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ABSTRACT Drug repurposing is the use of known drugs for new indications. Malignant pleural
mesothelioma (MPM) is a rare cancer with a poor prognosis. So far, few treatments have been approved in
this disease. However, its incidence is expected to increase significantly, particularly in developing
countries. Consequently, drug repurposing appears as an attractive strategy for drug development in MPM,
since the known pharmacology and safety profile based on previous approvals of repurposed drugs allows
for faster time-to-market for patients and lower treatment cost. This is critical in low- and middle-income
countries where access to expensive drugs is limited. This review assesses the published preclinical and
clinical data about drug repurposing in MPM.

In this review, we identified 11 therapeutic classes that could be repositioned in mesothelioma. Most of
these treatments have been evaluated in vitro, half have been evaluated in vivo in animal models of MPM
and only three (i.e. valproate, thalidomide and zoledronic acid) have been investigated in clinical trials,
with limited benefits so far. Efforts could be coordinated to pursue further investigations and test
promising drugs identified in preclinical experiments in appropriately designed clinical trials.
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The concept of drug repurposing
The aim of drug repurposing is to identify and develop new indications for approved drugs [1, 2]. In
oncology, drug repositioning consists of demonstrating the anticancer properties of marketed drugs
approved for nonmalignant diseases [3]. Because repositioned drugs have well-known safety and
pharmacokinetic profiles, faster development can be expected. Indeed, clinical development can start
directly with phase II trials to assess the efficacy of the drug. Furthermore, this strategy is economically
attractive, particularly in low- and middle-income countries (LMIC) where accessing new cancer
treatments is difficult [4]. Because it is based on old and inexpensive drugs and because most of these
treatments have oral formulations, this strategy limits the need for extended hospital stays and long
journeys to care centres. In addition, these drugs are known to have tolerable side-effects as compared to
classical anticancer agents, so the need for supportive care is limited.

Drug repurposing relies on two main approaches: 1) activity-based repurposing, where candidate drugs are
evaluated in cancer models in vitro and/or in vivo and 2) in silico drug repurposing, where interactions
between drugs and their potential molecular targets are modelled in silico by using public databases and
bioinformatics tools [5]. By using either or both of these approaches, several drugs approved for
nonmalignant diseases have been shown to exert potent anticancer effects and have been successfully
repurposed to target specific pathways. For instance, anti-angiogenic activity can be obtained with
β-blockers [6] or celecoxib [7], and inhibition of the sonic hedgehog pathway can be obtained with
itraconazole [8].

Potential of drug repurposing in malignant pleural mesothelioma
Malignant pleural mesothelioma (MPM) is a rare cancer with a dismal prognosis [9], mainly caused by
exposure to asbestos with an aetiological fraction of ⩾80% [10]. MPM is classified into three major
histological subtypes: epithelioid (50% of cases), sarcomatoid (15% of cases) and biphasic or mixed (35%
of cases). MPM has a strong male predominance and is usually diagnosed 30–40 years after the
occupational exposure [11]. The World Health Organization (WHO) has recognised that asbestos is one of
the most important occupational carcinogens and has declared that asbestos-related diseases should be
eliminated throughout the world [12]. DRISCOLL et al. [13] estimated that 43000 people worldwide die of
MPM each year, with 17062 deaths in United States between 1994 and 2008 and 49779 deaths in the
same period in Europe [14]. The number of MPM deaths reported and the number of countries reporting
MPM deaths increased between 1994 and 2008, mainly in developed countries, probably due to better
disease recognition and an increase in incidence. In Europe, LA VECCHIA et al. [15] predicted that peak
mortality from MPM will occur between 2010 and 2020 when the generation born between 1940 and 1950
will reach the peak age for MPM incidence and mortality. Currently, the number of MPM deaths is lower
in developing countries, because developing countries began their asbestos use later [16], and because
MPM is underdiagnosed as it requires expertise and immunohistochemical staining. Although asbestos
production has decreased worldwide since the early 1990s because it has been banned in several countries,
its use has increased in many countries as China, India, Kazakhstan, Russia, Ukraine and Uzbekistan [17].
The WHO estimates that 125 million people worldwide are still exposed to asbestos in their workplace
[18]. Nowadays, asbestos exposure is high in developing countries. For example, it is reported that in India in
1994 [19], levels of fibres per cubic centimetre were found to be 100- to 1000-fold higher in textile factories
or cement mills than the current permissible exposure limit in the United States. Consequently, developing
countries should expect a significant rise in MPM incidence in the coming decades.

Most patients diagnosed with MPM have unresectable disease and are thus treated with chemotherapy. The
standard first-line treatment for patients with advanced MPM consists in a combination of pemetrexed and
cisplatin, which increases median overall survival (OS) from 9.3 to 12.1 months compared with treatment
with cisplatin alone (p=0.020) [20]. Recently, the Mesothelioma Avastin Cisplatin Pemetrexed Study
(MAPS) trial showed that the addition of bevacizumab to cisplatin and pemetrexed significantly increased
OS (median 18.8 versus 16.1 months, hazard ratio (HR) 0.77 (95% CI 0.62–0.95); p=0.0167) in MPM with
expected and manageable toxic effects [21]. Thereby, the cisplatin/pemetrexed/bevacizumab regimen could
become a treatment option in the future for patients who are eligible to receive bevacizumab [22]. For
subsequent therapy lines, no standard salvage therapy exists [23]. In a phase III trial comparing pemetrexed
to palliative care alone, SØRENSEN et al. [24] demonstrated that pemetrexed improved progression-free
survival (PFS) and time to progression without impact on OS. Other chemotherapeutic agents, such as
gemcitabine or vinorelbine show only marginal response rates [25, 26]. Other research strategies are
currently being investigated, with promising results for immune checkpoint inhibitors or antimesothelin
antibodies [27, 28]. However, their high cost could limit their use in developing countries once approved.

Thus, the prognosis of patients with MPM is very poor, with an average OS of 18 months from diagnosis.
Moreover, there are only few treatment options available with only one chemotherapy regimen approved
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for first-line treatment of MPM and no standard treatment for second-line treatment. Thus, new treatment
strategies are urgently needed. Because MPM is a rare cancer, clinical development of new drugs is
difficult and requires worldwide collaboration from clinical trial centres in order to recruit more quickly
and allow faster access to innovative molecules. Drug repositioning may be an attractive strategy in this
pathology because it offers the possibility of faster drug development and consequently shorter paths to
clinical approval. Furthermore, with the expected increase of incidence of MPM in LMIC, drug
repositioning could offer solutions for patients living in these countries. Herein, we review the reported
preclinical and clinical reported data of drug repurposing strategies in MPM.

Methods
We searched and extracted eligible studies about drug repurposing in MPM by an electronic search from
the PubMed database. The keywords applied in the search were as follows: “mesothelioma” with “drug
repositioning” or “[name of the molecule known to have an anticancer effect]”. In the latter case, the
molecules were selected on the basis of previous articles on drug repurposing in oncology. We selected
only publications written in the English language. The manual selection of relevant trials was first based
on abstract analysis. The search ended in November 2016. The bibliographies noted in all the identified
studies were used to complete this search.

Antiemetic drugs
Thalidomide is a historical example of drug repositioning. The drug was first developed in the 1950s to treat
morning sickness in pregnant women. This was one of the biggest man-made medical disasters: >10000
children were born with a range of severe and debilitating malformations [29]. Thalidomide was withdrawn
from the market as an antiemetic drug in the 1960s. It has since evolved to treat the cutaneous manifestations
of erythema nodosum leprosum [30] and has shown antineoplastic properties by the inhibition of tumour
angiogenesis [31] and cell proliferation [32], and through immunomodulatory effects [33]. Thalidomide
has been evaluated in a variety of human cancers in clinical trials, which has led to its approval for the
treatment of multiple myeloma [34]. In France, thalidomide is approved for previously untreated elderly
patients with multiple myeloma in combination with melphalan and prednisone [35].

In MPM, thalidomide has been assessed in clinical trials without prior investigations in preclinical models.
Despite encouraging results in a phase II trial with 28% disease stabilisation at 6 months observed with
thalidomide as single agent in previously treated MPM patients [36], thalidomide failed to improve OS or
PFS versus active supportive care in patients with MPM after first-line therapy in a randomised phase III
study [37]. Median overall survival was 10.6 months in the thalidomide group and 12.9 months in the
active supportive care group (HR 1.2, p=0.21). Similar disappointing results were observed in stage 3
nonsmall cell lung cancer (NSCLC) [38]. Table 1 provides a summary of the repurposed drugs.

Histone deacetylase inhibitors
Histone deacetylase (HDAC) inhibitors have antitumor effects by epigenetic induction of gene
transcription resulting in tumour cell growth inhibition and apoptosis [39]. The first HDAC inhibitor
tested in MPM was vorinostat, a HDAC inhibitor currently approved for the treatment of relapsed and
refractory cutaneous T-cell lymphoma [97]. Despite encouraging in vitro and in vivo data, results in
patients with MPM were disappointing, as vorinostat did not improve OS when compared to placebo in
second-line or third-line therapy: median OS was 30.7 weeks in the vorinostat group and 27.1 weeks in the
placebo group (HR 0.98, p=0.86) [23].

Valproate is a widely prescribed antiepileptic drug that has anticancer effect by its HDAC inhibiting
properties. Among its multifaceted anticancer effects, valproate can induce tumour differentiation, reduce
tumour growth and metastasis formation [98], induce apoptotic cell death [99], and increase tumour cell
sensitivity to radiation [100]. Valproate showed anticancer activity in several tumour sites including
glioblastoma, neuroblastoma, retinoblastoma and cervical cancer [101–103]. However, results are
disappointing in myelodysplastic syndrome and acute myeloid leukaemia [104]. Valproate has shown
preclinical and clinical activity in MPM. The association of valproate with pemetrexed and cisplatin
increases caspase-dependent apoptosis in M14K, M38K and ZL34 human MPM cell lines, belonging to
the epithelioid, biphasic and sarcomatoid subtypes, respectively and its efficacy was superior to
suberoylanilide hydroxamic acid, a well-known HDAC inhibitor [105]. The synergistic activity of valproate
in combination with chemotherapy was confirmed in vivo in mouse models of epithelioid MPM [105].
Subsequently, valproate was tested in combination with doxorubicin in patients with refractory or
recurrent MPM after standard first-line chemotherapy in a phase II trial. Among 45 heavily pretreated
patients, seven (16%) obtained a partial response. The median PFS was 2.5 months and the median OS
was 6.7 months [40].
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Statins
Statins are a class of drugs with lipid-lowering effect through inhibition of the mevalonate pathway [106].
Statins have antineoplastic properties [107] such as cell cycle arrest [41], apoptosis induction [42],
sensitisation to cytotoxic drugs [43], angiogenesis inhibition [44], invasion and metastasis inhibition [45]
and tumour differentiation [46]. In a recent retrospective study in small cell lung cancer, a statistically
significant increase in median OS was observed in statin-treated patients when compared to those not
receiving statins (median OS 8.4 versus 6.1 months, p<0.05) [105]. Results from a phase III comparing
etoposide and cisplatin or carboplatin as first-line chemotherapy with or without pravastatin in preteated
patients with small cell lung cancer are expected [50]. In a phase III clinical trial, statins failed to improve
OS in gastric cancer patients in combination with capecitabine [48] or in colorectal cancer patients in
combination with Xeliri/Folfiri [49].

Statins have been extensively investigated in vitro in human MPM cells. Lovastatin [109] was shown to
decrease cell viability in a dose-dependent manner in human MPM cell lines, through apoptosis induction.
In addition, the combination of lovastatin and valproate was shown to reduce cell invasion of Acc-Meso-1,
a human-derived MPM cell line [110]. HWANG et al. [51] reported a synergistic effect of the combination
of pemetrexed and simvastatin on apoptosis induction in MSTO-211 MPM cells by reactive oxygen

TABLE 1 Drugs repurposed in malignant pleural mesothelioma (MPM)

Original indication Anticancer effect Advancement in oncology Advancement in
MPM

Valproate Epilepsy HDAC [39] Phase II ongoing in different
types of cancer

Phase II [40]

Statins Dyslipidaemia [38] Induction of cell cycle arrest [41]
Induction of apoptosis [42]

Sensitises cells to chemotherapy [43]
Inhibition of angiogenesis [44]

Inhibition of invasion and metastasis [45]
Induction of tumour differentiation [46]
Reversion of multidrug resistance [47]

Phase III: gastric cancer [48],
colorectal cancer [49]

Phase III: ongoing in SCLC [50]

Preclinical [47,
51–53]

Itraconazole Antifungal Induction of angiogenesis [54]
Inhibition of hedgehog pathway [8]

Phase II: NSCLC [55]
Prostate cancer [56]

Basal cell carcinoma [57]

Preclinical [58]

Arsenic
trioxide

Traditional Chinese
medicine

Induction of apoptosis [59] FDA approved: promyelocytic
leukaemia [60]

Phase III: hepatocellular
carcinoma

Preclinical [58,
61, 62]

Disulfiram Addiction to alcohol [63] DNA N-methyl transferase inhibition Phase II: NSCLC [64] Preclinical [65]
Celecoxib NSAIDs [66] Inhibition of cell cycle progression [67]

Inhibition of apoptosis [68]
Inhibition of angiogenesis [69]

Phase II: breast cancer [70],
glioblastoma [71], ovarian

cancer [72]
Phase III: ongoing in different

types of cancer

Preclinical [73]

Metformin Diabetes type 2 Inhibition of mTor [74]
Inhibition of cell cycle [75]

Inhibition of EMT [76]

Phase II: pancreatic cancer [77]
Phase III ongoing: breast cancer
[78], endometrial cancer [79]

Preclinical [80]

Tocotrienol Antioxidant [81, 82] Inhibition of angiogenesis [83]
Inhibition of PI3K/AKT pathway [84]
Reversion of chemoresistance [85]

Phase II: breast cancer [86]
Phase II ongoing: ovarian cancer

[87]

Preclinical [52,
85, 88]

Thalidomide Sickness in pregnant
females (withdrawn) [29]

Inhibition of angiogenesis [31]
Inhibition of cell proliferation [32]
Immunomodulatory function [33]

FDA approved: multiple myeloma
[34]

Phase III [37]

Anisomycin Antibiotic Induction of apoptosis [89] Preclinical [90] Preclinical [90]
Zoledronic
acid

Osteoporosis,
hypercalcaemia [91]

Inhibition of cell proliferation
Inhibition of invasion

Inhibition of angiogenesis
Inhibition of bone metastases

Immunomodulatory function [92, 93]
Reversion of chemoresistance [94]

Phase III: breast cancer [95] Phase II [96]

HDAC: histone deacetylase inhibitor; SCLC: small cell lung cancer; NSCLC: nonsmall cell lung cancer; FDA: United States Food and Drug
Administration; NSAIDs: nonsteroidal anti-inflammatory drugs; EMT: epithelial–mesenchymal transition.
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species-dependent mitochondrial dysfunction and Bim induction. RIGANTI et al. [47] showed that statins
revert doxorubicin resistance by increasing nitric oxide production in human MPM cells MM98, OC99
and GF99. Additionally, statins have been shown to exert synergistic antiproliferative effects with
γ-tocotrienol (isoform of vitamin E) on human MPM cells H2052 (sarcomatoid), H28 (epithelioid),
H2452 (biphasic) and MSTO-211H (biphasic; MSTO) via inhibition of the mevalonate pathway, induction
of endoplasmic reticulum stress and caspase 3 activation [52]. The potential of lovastatin alone has also
been demonstrated in vivo as it significantly reduced primary tumour and metastasis in a NOD/SCID/
γ-null (NOG) mouse model of human MPM [53]. The role of statins in MPM has not yet been
investigated in clinical trials.

Antifungal drugs
Itraconazole is an antifungal drug with several proven antiproliferative properties. Itraconazole acts as an
anti-angiogenic agent [54] by direct inhibition of vascular endothelial growth factor receptor (VEGFR)2
glycosylation and consequently inhibits VEGFR2 autophosphorylation after VEGF stimulation [111]. It
also inhibits the hedgehog signalling [8] pathway by acting on the smoothened protein (an essential
hedgehog pathway component) and consequently suppressing the tumour growth. Of note, hedgehog
signalling is involved in MPM cell growth [112]. Itraconazole has shown encouraging results in phase II
trials in several tumour types. In previously treated NSCLC, itraconazole combined with pemetrexed was
superior compared to pemetrexed alone (median OS 32 months versus 8 months, p=0.012) [55]. In
addition, itraconazole showed activity in castration-resistant metastatic prostate cancer [56] and in basal
cell carcinoma [57].

Furthermore, itraconazole [58] suppresses the viability of various human MPM cell lines of epithelioid,
sarcomatoid and biphasic subtypes, in a dose-dependent manner, at least in part by reducing Gli1
expression, which is a key actor of the hedgehog pathway. However, itraconazole is yet to be evaluated
in vivo or in a clinical trial in MPM.

Traditional Chinese medicine
Traditional Chinese medicine relies in part on the concept of using a controlled dose of poison to treat
patients [113]. Arsenic trioxide (ATO) is an inorganic compound, which has been used in traditional
Chinese medicine [61] to treat a wide variety of illnesses including syphilis and parasite infections. ATO
has been repositioned successfully in oncology. It exerts its anticancer effects through the induction of
apoptosis [59], and the inhibition of angiogenesis by inhibiting VEGF-A expression [114]. ATO has been
approved by the United States Food and Drug Administration (FDA) since 2000 for patients with relapsed
promyelocytic leukaemia [60]. In addition, ATO has been assessed in solid tumours with encouraging
results in hepatocellular carcinoma [115] when combined to locoregional therapy (overall response rate
81.96% (95% CI 72.32–91.62%) versus 59.37% (95% CI 47.34–71.41%) for patients treated by locoregional
therapy alone; p<0.05). Although ATO was approved by the FDA when administered intravenously, oral
formulations have been developed and have shown activity equal to the intravenous formulation, and a
more favourable toxicity profile [60].

The effects of ATO on human MPM cells have been assessed in vitro. Like itraconazole, ATO suppresses
cell viability of various MPM cell lines by reducing [58] Gli1 expression. In addition, ATO was shown to
induce apoptosis in the NCI-H2052 MPM cell line [61] by activating two mitogen-activated protein kinase
pathways: the c-Jun NH2-terminal kinase pathway and the response and extracellular signal-regulated
kinase (ERK) pathway. The ERK pathway mediates cell proliferation and apoptosis [116]. An
antiproliferative effect and cytotoxic effect of ATO [62] was also reported in multiple MPM cell lines
(sarcomatoid, epithelioid and biphasic) by apoptosis induction mediated through downregulation of E2F1,
a transcription factor involved in proliferation, apoptosis, cell cycle, tumour growth and senescence [117],
and downregulation of thymidylate synthase, which is involved in pemetrexed resistance when
overexpressed [118].

The role of ATO on human MPM was confirmed in vivo [62] using a nude mouse xenograft model of
epithelioid MPM. The relative tumour size after 23 days of ATO treatment was statistically lower
comparing to control group (p<0.05) with suppression of E2F1 expression and caspase-3 cleavage. ATO
has not been tested in MPM patients yet.

DNA methyltransferase inhibitors
Disulfiram (DSF), a member of the dithiocarbamate family, is an irreversible inhibitor of aldehyde
dehydrogenase approved by the FDA to treat alcoholism [63]. DSF inhibits tumour growth by its
epigenetic properties as a DNA methyltransferase inhibitor [119]. In addition, DSF can potentiate the
effects of anticancer drugs [120, 121]. In a recent phase II trial, the addition of DSF to cisplatin and
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vinorelbine [64] was found to increase OS in NSCLC patients as compared with chemotherapy alone (10
versus 7.1 months, p=0.041). Moreover, there were two long-term survivors in the DSF group.

DSF has been assessed in vitro in human MPM via a DSF–copper (DSF-Cu) complex, as copper is
required in DSF-induced toxicity and radio sensitisation of cancer cells [122]. The complex DSF-Cu
inhibits proliferation of MPM cell lines via promotion of apoptosis, in part by inhibiting nuclear factor-κB
in a dose-dependent manner [65]. The inhibition growth tumour by stimulating apoptosis was confirmed
in vivo [65]. DSF-Cu-treated Balb/c mice xenografted with MPM AB12 murine cells showed a 71%
inhibition of tumour growth compared to control tumours. As previously seen in vitro, DSF-Cu inhibited
murine MPM tumour growth by promoting apoptosis.

Nonsteroidal anti-inflammatory drugs
Acetylsalicylic acid or aspirin inhibits cyclooxygenase (COX)-1 and COX-2 and is the most widely used
nonsteroidal anti-inflammatory drug worldwide [123]. Aspirin has been shown to induce apoptosis in
both COX-dependent and COX-independent mechanisms [124], and suppresses the acquisition of
chemoresistance [125]. The use of aspirin has demonstrated improved outcomes in colorectal cancer [126, 127].

Aspirin [115] was shown to inhibit colony formation in REN, HMESO and PHI, three MPM cell lines
secreting high amounts of high-mobility group box (HMGB)1, a protein that regulates nucleosome
assembly and chromatin structure. In contrast, aspirin does not inhibit colony formation in the
PPM-MILL cell line, which secretes low-to-undetectable amounts of HMGB1. Moreover, motility,
migration, invasion and epithelial–mesenchymal transition (EMT) of REN cells was inhibited by aspirin in
a HMGB1-dependent manner. The anticancer and HMGB1-inhibiting activity of aspirin on MPM cells
was confirmed in vivo [123]. Severe combined immunodeficient mice (SCID) were xenografted with
HMGB1-secreting REN cells (derived from an explant of an epithelial MPM) and aspirin significantly
reduced tumour growth compared with control (p<0.0001). Aspirin has not yet been tested in clinical
trials in MPM patients.

Celecoxib is a selective COX-2 inhibitor [66] approved by the FDA since December 1999 in familial
adenomatous polyposis [128]. Among its anticancer effects, celecoxib inhibits cell cycle progression [67],
induces apoptosis [68], inhibits angiogenesis and metastasis [69], and increases tumour cell lysis induced
by immune cells [129]. The efficacy of COX-2 inhibition by celecoxib has been assessed in phase II
clinical trials of different tumours with conflicting results [70–72]. In a recent meta-analysis [130], we
noted an improvement of response rate for advanced NSCLC patients when chemotherapy was associated
with celecoxib compared to chemotherapy alone (odds ratio (OR) 1.34, 95% CI 1.08–1.67; p=0.009)
without improvement of 1-year survival rate (OR 1.08, 95% CI 0.8–1.35; p=0.512). Several phase III trials
are ongoing in different cancers. In MPM, celecoxib was shown to reduce prostaglandin E2 levels in AB1,
a murine MPM cell line [73]. The impact of COX-2 inhibition by celecoxib has been evaluated in vivo in
BALB/c mice xenografted with AB1 cells. Celecoxib reduced the number of myeloid-derived suppressor
cells, which play a critical role in tumour immune escape by suppressing T-cell and natural killer cell
function. Consequently, combining dendritic cells (DC)-based immunotherapy with celecoxib in MPM
improved survival (p=0.027), compared to a single treatment with celecoxib (p=0.305) or DC-based
immunotherapy (p=0.456). Clinical assessment of the role of COX-2 in MPM is missing.

Oral antidiabetics
Metformin is a biguanide derivative, which is prescribed for type 2 diabetes. Metformin may act as an
anticancer drug through inhibition of the mTor pathway [74], cell cycle arrest leading cells to apoptosis
[75] and inhibition of EMT [76]. Retrospective analyses of medical records of diabetic patients treated by
metformin have suggested an improved cancer prognosis [131]. In a phase II clinical trial, there was no
advantage for the addition of metformin to erlotinib and gemcitabine in the treatment of advanced
pancreatic cancer, but we noted that a subgroup of patients with high plasma concentrations of metformin
(>1 mg·L−1) seemed to have an improved survival (HR 0.37, 95% CI 0.14–0.98; p=0.049) [77]. Several
phase III trials are currently ongoing, especially in breast and endometrial cancers [78, 79].

The tunnelling nanotubes are thought to be an alternative means for intercellular communication in
cancer and it is possible that they propagate chemotherapy resistance via intercellular transfer of proteins
[80]. Tunnelling nanotube formation occurs during mesothelioma cell invasion in vitro. In MPM, the
influence of metformin on the intercellular transfer of cellular contents has been assessed in cell lines of
the biphasic, sarcomatoid and epithelioid types. Metformin suppressed tunnelling nanotube formation in
vitro [132], as did everolimus, an mTor inhibitor. Despite this effect, metformin did not significantly affect
cell proliferation. To our knowledge, metformin has not been investigated in vivo or in clinical trials in
MPM. However, a retrospective analysis [133] of 300 patients with type 2 diabetes and MPM showed no
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evidence that metformin could improve survival: median OS was 8.8 months for metformin users versus
6.5 months for nonusers (p=0.37).

Vitamin E isoform
Tocotrienol (T3) is one of the isoforms of vitamin E which acts as an antioxidant, anti-inflammatory
agent and is implicated in curing age-associated disease [81, 82]. γ-T3 and δ-T3 have the most extensively
described anticancer properties [134, 135]. γ-T3 inhibits tumour angiogenesis [83] and cancer cell
proliferation by acting on the PI3K/Akt pathway [84]. Tocotrienol-rich fraction (TRF) extracted from rice
bran is an abundant source of γ-T3. A monocentric study has been undertaken [86] to test the
effectiveness of adjuvant TRF therapy in combination with tamoxifen in women with early oestrogen
receptor-positive breast cancer. However, this combination failed to improve outcome compared to
tamoxifen alone. A phase II trial is ongoing in previously treated ovarian cancer patients comparing
tocotrienol with cabazitaxel [87].

In vitro, NAKASHIMA et al. [85] showed that the TRF extracted from rice attenuates the chemoresistance to
cisplatin by inactivating the PI3K/Akt pathway in H28, a human cisplatin-resistant MPM cell line. In
combination with statins, γ-T3 exerts antiproliferative effects [52] on human sarcomatoid, epithelioid and
biphasic MPM cells through inhibition of the mevalonate pathway, induction of endoplasmic reticulum
stress and caspase 3 activation. γ-T3 has not been investigated in vivo or in clinical trials in MPM.

α-tocotrienol is another isoform of tocotrienol with pro-apoptotic anticancer properties [136].
6-O-carboxypropyl-α-tocotrienol (T3E), a redox-silent analogue of α-tocotrienol has been evaluated in
vitro in human MPM cell lines. T3E inhibits the growth of human MPM H28 cells [88], while sparing the
growth of nontumorigenic mesothelial cells (Met-5A). The inhibition of MPM cell growth was mediated
by the inactivation of Stat3 and the Src family of protein tyrosine kinases (SFK). SFK is activated in MPM
cell lines and is involved in cell migration and invasion [137]. T3E also inhibits HIF-2α accumulation and
VEGF secretion by the inactivation of Yes, a member of SFK that has been reported to be a central
mediator of cell growth in MPM [138]. α-T3 has not been investigated in vivo or in clinical trials in MPM.

Antibiotics
Anisomycin is an antibiotic produced by Streptomyces griseolus, inhibiting protein synthesis [139]. It also
acts as a protein translation inhibitor known to sensitise tumour cells to apoptosis induced by TNF-related
apoptosis-inducing ligand (TRAIL) [89]. In H28 and REN MPM cell lines [90], anisomycin delivered at
low subtoxic concentrations (25 ng·mL−1) was a potent sensitiser of apoptosis induced by TRAIL. In
contrast, anisomycin did not sensitise nonmalignant human mesothelial cells to TRAIL-induced apoptosis.
This sensitisation was shown to require Bim, indicating that anisomycin sensitises MPM cells to
TRAIL-induced apoptosis at the level of the mitochondria. These data have not been confirmed in vivo or
in clinical trials.

Bisphosohonates
Bisphosphonates are currently used in clinical for decades for bone lesions such as osteoporosis,
cancer-induced osteolytic bone disease and hypercalcaemia [91].

In addition to these properties, nitrogen-containing bisphosphonates such as zoledronic acid (Zol) have
anticancer effects [92, 93] such as inhibition of tumour cell proliferation, inhibition of tumour cell
adhesion and invasion, inhibition of angiogenesis, inhibition of bone metastases and immunomodulatory
effects. The administration of Zol (and clodronate) could be an option as adjuvant therapy for
postmenopausal patients with breast cancer, because the EBCTCG meta-analysis found a little benefit in
postmenopausal patients by reducing the rate of breast cancer recurrence in the bone and improving breast
cancer survival [95, 140]. In advanced NSCLC with bone metastases, adding Zol to chemotherapy
improves OS as compared with chemotherapy alone (578 days versus 384 days, p<0.0001) [141]. In
castration-resistant prostate cancer, Zol reduces skeletal-related events, especially when combined with
docetaxel [143]. In addition, Zol has been shown to reduce skeletal-related events in multiple myeloma
patients [143].

Zol has shown preclinical and clinical activity in MPM. In human mesothelioma cells 211H, H28, H226,
H2052, H2452 and Met-5A, Zol suppresses the growth of mesothelioma cells through apoptosis induction
and cell cycle arrest in a p53-independent manner [144]. Moreover, WAKCHOURE et al. [145] have shown
that Zol inhibited the growth of AB12 and AC29 mouse mesothelioma cells by inhibiting the mevalonate
pathway. Moreover, Zol was shown to decrease the Ras/ERK1/2 activity which is responsible for
chemosensitising human mesothelioma cells to P-glycoprotein substrates (doxorubicin, vinblastine and
etoposide) and to decrease indoleamine 1,2 dioxygenase-mediated immunosuppression [94]. The activity
of Zol on mesothelioma cells was confirmed in vivo with inhibition of tumour growth when Zol was
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administrated intrapleurally in a dose-dependent manner [144]. Zol was subsequently tested in a
prospective single-arm clinical trial in patients with unresectable MPM who had progressed after one or
more prior systemic therapies. Among eight pretreated patients, the median PFS was 2 months and the
median OS was 7 months without significant toxicity. In this study, a decrease of VEGF level was
predictive of favourable response [96].

Conclusions
Because the prognosis of patients with MPM remains poor, and with its incidence on the rise, particularly
in LMIC, new and innovative research perspectives are required. This review highlights the potential of
using drugs approved for nonmalignant disease, which could be investigated. Although other important
research avenues are currently being investigated in MPM, such as immune checkpoint inhibitors, vaccine
or antimesothelin monoclonal antibody [27, 28], drug repurposing could provide cheaper and more
accessible treatment options for patients in developing countries.

Mesothelioma is a tumour with known molecular alterations [146] in different signalling pathways, for
which there is not necessarily an available treatment. In this review, we attempted to draw up a
comprehensive list of the various repurposed drugs that have been evaluated in mesothelioma in
preclinical or clinical studies. We have tried to understand the mechanisms involved in the antitumor
activity of each of them.

So far, only three repurposed drugs have been investigated in clinical trials in MPM: valproate and
thalidomide showed good results in phase II trials. However, in a phase III trial thalidomide failed to
improve outcomes, and valproate has not yet been tested. Two drugs with promising results in preclinical
assessments failed to be confirmed as being useful in patients. This highlights that high failure rates in
patient evaluations in clinical trials often occur, despite promising data at the preclinical level, and
consequently, preclinical data may never be translated to patients. Thus, preclinical data should be assessed
in early-phase clinical trials.

Even if drug repositioning is an attractive approach, investigators should keep in mind its limitations. The
first is that the repurposed drugs are rarely effective in monotherapy, with antitumour activity more
frequently seen in association with other repurposed drugs or known cytotoxic drugs. Moreover, although
the low cost of these treatments may be an advantage in being able to treat a large number of patients in
developing countries, this could be a barrier for pharmaceutical companies to push their indication into
oncology. In addition, these molecules are currently no longer patentable and substitutes are often
available, making their commercial interest very low. Finally, their use could be limited by their possible
side-effects and their contraindications. Although these drugs are known to have tolerable side-effects,
their toxicity in cancer patients treated with other cytotoxic drugs is not known. For example, there were
two toxic deaths in 16 patients treated with valproate–doxorubicin [40].

Drug repurposing is an innovative and interesting research area, particularly in MPM where few
treatments are approved and where research may be time-consuming due to a lower incidence than other
types of thoracic cancer. In addition, if drug repurposing was found to be effective in clinical trials, this
strategy could potentially treat a large number of patients with MPM around the world, as its incidence
will mostly increase in the poorer countries, where access to innovative molecules is limited.

Thus, clinical trials evaluating this therapeutic strategy in MPM are needed. These must be conducted after
selecting the most relevant drugs or drug associations in preclinical models. To fast-track selection of
treatment regimens, in silico approaches can be used to model the interactions between drugs and their
molecular targets and thus test a large number of combinations. Indeed, many signalling pathways
involved in MPM are known, as are many potential targets of known drugs.

However, many questions arise about how best to conduct a clinical trial of drug repurposing in MPM.
Because there is no treatment currently approved, second-line therapy appears to be the most appropriate
setting. The association with pre-existing cancer treatments or the combination of multiple repurposed
drugs acting on complementary signalling pathways may be more active than the monotherapy approach.
In conclusion, drug repurposing is an important research area in mesothelioma, with many questions
remaining unresolved on the different modalities, but a promising avenue for medical advances.
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