossus muscle,
which moves anteriorly to facilitate airway dilation prior to inspiration [30]. External intercostal
innervation originates in the respiratory centres of the medulla; however, external intercostal motor units
typically fire with varying frequencies and at different points in time during inspiration when compared to
the diaphragm [31]. The scalene muscles are typically active during resting breathing with electrical
activity closely mirroring the patterns of the external intercostals during quiet breathing [32]. The
sternocleidomastoid typically only becomes activated when lung volume reaches ~65% of vital capacity
[32, 33]. These additional respiratory muscles assume a more prominent role in quiet breathing in
advanced respiratory disease [34], and studies have used techniques measuring parasternal surface
electromyography (drive to the parasternal intercostal muscles) to assess the efficacy of various treatments
used in COPD patient populations [35, 36]. However, recent evidence has demonstrated that this
measurement of accessory muscle activity is poorly correlated with lung function in comparison to
diaphragm EMG signals, largely due to the limitations in the surface electromyography technique, which
introduces “crosstalk” signals from nearby musculature that interfere with measurement of parasternal
activity [37].

Ventilatory neural drive and mechanical output in healthy individuals during sleep
Sleep introduces significant changes to ventilatory neural drive, respiratory mechanics and gas exchange in
healthy individuals. Early studies demonstrated progressive decreases in minute ventilation as a result of
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lowered tidal volume (V) [38] as individuals transition from wakefulness into non-rapid eye movement
(NREM) and then into rapid eye movement (REM) sleep [39]. This is in part due to progressive increases
in upper airway resistance throughout NREM sleep stages [40, 41] which become even more pronounced
during REM sleep. It is thought that a decrease of tonic activity of the genioglossus muscle, which
contributes to maintenance of airway patency during NREM sleep, in addition to a large suppression of
pharyngeal muscle tone in REM sleep, contribute to airway narrowing and are key contributors to this
resistance increase [42]. The gravitational impact of supine positioning may also contribute to the increased
resistance through airway narrowing and tongue displacement [43, 44]. This increase in resistance has been
shown to cause a minor but detectable increase in CO, retention in healthy subjects specifically during
NREM sleep [45]. In addition, the diaphragm is displaced in the supine position assumed during sleep,
and this displacement has been shown to compress the lungs and airways, reducing lung volumes [43, 46].
Hypoxaemia, which sometimes occurs during REM sleep, has been partially attributed to increased V'/Q’
mismatching and shunt throughout this phase, as functional residual capacity is lowered as a result of
absent tonic diaphragm and intercostal activity [47].

In health, chemosensory responses to both hypercapnia [48] and hypoxia [49] are reduced in NREM and
REM sleep [50]. Typically, responses to hypercapnia have been measured through Read’s rebreathing
protocol, in which P,co, is increased by taking an individual’s expired air and having them re-inspire it
[48, 51-53]. Hypercapnic sensitivity can also be assessed through artificial increases in CO, through a
breathing circuit [54]. Although measuring chemosensitivity is a surrogate assessment of ventilatory neural
drive to breathe during sleep, a more comprehensive and direct measurement technique is needed to
appreciate mechanical, chemical and functional elements contributing to ventilatory drive.

Ventilatory neural drive in chronically hypercapnic patients with COPD: wakefulness and sleep
Ventilatory neural drive in awake hypercapnic patients with COPD

The pathophysiological hallmark of COPD is expiratory flow limitation with consequent air trapping and
hyperinflation. The resultant increased mechanical loading of the respiratory system, leading to increased
work of breathing, contributes to inability of the respiratory muscles to meet ventilatory drive requirements
in many COPD patients. If the ventilatory system response is consistently unable to meet drive
requirements, alveolar hypoventilation develops and the ability to expel CO, is compromised, leading to
hypercapnia. Severe and persistent hypercapnia, termed hypercapnic respiratory failure, is defined as
chronically high P,co, (>45 mmHg) [5]. Hypercapnia can also occur acutely, as when acute hypercapnic
respiratory failure develops during exacerbations of COPD [55]. Prior acute hypercapnic respiratory failure
is a predisposing factor to the development of chronic hypercapnia [56]. A recent multicentre prospective
trial from Germany found the prevalence of daytime hypercapnia to be 25% in COPD patients with Global
Initiative for Chronic Obstructive Lung Disease (GOLD) stage 3 or 4 disease [57]. Daytime hypercapnia is
also a predictor of poor prognosis. In a prospective cohort from China, hypercapnic patients had shorter
median survival than normocapnic COPD patients [58].

Chemical, mechanical and direct ventilatory neural mechanisms of chronic hypercapnic respiratory
failure

Ventilatory drive to the diaphragm [59] and other muscles of inspiration (including the scalene and
parasternal intercostal muscles) [60] is markedly increased in patients with severe COPD, secondary to
complex chemical, mechanical and neural changes. However, the effect of chronic hypercapnia on this
elevated ventilatory drive is less well characterised.

Chemical sources of ventilatory drive in hypercapnic patients

Central chemoreceptors located in the medulla sense decreased pH within the brain extracellular fluid as
well as changes in arterial CO,, altering ventilation to maintain pH within a certain range [61, 62]. In
contrast, peripheral chemoreceptors within the carotid body and aorta are predominantly sensitive to
hypoxia, a sensitivity that is enhanced during conditions of decreased pH [63]. CO, behaves as an acid in
aqueous solution, such that the central and peripheral chemoreceptors have P,co, thresholds of ~45 mmHg
and ~39 mmHg, respectively, after which ventilation increases linearly with increasing P,co, [64].

In patients with chronic hypercapnia due to severe COPD, chemoreceptor sensitivity may be decreased
[65] (figure 1c). Chronically hypercapnic patients with obstructive airway disease have lower ventilatory
responses (i.e. sensitivity) to increased P,co, (with and without hypoxia) than normocapnic patients with
obstructive disease or healthy controls [65, 66]. It is important to consider, when reviewing these findings,
that hypercapnic COPD patients are also typically those with the most severe mechanical limitations [67].
Thus, it is difficult to distinguish to what extent blunting of ventilatory responses within such individuals
results from mechanical limitations versus decreased chemosensitivity [68]. When BurcGrarr et al. [69]
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FIGURE 1 Proposed pathway of physiological contributions to hypercapnic respiratory failure. a) Mechanical
limitations increase work of breathing and ventilatory neural drive through an increase in airway obstruction,
which can result in air trapping and alveolar hyperinflation, as well as diaphragm weakness caused by
displacement and molecular changes within the muscle. b) Gas exchange abnormalities include ventilation/
perfusion ratio (V'/Q’) mismatch (either a result of obstructed or collapsed airways or compromised pulmonary
capillaries) and overall parenchymal and vascular destruction. The increased ventilatory drive and inability to
compensate for drive due to mechanical and nonmechanical deficits described eventually lead to chronic
elevations in arterial partial pressure of carbon dioxide (P,co,) (chronic hypercapnia). Chronic hypercapnia itself
can then lead to several deficits, including c) a reduction in chemosensitivity and d) reduced efferent signals to
the diaphragm from cortical motor centres. Both deficits can in turn increase P,co,, creating positive feedback
loops, which worsen existing hypercapnia.

simulated hypercapnia in goats through 30 days of exposure to high CO, levels, they demonstrated no
significant alteration in chemoreflex response.

Neuroplasticity of regions of the brain responsible for ventilatory sensing and neural drive may play a role
in the altered responses seen in chronic hypercapnic patients, although this hypothesis has thus far only
been explored in animal studies. Within the retrotrapezoid nucleus (RTN; a region containing many
chemosensory cells relevant to respiration), expression of several neuropeptides decreases with short-term
hypercapnia, but increases with chronically elevated P,co, [70]. One of these is galanin, which inhibits
ventilatory signals including the acute chemosensory response to hypercapnia and hypoxia when injected
into the Botzinger and pre-Botzinger complexes of rats [71]. This offers a potential mechanism to explain
findings of blunted acute chemosensitivity in hypercapnic patients, although the limitations of applying
animal physiology to human physiological function must be considered [70]. However, the neuropeptide
neuromedin B, which is an excitatory neurotransmitter potentially implicated in increased minute
ventilation, is also expressed in increasing quantities in rat RTN neurons as hypercapnia progresses, which
may explain the sustained increase in ventilation during chronic hypercapnia [70].

Mechanical modulation of ventilatory drive in hypercapnic patients

COPD results in airways obstruction, ventilation/perfusion (V’/Q’) mismatch, respiratory muscle
dysfunction and hyperinflation, the latter of which leads to diaphragmatic flattening, impaired length—
tension relationship of the diaphragm for force generation and consequent changes in breathing pattern (i.e.
decreased Vt) [72-75]. Hyperinflation further contributes to greater intrinsic positive end expiratory
pressure that must be overcome to generate inspiration [76]. In concert, the increased work of breathing
resulting from these mechanical deficits requires increased ventilatory neural drive from the respiratory
centres within the brain to maintain or attempt to maintain appropriate ventilation per metabolic load in
face of reduced ventilatory capacity (figures la and 2) [77, 78]. Interestingly, hypercapnia itself may
contribute to the perpetuation of this cycle, as even 21 days of chronic hypercapnia increases airway
smooth muscle contractility and constriction in response to acetylcholine through a caspase-7-mediated
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FIGURE 2 Physiology of increased ventilatory neural drive in COPD patients with hypercapnic respiratory
failure. Gas exchange abnormalities (including ventilation/perfusion mismatch and parenchymal and vascular
destruction) as well as mechanical limitations (airways obstruction and respiratory muscle impairment from
hyperinflation) ultimately lead to hypercapnia when ventilation is no longer able to match metabolic demand.
In turn, altered signalling to the central respiratory centres from chemical and mechanical receptors leads to
an increase in ventilatory neural drive to the muscles of respiration.

mechanism in murine models [78]. This hypercapnia-mediated increase in contractility may potentiate
airways resistance and load in hypercapnic COPD patients, which in turn could further increase ventilatory
drive through mechanosensory afferent pathways [79]. In addition, cellular and molecular changes within
the diaphragm contribute to mechanical limitations in chronic hypercapnic respiratory failure. On the level
of individual cells, diaphragmatic muscle fibres from patients with severe COPD generate less force than
those within the diaphragms of healthy controls (figure 1a) [80]. However, the proportion of slow-twitch
fibres within the diaphragm is increased in COPD patients, indicating a potential increase in fatigue
resistance to compensate for higher ventilatory load [81]. It is still unclear whether this compensation is
able to prevent or delay the onset of hypercapnic respiratory failure; more investigation is needed in
this domain.

An additional and significant factor contributing to gas exchange derangement and eventual hypercapnia,
which is linked to both mechanical and chemical alterations, is V'/Q’ mismatch (see figure 1b). In early
COPD, V'/Q’ inequality presents, in part, through early collapse of small airways and impaired alveolar
ventilation prior to larger airways becoming impacted and altering spirometry [73]. Concurrent destruction
of pulmonary capillaries increases the proportion of ventilation that enters poorly perfused alveoli (creation
of physiological dead space), further contributing to V’/Q" mismatch. There is also more recent evidence to
suggest that some COPD patients may present with a “vascular phenotype” of disease which leads to
early V'/Q’ inequality, in which vascular pruning and vascular dysfunction, as opposed to emphysematous
destruction of capillary beds, is the predominant contributor to V'/Q’ mismatch as a result of poor
perfusion [82]. Finally, the creation of dead space as a result of airway collapse and perfusion limitation
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leads to a higher required level of minute ventilation in order to facilitate sufficient gas exchange. Patients
with severe COPD and mechanical limitation are often unable to meet this requirement and CO, retention
is the result.

Direct neural inputs to the diaphragm

Direct neural inputs to the diaphragm via the corticospinal pathway allow for voluntary control of the
diaphragm and facilitate nonventilatory activities such as speech [83]. These pathways have been assessed
by way of transcranial magnetic stimulation and measurement of resultant motor evoked potentials of the
diaphragm [84]. Signalling to the diaphragm initiated in the cortex through the corticospinal pathway
contributes to neural drive in the waking state and is essential for resisting apnoeas induced by hypocapnia
[85]. This drive is predominantly provided by excitatory stimulation of the cortex via the reticular
activating system during wakefulness, allowing for continuation of breathing even without medullary centre
input [86].

Evidence suggests that the corticospinal tract is almost maximally activated in awake COPD patients [87]
and there is a ceiling effect of the corticospinal signal in COPD patients not seen in healthy controls [88].
However, in COPD patients with elevated P,co,, findings are inconsistent, with some studies suggesting
that corticospinal inhibition of the diaphragmatic motor cortex is increased in hypercapnia [87], while
others demonstrating increased voluntary activation of the diaphragm possibly conferring protective
advantages in face of worsened mechanics [89]. Such findings have been obtained in relatively small
sample sizes, and further work is needed to definitively identify the impact of chronic hypercapnia on
ventilatory neural drive. Relative changes in input from medullary respiratory centres may also contribute
to changes in drive, but their respective contributions in severe COPD and/or hypercapnia have not been
characterised.

Ventilatory neural drive in sleeping patients with hypercapnic COPD

Despite persistently elevated daytime ventilatory neural drive in patients with COPD, neural drive changes
occurring during sleep may especially predispose patients with impaired respiratory mechanics to nocturnal
hypoventilation. To date, EMGyg; has been acquired in few overnight studies in patients with COPD. Luo
et al. [18] demonstrated greater declines in EMGyg; during the transition from wakefulness to NREM and
REM sleep in normocapnic COPD versus heathy controls despite consistently higher overall drive in
COPD patients, concluding that such decreases in drive may contribute to hypoventilation and hypercapnia
during sleep (figure 3a). This is supported by recent findings showing greater loss of EMGy; in the
transition from wakefulness to sleep in normocapnic COPD than in health [90]. Such nocturnal
hypercapnia is predicted to precede the onset of persistent daytime hypercapnia [91]. As described in the
preceding section, corticospinal input to the respiratory centres contributes to neural drive in the waking
state, but much of this input is lost during sleep. This has potential to contribute to the drop in EMGy;
observed in the transition to sleep. It may also be postulated that the loss of this wakefulness drive could
have exaggerated impacts on COPD patients as compared to the healthy population, due to impaired ability
to compensate for the increasing mechanical and chemical deficits which we have described in
hypercapnic COPD, thus increasing vulnerability to hypoventilation. Interestingly, decreases in EMGg; in
the transition to sleep may occur in the presence of preserved ventilatory effort (oesophageal and
transdiaphragmatic pressure) in normocapnic COPD [90].

In addition to disturbed mechanical inputs to the respiratory centres, disrupted chemical afferent inputs to
the central rhythm generator in the medulla in COPD patients during sleep may facilitate hypoventilation
and promote CO, retention (figure 3d). The decreased sensitivity of chemoreceptors to both hypercapnia
and hypoxia throughout sleep [92] which causes minimal disturbance in healthy subjects can be
deleterious when compounded by the mechanical limitations and blunted chemosensory responses in
COPD patients [93]. Furthermore, diaphragmatic flattening due to hyperinflation may cause COPD patients
to increase use of accessory inspiratory muscles to maintain ventilation during the daytime and portions of
the night [94]. However, REM sleep-associated muscle atonia disproportionately affects inspiratory
muscles other than the diaphragm [95, 96], leading to a presumed reliance on the diaphragm to maintain
adequate ventilation [97] during REM sleep (figure 3c). This may leave COPD patients who rely in larger
part on nondiaphragmatic inspiratory muscles without adequate means to generate pressure during REM
sleep, contributing to sleep hypoventilation. Insufficient pressure generation from the diaphragm also
encourages patients to adopt a rapid shallow breathing pattern [98], which leads to a higher percentage of
ventilation within anatomical dead space, and less efficient gas exchange [99]. Accordingly, hypopnea and
associated hypercapnia typically first present during REM sleep [20]. However, emerging evidence
suggests that REM sleep atonia of inspiratory muscles apart from the diaphragm may not be as universal as
previously believed. In patients with severe COPD recovering from exacerbation, evidence of additional
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FIGURE 3 Physiological changes during sleep in normal subjects and COPD. a) During sleep, a decrease in ventilatory neural drive is observed.
Despite higher baseline drive in COPD patients, a larger drop from wakefulness to sleep is typically noted in this population. b) Increased airway
resistance during sleep may exacerbate the ventilation/perfusion (V//Q’) mismatching experienced in COPD. c) Accessory inspiratory muscle activity is
typically eliminated during rapid eye movement (REM) sleep, necessitating a reliance on the diaphragm. However, in COPD patients with
compromised diaphragm activity, hypoventilation may result from this loss of accessory muscle activity. d) Finally, decreased chemosensitivity in
sleep compounds the existing reduction in chemosensitivity experienced by COPD patients, especially those with elevated arterial partial pressure of
carbon dioxide. These changes in sleep compounded on the limitations on COPD patients can contribute to sleep hypoventilation in this population.

inspiratory muscle activity has been documented during REM sleep [100]. Similarly, maintained activity of
other inspiratory muscles, including the parasternal intercostals, has been demonstrated in healthy
individuals during REM sleep [101], suggesting that inhibition of inspiratory muscles may be a less
significant factor in sleep hypoventilation than once believed.

The prevalence of sleep disordered breathing, in particular, obstructive sleep apnoea (OSA), is high in
patients with severe lung disease [102], which can further exacerbate declines in lung function and
derangement of blood gases overnight. High apnoea—hypopnea index scores, which indicate the existence
of OSA, have been found to be inversely correlated with forced expiratory volume in 1s (FEV,)/forced
vital capacity, indicating that this condition disproportionately affects severe COPD patients [103].
Increased airway inflammation and larger and more frequent oxygen desaturations may contribute to
hypoventilation and eventual hypercapnia in OSA patients. Additionally, COPD patients frequently
experience arousal from sleep, which can be made even worse by coexistent OSA [104]. These arousals
have been associated with increased neural drive, which could complicate our understanding of ventilatory
drive during sleep and changes in blood gasses [26, 70]. However, the details of COPD-OSA overlap and
arousals are beyond the scope of this article, as we aim to predominantly review the physiological
underpinnings of hypercapnic COPD in isolation.

Treatments targeted towards improving ventilation during sleep include nocturnal bronchodilator therapy
and oxygen supplementation. While dual long-acting nocturnal bronchodilators decrease airways resistance
and sleeping ventilatory effort and ventilatory neural drive in moderate COPD [105, 106], nocturnal
long-term oxygen therapy improves oxygenation in patients with persistent hypoxaemia [107] decreasing
minute ventilation through reduction of a chemosensory stimulus [108]. These approaches are often
insufficient when treating severe COPD with hypercapnia [109]. Recently, nocturnal NIV has gathered
significant interest as an effective means of improving blood gas levels in hypercapnic COPD patients and
contributing to improved symptom profile [110].
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Nocturnal NIV in COPD

Nocturnal NIV directly addresses some of the overnight mechanical and neural challenges which
contribute to chronic hypercapnic respiratory failure in COPD patients, showing outcome benefits over
other therapies including nasal high-flow therapy [111] or long-term oxygen therapy alone [112]. NIV
became utilised for acute respiratory failure in patients with COPD shortly after its initial use on patients
with neuromuscular disease and paralysis [113]. Investigation into the use of high-intensity NIV (a form of
NIV that uses high inspiratory pressures to help normalise P,co,, to treat stable chronic hypercapnic
COPD) began in the early 2010s, with early studies delivering promising results: improved health-related
quality of life, reduced sleep hypoventilation and improved daytime lung function [9, 10].

When is NIV indicated in COPD?

The European Respiratory Society, American Thoracic Society and Canadian Thoracic Society
acknowledge the benefits of NIV in stable hypercapnic COPD, with the most recent clinical practice
guidelines of each recommending the initiation of NIV once a stable patient reaches a specific P,co,
threshold [15-17]. While there is some variance in the precise threshold employed by each society, this
probably reflects the diversity of mean P,co, of patients using NIV across studies [16].

Mechanisms of NIV in hypercapnic COPD

Despite the large body of literature documenting clinical outcomes of NIV, many questions remain on the
physiological mechanisms contributing to its efficacy. Here, we will introduce several proposed
mechanisms of action of NIV while highlighting gaps in the literature warranting further exploration.

Unloading the diaphragm

NIV is proposed to improve outcomes in chronic hypercapnic respiratory failure, in part through reduction
of diaphragm workload (figure 4b). DurvermAN et al.’s [12] study, which looked at costal diaphragm
activity via surface EMG in awake COPD patients with hypercapnia, found significant reductions in EMG
activity during NIV versus unassisted breathing, with even more pronounced reductions when a high
inspiratory pressure was used. A modified mode of noninvasive ventilation, proportional assist ventilation,
which uses the patient’s breathing effort as measured by a pneumotachograph to determine assistive
pressure and flow [114] also reduces costal diaphragm EMG via surface electrode by ~38% when
accounting for changes in minute ventilation [115]. It should be noted that diaphragm activity has only
been measured through surface electrodes during NIV. This comes with technical limitations, as surface
signals from the costal diaphragm are often skewed by artefact from nearby muscles of the chest wall
[116]. The oesophageal catheter technique of measuring crural diaphragm EMG activity can eliminate
some of this extraneous muscle crosstalk, improving specificity of measurement. Moreover, the activity of
the diaphragm (costal or crural) during NIV in sleep has not been directly reported in the literature and
must be explored to confirm that diaphragm unloading contributes to the efficacy of NIV in improving
ventilation overnight.

Reduction of hyperinflation

Hyperinflation, which is a hallmark of COPD, can worsen overnight (figure 4a) [90, 105]. Combined with
the deleterious impact of sleep on airway resistance, inspiratory muscle activity and breathing pattern, this
hyperinflation can also lead to exaggerated hypoventilation and hypercapnia overnight [117]. Dynamic
hyperinflation, characterised by positive end-expiratory pressure changes, is significantly reduced in COPD
patients randomised to daytime NIV for 3 h, 5 days per week over 3 weeks, and this reduction is associated
with decreased hypercapnia (—1.12 mmHg) [118]. It was postulated that the reduced hyperinflation may
have been the result of a longer time available for expiration due to reduced respiratory rate facilitated by
NIV, which resulted in more effective emptying and a reduction in gas trapping [118]. NIV used overnight
may also significantly improve daytime hyperinflation, as described in a group of severe COPD patients
(GOLD stage IV) undergoing simultaneous pulmonary rehabilitation [13]. Residual volume/total lung
capacity (used to assess lung hyperinflation) significantly improved in patients using NIV and pulmonary
rehabilitation and remained unchanged in patients completing pulmonary rehabilitation alone [13].
Improvements in hyperinflation may in turn improve lung function, with some literature pointing to a
reduced decline, or even slight increase in FEV; in patients using NIV as compared to other forms of
treatment alone [119].

Improvement in V'/Q" mismatching

As described in the section on ventilatory neural drive in awake hypercapnic patients with COPD, V'/Q’
mismatch due to small airway and alveolar collapse is common in COPD. Although some of the poorly
ventilated pulmonary perfusion that results can be rerouted to more ventilated regions through pulmonary
hypoxic vasoconstriction [120], areas of physiological shunt remain, which can result in the development
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FIGURE 4 Mechanisms of noninvasive ventilation (NIV) in hypercapnic respiratory failure in COPD. a) The extended expiratory time provided by NIV
is thought to facilitate lung emptying and reduce hyperinflation. b) The high inspiratory pressure provided by NIV therapy is also intended to
directly reduce the work of the diaphragm in initiating inspiration. c) Positive pressure provided by NIV may allow for the reopening of previously
collapsed small airways, leading to improvement in ventilation/perfusion (V'/Q’) matching. These improvements may contribute to a reduction in
ventilatory neural drive and improve ventilation capacity, leading to reductions in hypercapnia. d) Improved chemosensitivity may result from
decreased hypercapnia, and lead to further reductions in arterial partial pressure of carbon dioxide.

of hypoxia. The ability of NIV to provide positive end-expiratory pressure functions to maintain airway
patency and improve expiratory flow [121]. This pressure has been shown to recruit previously collapsed
alveoli when used in patients with hypoxaemic acute respiratory failure [122]. This could potentially allow
for ventilation in previously shunted regions, improving V’/Q" matching, resulting in oxygenation along
with CO, removal (figure 4c).

NIV resetting central drive

It has been theorised that the improvements seen in NIV during sleep may also be the result of a “reset” in
respiratory drive initiated by normalisation of P,co,, which persists during the daytime to improve daytime
P,co, in addition to acutely improving nocturnal P,co, during sleep (figure 4d). This is supported by two
small studies [123, 124] which used rebreathing protocols to measure chemosensitivity to CO, during the
daytime, and found improvements in sensitivity after nocturnal NIV treatment and resultant decreases in
daytime P,co,-

To date, few investigators have attempted to acutely characterise the impact of NIV on ventilatory neural
drive to breathe. One study acutely assessed neural drive via parasternal electromyography during
overnight NIV in a cohort of hypercapnic COPD patients to detect patient ventilator asynchrony; however,
the impact of NIV on magnitude of and possible alterations in neural drive were not thoroughly
characterised through the use of EMGyg; to measure diaphragm activation [36].

Conclusion

The deleterious effects of advanced COPD on lung and airway mechanics, gas exchange and respiratory
muscle function [125] impair the ability of the ventilatory system to effectively clear CO,, ultimately
resulting in chronic hypercapnic respiratory failure [5]. Nocturnal NIV has been successfully integrated
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into clinical practice guidelines, and studies have shown promising data on its ability to improve clinical
outcomes. However, much of the research on physiological mechanisms behind the efficacy of NIV relies
on surrogate rather than direct measurement of ventilatory neural drive or has investigated the use of NIV
during wakefulness. These shortcomings are acknowledged by recent clinical practice guidelines, which
recommend further research in the area of physiological underpinnings of NIV. Such an understanding is
prerequisite to developing setting recommendations for individual patients and may be facilitated by
measurement of ventilatory neural drive and consequent mechanical responses to nocturnal NIV. Advances
in techniques for measuring these physiological indices are increasingly available, and reports on this
exciting yet complex process are eagerly anticipated.

Future research questions

+  What is the impact of NIV on ventilatory neural drive (as measured by diaphragm EMG) overnight?

+  What is the impact of long-term use of NIV on daytime ventilatory neural drive (as measured by EMGg;)?

»  How do cellular changes within the diaphragm in COPD impact the progression of chronic hypercapnic
respiratory failure?

+  What is the precise P,co, threshold at which NIV is beneficial for patient clinical outcomes?

»  What are the relative contributions of ventilatory versus perfusion limitations to the development of
chronic hypercapnic respiratory failure?

»  Does the impact of long-term NIV on ventilatory neural drive affect daytime perceptions of dyspnoea and
associated exercise intolerance?
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