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A physiological model of patient-reported

breathlessness during daily activities

in COPD
C.J. Jolley and J. Moxham

ABSTRACT: Breathlessness during daily activities has a significant impact on quality of life in

chronic obstructive pulmonary disease. Herein, we present a physiological model of patient-

reported breathlessness based on the relationship between ventilatory load, respiratory muscle

capacity, neural respiratory drive and neuromechanical dissociation during daily activities. This

model should facilitate an understanding of the mechanisms driving increased intensity of

breathlessness during daily activities and the relief of breathlessness following medical or

surgical interventions.

The model should also provide a structure on which to base the development of patient-

reported outcome instruments to measure the severity of breathlessness during daily activities in

chronic obstructive pulmonary disease.

KEYWORDS: Activities, chronic obstructive pulmonary disease, daily living, dyspnoea, patho-

physiology, respiratory mechanics

T
he Global Initiative for Chronic
Obstructive Lung Disease (GOLD) defines
chronic obstructive pulmonary disease

(COPD) as a disease state characterised by
exposure to a noxious agent resulting in airflow
limitation that is not fully reversible [1]. This
definition covers a spectrum of respiratory
diseases, and includes both the clinical diagnosis
of chronic bronchitis and the pathological diag-
nosis of emphysema. The worldwide prevalence
of GOLD stage II or higher COPD has recently
been estimated to be 10.1% [2]. COPD was the
fourth most common cause of death worldwide
in 2004, and was responsible for 5.1% of deaths. It
is predicted to become the third leading cause of
death by 2030 in association with projected
increases in tobacco use, especially in low- and
middle-income countries [3]. In 2004, 27,478
males and females living in the UK died of
COPD, with .90% of these deaths occurring in
those aged .65 yrs [4].

COPD is characterised by symptoms of breath-
lessness, wheeze, cough, sputum production and
exercise intolerance. Progression of COPD is
almost invariably associated with increasing
breathlessness, which has a negative impact on
health-related quality of life. Breathlessness is a

particularly dominant symptom in the final year
of life, limiting patients’ mobility both inside and
outside of the home, and is associated with panic,
anxiety and depression [5]. Patients with COPD
are less active than sedentary, healthy elderly
subjects and walk with lower movement intensity
[6]. The impact of COPD on activity is not limited
to patients with end-stage disease [6, 7].

The quality of life of patients with COPD should,
therefore, be improved if breathlessness during
daily activities can be reduced, with activities
being increased and even resumed. In order to
improve health-related quality of life, it is
important to understand the pathophysiology of
breathlessness during daily activities in COPD, as
well as the physiological mechanisms of relief of
breathlessness. It is also important to understand
the links between the physiology of breathless-
ness and patients’ reports of breathlessness when
designing instruments to measure changes in
breathlessness intensity, particularly when seek-
ing to separate the proximal factors influencing
breathlessness intensity from the impacts of
breathlessness, which are distal outcomes [8].
Therefore, to facilitate this understanding, we
aim to construct a physiological model of breath-
lessness during daily activities in COPD from the
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patient’s perspective. Although several authors have consid-
ered the physiological mechanisms of breathlessness in COPD
[9–11], few have sought to compile these into a physiological
model of breathlessness that explains patients’ descriptions of
breathlessness during daily activities in COPD beyond the
impact of disordered ventilatory mechanics on exertional
breathlessness in general.

DEFINITION OF BREATHLESSNESS
A consensus definition of breathlessness is that of ‘‘a subjective
experience of breathing discomfort that consists of qualita-
tively distinct sensations that vary in intensity’’ [12]. As will be
discussed later, the sensation of breathlessness is ultimately a
result of the activation of proprioceptive pathways during the
act of breathing. Until the latter half of the 20th century, studies
focused on the role of pulmonary mechanics, the work of
breathing, vagal and chest wall afferents, and blood gas
abnormalities on breathlessness [13]. It is also important to
recognise the importance of the interaction between neuro-
physiology and psychology when considering breathlessness
from the patient’s perspective. Breathlessness is experienced
and interpreted by the individual. Therefore, qualitative
studies of patients’ descriptions of breathlessness are comple-
mentary to quantitative physiological studies when consider-
ing the origins of breathlessness from the patient’s perspective.

PHYSIOLOGY OF BREATHLESSNESS
The sensation of breathlessness is closely related to the
sensation of respiratory effort, suggesting common neuro-
physiological origins [14]. Analogies have been drawn with the
sense of effort during limb movement, which is related to
activation of proprioceptive afferents and a conscious aware-
ness of efferent motor command [15]. In simple terms, the
sensation of respiratory effort, and therefore of breathlessness,
is increased when the load on the respiratory muscles
increases, the capacity of the respiratory muscles decreases
or there is a combination of both factors [15]. When there is
load–capacity imbalance, neural drive to the respiratory
muscles (neural respiratory drive; NRD) from the medullary
respiratory centre increases to maintain gas exchange and
respiratory homeostasis. Conscious awareness of the level of
NRD is important to the perception of breathlessness, regard-
less of the nature of the stimulus (chemical or mechanical)
activating sensory neural afferents (fig. 1) [16]. In the 1963,
CAMPBELL and HOWELL [17] proposed the theory of ‘‘length–
tension inappropriateness’’ or ‘‘efferent–afferent mismatch’’,
which explains breathlessness in these terms. The central tenet
of this hypothesis is that the brain ‘‘expects’’ a certain pattern
of ventilation and feedback for a given level of NRD. Deviation
of the afferent signal from that predicted causes or intensifies
the sensation of breathlessness. The sensory afferents involved
include pulmonary stretch receptors and intercostal muscle
spindles (stimulation of these reduces breathlessness [18, 19]).
Stimulation of peripheral and central chemoreceptors by
hypercapnia [20] and/or hypoxia, irritant receptors [21] and
possibly C fibres [22] increases breathlessness. There is
physiological evidence to support this hypothesis; for example,
constraining respiratory rate and tidal volume when NRD is
increased during carbon dioxide rebreathing increases breath-
lessness [23]. Vibration over parasternal intercostal muscles in
phase with inspiration, which stimulates muscle spindles and
increases appropriate afferent feedback, reduces breathlessness

in patients with chronic lung disease, but vibration over the
parasternal region during expiration increases breathlessness
[24]. In phase vibration has been also shown to reduce
ventilatory drive in COPD and could, therefore, reduce breath-
lessness by having an impact on both sides of the efferent–
afferent balance [25].

Higher brain centres are important to both respiratory control
and to the perception of breathlessness. Respiration can also be
under voluntary control [26], so that automatic breathing can
be interrupted by speech, coughing, eating, etc. Physiological
studies, together with functional brain imaging, are beginning
to elucidate the brain areas involved in the neural processing
of breathlessness [9]. Consistent with the importance of
emotion on the sensation of breathlessness, these include
cortical and subcortical areas involved in the sensorimotor
control of breathing and limbic regions [27]. These studies
suggest that there are common neural pathways for the
processing of breathlessness and pain. For example, functional
imaging suggests the involvement of the anterior insular cortex
in the sensation of both pain and air hunger [28]. This reflects
psychophysiological similarities between experiences of
breathlessness and pain. Both are distressing, multidimen-
sional sensations with a significant emotional component that
require a variety of mechanisms for the arousal, detection and
triggering of appropriate motor responses to correct actual or
threatened disturbances to homeostasis [29].

The following sections will build on the ‘‘generic’’ model of
breathlessness described above to consider the importance of
increased load, reduced ventilatory capacity and efferent–
afferent mismatch to the sensation of breathlessness in COPD,
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FIGURE 1. Increased load and/or reduced capacity of the respiratory muscles

leads to an increased level of neural respiratory drive to the respiratory muscles.

Conscious awareness of the level of neural respiratory drive is important to the

perception of breathlessness [16].
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how these relationships change during different activities of
daily living, and how the physiological processes involved
may influence patients’ choice of descriptors of breathlessness.
Since the pathological processes are proximal to the physio-
logical ones, they are best considered first.

PATHOLOGY OF COPD
The pathology of COPD has been extensively reviewed
elsewhere [30, 31] and is briefly discussed here to highlight
mechanisms underlying the disordered physiology relevant to
the physiological model. The link between pathological
changes, characteristics of COPD, symptoms and quality of
life is also summarised in figure 2.

Triggers
It is widely accepted that cigarette smoking is the most important
risk factor for COPD [32]. Air pollution, airway infections and
occupational exposures, for example to coal dust and silica dust,
are also implicated [33]. a1-Antitrypsin deficiency is the only
conclusively proven genetic factor predisposing individuals to
the development of emphysema [34]. Further details on the
genetics of COPD have been published elsewhere [35–37].

Inflammatory mechanisms in COPD

Inflammatory processes within the lung

Cigarette smoke and other environmental stimuli trigger
chronic inflammation, involving an inflammatory cell infiltrate
(including alveolar macrophages, neutrophils and cytotoxic T-
lymphocytes), the release of multiple inflammatory mediators
[37] and increased levels of oxidative stress [38]. The
inflammatory response induces goblet-cell metaplasia [39],
mucus hypersecretion [40], airway smooth muscle hyper-
trophy [41] and mucociliary dysfunction [42]. Lung parench-
ymal connective tissue is broken down by proteinases released
by activated inflammatory cells, including serine proteinases,
neutrophil elastase, proteinase C, cathepsins and matrix
metalloproteinases [43]. Proteinases also stimulate mucus
hypersecretion [44]. Mucus hypersecretion and mucociliary
dysfunction are favourable conditions for colonisation with,
and infection by, viruses and bacteria, and infective exacerba-
tions of COPD are a cause of acute-on-chronic airway and
systemic inflammation [45, 46]. Frequent exacerbations are
associated with an accelerated decline in lung function over
time [47].
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dysfunction

Exacerbations

Noxious particles or gases, e.g. smoking

Airways and
systematic

inflammation

Disease progression

Key outcomesCharacteristics of the disease

Expiratory flow limitation and 
hyperinflation

Pulmonary vascular changes

Peripheral muscle dysfunction,
immobility

Hospitalisation, mortality
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FIGURE 2. The relationship between triggers, pathological changes, disease characteristics, symptoms and quality of life (QoL) in chronic obstructive pulmonary

disease (COPD). Inhaled environmental noxious stimuli, particularly cigarette smoke, trigger a cycle of pulmonary parenchymal and airway damage, mucociliary dysfunction

and airway and systemic inflammation. This cycle is also driven by exacerbations. Breathlessness is one of the cardinal symptoms of COPD and has a negative impact on

QoL, in particular by reducing patients’ exercise tolerance and ability to carry out daily activities.
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Systemic inflammation

Inflammation in COPD is not restricted to the lungs, and
systemic inflammation is also associated with clinically
significant changes in biochemistry and organ function [48–
50], including cachexia, weight loss, osteoporosis, muscle
wasting, heart failure, atherosclerosis, dementia, depression
and cancer [48, 51, 52]. The level of systemic inflammation has
been shown to be related to the depletion of fat-free mass [53,
54], and is thought to contribute to the development of
quadriceps muscle dysfunction in COPD [48]. However, cause
and effect is still to be definitively established for the link
between inflammation/oxidative stress and peripheral muscle
dysfunction, and deconditioning due to immobility is also
likely to contribute substantially [55].

Peripheral muscle changes in COPD
A landmark study by KILLIAN et al. [56] established that the
exercise tolerance of patients with COPD is often limited by leg
discomfort as well as by breathlessness. Subsequently it was
shown that the quadriceps of patients with COPD are weaker
than those of aged-matched control subjects [57]. The finding
that the mean cross sectional area of IIA/IIX and IIX fibre types
is reduced in the quadriceps of COPD patients is consistent
with this observation [58]. Lower limb weakness is associated
with exercise intolerance, and the severity of breathlessness
during exercise, in COPD [59, 60]. Lower limb muscle
endurance is also impaired in COPD [61, 62], and early
contractile fatigue of the leg muscles has also been shown to
limit exercise capacity [63]. Quadriceps biopsies in COPD have
shown a loss of aerobic type I fibres [64] and reduced oxidative
enzymes [65]. Consistent with this, the aerobic capacity of the
peripheral muscle is reduced, and early onset of lactic acidosis
appears to be involved in early exercise termination in severe
COPD patients during incremental exercise tests [66].
Ventilation must increase to eliminate the excess carbon
dioxide produced when lactate is buffered by bicarbonate.

As discussed later, this increase in ventilatory drive is
important to the development of breathlessness.

Pulmonary vascular changes
Pulmonary hypertension (PH) in COPD progresses slowly [67,
68] and its severity correlates with the degree of airflow
obstruction and the impairment of pulmonary gas exchange
[67]. PH may develop during exercise even if not present at
rest [69]. Severe PH increases right ventricular afterload and
eventually leads to the clinical syndrome of right-sided heart
failure with systemic congestion and inability to adapt right
ventricular output to cardiopulmonary demands during exer-
cise. PH increases ventilation/perfusion mismatch, impairs gas
exchange and has been shown to reduce exercise capacity in
pulmonary fibrosis [70]. The extent to which PH limits exercise
tolerance in COPD has not been fully investigated.

PHYSIOLOGICAL IMPACT OF THESE PATHOLOGICAL
CHANGES
The principles discussed below are summarised in figure 3.
The mechanical load on the respiratory muscles is increased in
COPD. The cardinal mechanical abnormality is that of
expiratory airflow limitation. The major site of increased
airway resistance in most individuals with COPD is the small
airways, those with a diameter of f2 mm [71], although there
are pathological changes within both the large and small
airways. As described previously, airway narrowing occurs
secondary to the inflammatory processes, mucus production
and, in some individuals, airway smooth muscle hypertrophy.
The loss of elastic recoil secondary to elastinolysis within the
lung parenchyma results in loss of radial traction on the
bronchioles. The reduced (inward) lung recoil pressure
requires a greater volume to balance the (outward) chest wall
recoil, and, therefore, functional residual capacity (FRC)
increases (‘‘static hyperinflation’’). The mechanical time con-
stant for lung emptying, given by the product of resistance and
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FIGURE 3. The impact of disordered ventilatory mechanics on breathlessness in chronic obstructive pulmonary disease (COPD). Static and dynamic hyperinflation leads

to respiratory muscle shortening and altered chest wall geometry, leading to functional respiratory muscle weakness in COPD. This, in combination with mechanical

abnormalities that increase the load on the respiratory muscles, increases load–capacity imbalance and neural respiratory drive, and contributes to breathlessness. Although

these abnormalities may be present at rest, they are exacerbated when minute ventilation (V9E) increases during activity. PEEP: positive end-expiratory pressure.
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compliance, is also increased in COPD. The maximum rate of
lung emptying is decreased and air is trapped in the alveoli at
the end of expiration, which results in ‘‘dynamic hyperinfla-
tion’’ during exercise when the respiratory rate increases and
expiratory time shortens [72]. Dynamic hyperinflation (DH) is
initially favourable as increased radial traction on the airways
holds the airways open, thereby reducing resistance to
expiratory flow. However, as DH progresses, there are
negative consequences for lung mechanics. If hyperinflation
is severe, end-expiratory lung volume (EELV) moves above the
relaxation volume of the chest wall, and so at EELV the chest
wall will recoil inwards. This represents an increase in the
inspiratory elastic load in addition to lung elastic recoil, and
therefore adds to the work of breathing. Increased intrinsic
positive end-expiratory pressure, developing as a consequence
of gas trapping, also imposes an additional inspiratory
threshold load that must be overcome before intrathoracic
pressure falls below atmospheric pressure and inspiratory
airflow can begin [73]. As FRC increases towards total lung
capacity (TLC) during exercise in COPD, this encroaches on
inspiratory reserve volume and inspiratory capacity decreases
until it is impossible to increase tidal volume, and minute
ventilation (V9E) can only be increased by increased respiratory
rate [74]. The ratio of inspiratory time to the duration of the
respiratory cycle is reduced in an effort to increase the time
available for expiration and minimise hyperinflation, which
demands an increase in the inspiratory flow rate. In COPD, the
dynamic elastance of the lung and chest wall is linearly related
to inspiratory flow rate [75]; therefore, this imposes an
additional inspiratory load on the inspiratory muscles during
exercise.

COPD patients must also generate an increased V9E to
maintain respiratory homeostasis when compared with
healthy subjects. The pathological changes described pre-
viously increase physiological dead space and, therefore, there
is significant ventilation/perfusion mismatch in COPD [76].
During exercise, the reduced aerobic capacity of the peripheral
muscles, coupled with cardiopulmonary constraints on oxygen
delivery exacerbated by coexistent cardiovascular disease in
many patients, leads to lactic acid production at relatively low
work rates, which increases ventilatory drive further despite
the mechanical constraints to increased ventilation described
previously.

The capacity of the respiratory muscles is reduced in COPD
The capacity of the inspiratory muscles to generate negative
intrathoracic pressure is reduced in COPD [77]. Hyperinflation
alters the geometry of the respiratory muscles such that the
diaphragm sarcomeres are shortened. Since the tension a
muscle generates is related to its length [78], hyperinflation
reduces the force-generating capacity of the diaphragm. In
addition, as the diaphragm flattens, the radius of curvature of
the diaphragm is increased and the flattened diaphragm is
therefore less effective at converting tension into pressure in
accordance with Laplace’s law. Hyperinflation also reduces the
zone of apposition of the diaphragm [79], which reduces the
ability of the diaphragm to expand the lower rib cage during
inspiration [80]. POLKEY et al. [81] demonstrated a linear
negative correlation of twitch transdiaphragmatic pressure
with increasing lung volume of 3.5 cmH2O?L-1, an effect which

was mediated by the reduction in twitch transoesophageal
pressure. The ability of the diaphragm to generate transdiaph-
ragmatic, and particularly intrapleural, pressure is therefore
reduced in COPD and these changes are exaggerated with
acute-on-chronic hyperinflation.

Therefore, the overall impact of hyperinflation is an increase in
the inspiratory pressure needed to increase tidal volume as
tidal volume approaches TLC, an increase in the inspiratory
threshold load, and an increase in the level of effort required to
increase the inspiratory pressure as the capacity of the
respiratory muscles decreases. Thus DH increases the load
on the respiratory muscles and reduces their capacity during
exercise in COPD. Consistent with the generic physiological
model of breathlessness described previously, by increasing
load-capacity imbalance, DH increases the intensity of breath-
lessness during exercise in COPD [82]. Conversely, reduction
of DH using long-acting bronchodilators [83] or nonpharma-
cological lung volume reduction [84] reduces respiratory
muscle work and improves exertional breathlessness in
COPD. DH is also reduced indirectly by interventions that
reduce ventilatory drive and increase the proportion of the
respiratory cycle available for expiration. Exercise training,
particularly exercise targeting the quadriceps muscle, during
pulmonary rehabilitation reduces the ventilatory response to
exercise, DH and breathlessness [85]. Similarly, oxygen
therapy reduces the intensity of breathlessness during exercise,
even in non-hypoxaemic patients, by reducing V9E, increasing
the duration of expiration and therefore reducing DH [86].

Neural respiratory drive is increased in COPD
In response to increased load (including the metabolic
demands of quadriceps muscle dysfunction) and reduced
capacity, levels of NRD are increased in COPD. This has been
demonstrated by findings of increased transdiaphragmatic
pressure generation [87], and increased firing rates in the
motor units of the diaphragm [88] and extradiaphragmatic
inspiratory muscles in COPD [89]. Levels of NRD can be
measured by recording the diaphragm electromyogram
(EMGdi) using oesophageal recording electrodes, quantifying
NRD as EMGdi per breath as a percentage of maximum EMGdi

during forced inspiratory manoeuvres. Studies using this
method have shown that NRD is significantly higher in
COPD patients compared with matched healthy controls [90,
91], and that levels of NRD are correlated with disease severity
defined by spirometry and the degree of hyperinflation [91].
As described previously, conscious awareness of the level of
NRD is important to the perception of breathlessness [16].
Consistent with this, cold air reduces breathlessness in COPD
by inducing a relative hypoventilation during exercise [92],
although reductions in efferent–afferent mismatch through
stimulation of upper airway cold receptors [93] could also be
important. Opioids reduce ventilatory drive [94–96], but
observations that opioid-induced reductions in breathlessness
occur without evidence of hypoventilation indicates that other
mechanisms, such as reduction of anxiety and emotional distress,
are likely to be more important to the palliation of breathlessness
by these drugs [97, 98]. Inhaled opioids and furosemide may also
palliate breathlessness by sensitising pulmonary stretch recep-
tors, thus increasing afferent feedback [99].
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Neuromechanical dissociation increases efferent–afferent
mismatch during exercise in COPD
SINDERBY et al. [100] measured diaphragmatic pressure and
EMGdi during exhaustive exercise in COPD, showing that DH
reduces diaphragm pressure-generating capacity and pro-
motes high levels of diaphragm activation. Whereas trans-
diaphragmatic pressure and V9E plateaued at a relatively low
level shortly after the onset of exercise, EMGdi continued to
rise to ,80% of maximum [100]. This study demonstrates that
because of the mechanical constraints described above, NRD
becomes progressively uncoupled from mechanical and
ventilatory output in COPD, i.e. there is neuromechanical
dissociation (fig. 4). Neuromechanical dissociation will
increase the efferent–afferent mismatching that drives breath-
lessness. The intensity of perceived inspiratory difficulty
during exercise has been shown to correlate well with
increases in the effort/displacement ratio, a crude index of
neuromechanical dissociation, which is defined as the ratio
between tidal swings of oesophageal pressure expressed as a
proportion of maximum inspiratory pressure and the tidal
volume response expressed as a proportion of predicted vital
capacity [10]. It has been proposed that once the inspiratory
reserve volume has fallen to a critical level, the effort/
displacement ratio rises sharply, reflecting unfavourable
ventilatory mechanics and inspiratory muscle weakness as
DH progresses, driving increases in breathlessness to intoler-
able levels [101]. Improvements in exertional breathlessness
following treatment with the long-acting bronchodilator
tiotropium bromide have been shown to be associated with
improvements in the effort/displacement ratio [101].

It has been suggested that temporary suppression of breathing
during speaking or eating increases mismatch between the
respiratory motor command and afferent feedback from
peripheral receptors, especially when levels of NRD are already
high, such as in COPD [102]. However, it should be noted that, in
general, COPD patients experience breathlessness most during
exertion rather than whilst eating or talking [103].

Breathlessness during daily activities in COPD can be
explained in terms of common physiological mechanisms
The pathological processes, physiological changes, perception
of breathlessness and impact on exercise tolerance and quality
of life in COPD can be linked together in a conceptual model
that can be used to explain the physiological mechanisms by
which daily activities lead to the perception of breathlessness
in COPD. This model is shown in figure 5. The key common
physiological factors in COPD are increased ventilatory load,
reduced ventilatory capacity and increased NRD, hyperinflation
and neuromechanical dissociation, leading to an efferent–
afferent mismatch which drives breathlessness (grouped
together under ‘‘physiology’’ in the model). Different daily
activities may feed into different levels of this physiological
‘‘hierarchy’’, but the physiological mechanisms are ultimately
similar. As will be expanded upon later, breathlessness then
increases in intensity and unpleasantness (‘‘perception’’). This
reduces exercise tolerance and impairs quality of life (‘‘impact’’).

Lower limb activities, e.g. walking, climbing stairs

As described previously, there is a well established link
between peripheral muscle dysfunction, reduced aerobic

capacity, increased cardiopulmonary demand and ventilatory
drive that contributes to breathlessness during daily activities
using the lower limbs in terms of the conceptual model. As
described in previous sections, lactic acid accumulation early
in exercise, due to the reduced aerobic capacity of lower limb
muscle, necessitates further increases in ventilation relatively
early in exercise to buffer excess carbon dioxide. Increased V9E

and DH increase respiratory muscle load-capacity imbalance,
which increases NRD and ultimately increases efferent–
afferent mismatch which, in turn, drives breathlessness.

Upper limb activity

Breathlessness during daily activities that require upper limb
activity, e.g. grooming and dressing, impact on quality of life to
at least the same extent as ambulatory activities limited by
quadriceps muscle dysfunction [104]. This is not due simply to
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FIGURE 4. Disordered ventilatory mechanics progressively uncouple

increased neural respiratory drive from generation of respiratory muscle tension,

intrathoracic pressure and ventilation in chronic obstructive pulmonary disease

(COPD). This phenomenon is often referred to as ‘‘neuromechanical dissociation’’.

PEEPi: intrinsic positive end-expiratory pressure; V9E: minute ventilation.
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the metabolic and cardiorespiratory demands of upper limb
muscle contraction. Indeed, the mechanical efficiency and
exercise capacity of the upper and lower limbs are not
homogeneously affected in COPD, with a relative preservation
of the upper limb muscle function [105]. As described below,
studies indicate that upper arm exercise has an additional
adverse impact on ventilatory mechanics. It is also important
to consider that many of the respiratory and upper limb
muscles have at least dual roles. As well as being recruited

during respiration, they may also be involved in generating the
movement (especially those of the scapular girdle) and/or acting
as postural muscles to stabilise the torso and chest during upper
limb movement. This reduces the ventilatory reserve of these
muscles during upper limb exercise, thus increasing the load on
the diaphragm and other respiratory muscles.

Any activity that involves the use of the arms increases the
load on the respiratory system because ventilation must

��������	


�������	���

�������������

�����	������

��������������
��������	���

������	
���

������	
���� ��!

��	���������	��
���������������	
"���������	�

#��������	���

���������$��	���	��
���������

�%�

&�"����� ���	�$�	�

������	'������	
�����	��

�(��������	�������

)����	���������

��	����	� ���	���*��	���������

+�����	����
�����	����������

&��	�	�
�,�

�+,�

�����

���	��

-��!���.���	���

/������� ���	�$�	�

+��(��	��	������$�������������� ���������������
�������	���0

1��!���.��	��� ����������	��	�

�����"�����	�	���
2�����������������	���
��"�����������	�������
�������$����	��

���������	�����������
���������$������
������������
1��	�������������	���

�	���	�
��	���� ���	�

&������������	��
�������

FIGURE 5. A physiological model of breathlessness in chronic obstructive pulmonary disease. The model links the pathological processes triggered by inhaled noxious

particles (1) to physiological factors leading to respiratory muscle load–capacity imbalance and efferent–afferent mismatch (2). This drives the perception of breathlessness

(3) and results in exercise intolerance and reduced quality of life (4). In line with patients’ descriptions of their experience of breathlessness, there is evidence that intensity

(sensory) and emotional (affective) components of breathlessness are processed separately in the brain. Lower limb activity, upper limb activity and postural changes

required to carry out daily activities increase load–capacity imbalance, neural respiratory drive, efferent–afferent mismatch and breathlessness. Activities that interrupt the

automatic rhythm of respiration, e.g. eating and talking, reduce ventilation transiently and may cause breathlessness through resultant increases in efferent–afferent

mismatch. NRD: neural respiratory drive; PEEPi: intrinsic positive end-expiratory pressure; V9E: minute ventilation; PO2: oxygen tension; PCO2: carbon dioxide tension.
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increase to meet the metabolic demands of limb muscle
contraction. As described earlier, an increase in respiratory
rate coupled with a reduction in expiratory time leads to DH in
COPD, with deleterious effects on ventilatory mechanics,
neuromechanical dissociation and efferent–afferent mismatch.
DH has been shown to occur with arm exercise in cystic
fibrosis patients with expiratory flow limitation, to an extent
that is not significantly different from that observed during leg
exercise [106]. Conversely, an arm training protocol increased
arm endurance, reduced DH and reduced exertional breath-
lessness in COPD [107].

COUSER JR et al. [108] showed that the simple elevation of the
arms of normal individuals results in a significant increase in
oxygen uptake (V9O2; 16%) and in ventilation (24%), and an
increase in the end-inspiratory gastric (Pga) and transdiaph-
ragmatic pressure (Pdi). Although the metabolic and ventila-
tory demand remained increased for a short time when the
arms returned to their sides, Pga dropped suddenly. This
suggests that arm elevation changes the mechanics of the chest
and abdominal compartments during respiration, and that
these increased demands are associated with an increased
diaphragmatic contribution to the generation of ventilatory
pressures. Similarly, CELLI et al. [109] studied the impact of
upper arm exercise on respiratory muscle activity (measuring
oesophageal pressure, Pga and Pdi) in healthy subjects. Upper
arm exercise resulted in a shift of the dynamic work to the
diaphragm, and to the abdominal muscles, i.e. away from the
ribcage muscles that would be used as postural muscles during
the exercise. If the diaphragm is already heavily loaded and at
a functional disadvantage in COPD, one could hypothesise
that upper arm exercise would increase neuromechanical
dissociation further, and that COPD patients would become
more breathless during arm exercise than healthy subjects.

In 1973, TANGRI and WOOLF [110] observed that patients with
COPD acquired an irregular, shallow and rapid respiratory
pattern when performing activities requiring the upper limbs,
such as tying a pair of shoes and their combing hair. A later
study by CELLI et al. [111] showed that unsupported arm
exercise in patients with COPD led to thoracoabdominal
dyssynchrony and dyspnoea within a shorter period of time
and at a lower V9O2 than leg exercise. VELLOSO et al. [112]
studied COPD patients during four activities of daily living
involving varying degrees and patterns of upper limb muscle
recruitment. The sensation of breathlessness measured using
the Borg scale was higher in the activities involving changing
light bulbs and lifting pots (i.e. those requiring a greater
contribution from the scapular musculature), although the
metabolic demands and levels of ventilation were not
necessarily increased relative to other activities. Although
pulmonary mechanics and neural drive were not measured,
this suggests that the symptom of breathlessness could be
related to patterns and extent of respiratory muscle activation,
rather than to metabolic or ventilatory demands per se.

In summary, during upper limb exercise there is increased V9E,
DH, increased mechanical load and reduced capacity of the
respiratory muscles in the usual manner. However, in
addition, ventilatory reserve is reduced further because the
upper limb muscles are involved in generating the movement,
acting as postural muscles and being recruited during

respiration. The relative contribution of the diaphragm to
ventilation increases. These factors increase neuromechanical
dissociation, leading to efferent–afferent mismatch and breath-
lessness.

Posture

Some, but not all, patients feel that breathlessness is relieved or
exacerbated when their posture changes e.g. sitting up from
lying flat and vice versa, or breathlessness is induced or
increased when bending over to tie shoelaces [104]. COPD
patients who recruit their rib cage muscles during resting
breathing experience postural relief of dyspnoea when adopt-
ing a position associated with reduction in rib cage muscle
activation [113] or neck muscle activation, such as during the
forward leaning position [114]. The effect of posture on
respiratory muscle strength has been studied noninvasively
in normal subjects and COPD patients recovering from an
exacerbation. In healthy subjects there is no effect of posture on
maximum static inspiratory or expiratory pressures. The
seated leaning-forward position was the preferred posture in
the majority of the COPD patients in the acute phase, and
maximum static inspiratory pressure was greater in the seated
leaning-forward position than in the other positions studied.
Posture had no influence on maximum static expiratory
pressure in the COPD patients [115].

The relationship between pulmonary mechanics, respiratory
muscle function and breathlessness is complex. In the same
way as when COPD patients are upright, breathlessness when
lying down is thought to result, in part, from increased
inspiratory efforts due to dynamic pulmonary hyperinflation
and the concomitant increase in inspiratory threshold load due
to intrinsic positive end-expiratory pressure. In addition,
airway resistance is increased when supine compared to when
upright due to a relative reduction in EELV, which reduces the
patient’s ability to adapt to expiratory flow limitation by
breathing at a higher lung volume, thus increasing the load on
the respiratory muscles further and inducing breathlessness
[116]. However, the pressure-generating capacity of the
diaphragm has been shown to be greater in the supine rather
than in the erect position in severe, hyperinflated COPD
patients (this is not seen in healthy subjects) [117]. Whether or
not an individual patient has relief of breathlessness when
changing from the upright to the lying position (or vice versa)
appears to be related to resultant levels of neuromechanical
dissociation. In patients who have postural relief of breath-
lessness, the relationship between Pdi and EMGdi measured
using a combined oesophageal EMGdi/pressure catheter,
expressed as the Pdi/EMGdi ratio (a measure of neuromechan-
ical efficiency), has been observed to be higher when supine
than erect, indicating that neuromechanical dissociation is
higher in the erect than in the supine position, i.e. Pdi fell and
EMGdi increased going from the supine to the erect position.
Therefore, a given pressure could be achieved with lower
levels of NRD when supine in these patients. Patients who
did not have postural relief from breathlessness demonstrated
less reduction in Pdi going from the supine to the erect
position, and a reduction in EMGdi relative to that recorded
in the supine position [118]. This indicates that the degree of
neuromechanical dissociation is an important factor driving
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postural changes in the experience of breathlessness in
COPD.

The physiological mechanisms driving breathlessness may
be reflected by descriptors of breathlessness
A significant amount of work has been carried out on the
relationship between qualitative aspects of breathlessness and
physiological mechanisms [119–121]. There is little evidence to
support the uniqueness of certain terms to specific conditions
[122], but descriptors of breathlessness do appear to fall into
‘‘clusters’’, which may reflect activation of common neuro-
physiological processes to produce similar sensations of
breathlessness, even in different diseases. The current literature
supports the existence of four distinct somatic descriptions of
breathlessness: 1) perceived sense of increased work or effort; 2)
sense of chest tightness; 3) air hunger or an uncomfortable urge to
breathe; and 4) unsatisfied inspiration [9]. Descriptors of
increased work/effort are commonly used to describe breath-
lessness in COPD, and also in interstitial lung disease,
neuromuscular disease and chest wall disease [123]. Similarly,
in asthma, although ‘‘chest tightness’’ is used to describe
breathlessness at low levels of bronchoconstriction and a
relatively normal forced expiratory volume in on second, the
sensation of work/effort increases when significant airways
resistance or hyperinflation develops [124]. One common factor
linking these conditions is increased load–capacity imbalance
with respect to the respiratory muscles, giving rise to the
sensation of increased respiratory effort. Other commonly used
descriptors in COPD include air hunger, need to breathe and
urge to breathe [123]. Air hunger is also experienced by healthy
subjects when ventilation is stimulated by hypercapnia, even
after total neuromuscular paralysis [20]. Air hunger can also be
experienced independently of work/effort when neuromuscular
transmission is intact [125]. Together such studies indicate that,
unlike work/effort, air hunger is not due to awareness of the
increase in ventilation or respiratory muscle contraction, but
could be explained either by increased medullary chemoreceptor
activity, awareness of increased efferent motor command, or an
imbalance between the chemical drive to breathe and achieved
ventilation (efferent–afferent mismatch). Subjects can differenti-
ate between sensory (intensity) and affective (unpleasantness)
components of breathlessness [126]. In COPD, the development
of breathlessness-related anxiety during exercise has been shown
to be different to that of the awareness that the intensity of
breathlessness has increased [127]. There is some evidence that
these sensations involve neural processing in separate cortical
areas [128].

DISCUSSION
The physiological impact of daily activities causing breath-
lessness in COPD can be considered in terms of their impact on
the load on the respiratory muscles, the capacity of the
respiratory muscles and the neuromechanical dissociation that
results. Efferent–afferent mismatch appears to be one of the
most important, final common steps driving the sensation of
breathlessness in COPD. There is evidence that, although
interrelated, intensity (sensory) and emotional (affective)
components of breathlessness are processed separately
(fig. 5). The physiological mechanisms by which interventions
impact on breathlessness by reducing neuromechanical dis-
sociation and efferent–afferent mismatch can also be explained

in terms of the physiological model (fig. 6). Psychological
factors are considered to be distal to physiological factors in
the model, and so they will not be considered further here. The
impact of psychological interventions, such as counselling and
support programmes and psychotherapy, on breathlessness
are variable [129]. There is currently insufficient evidence to
recommend the use of such interventions alone for the
palliation of breathlessness in routine clinical practice [129],
although the psychological support given to patients as part of
multidisciplinary pulmonary rehabilitation is considered to be
an important component of these programmes [130, 131].

It is important to recognise that there are links between the
physiology of breathlessness in COPD and what patients tell
us makes them feel breathless. This is true in terms of activities
that cause or increase the intensity of breathlessness and the
descriptors that they use to describe the sensation. The model
presented here should provide those involved in the care of
COPD patients with a structure to consider the reasons why a
previously stable patient might have become more breathless,
in terms of ventilatory load, capacity and neural respiratory
drive, and what the most appropriate strategies for reducing
breathlessness might be.

In this regard, it is useful to consider the physiological impact
that defined groups of daily activities have on breathlessness.
For example, activities using mostly the lower limbs, e.g.
walking and climbing the stairs, cause breathlessness in a
patient with profound lower limb muscle abnormalities
because the reduced aerobic capacity of the muscles increases
ventilatory drive, which then increases the load–capacity
imbalance as a secondary event. Breathlessness during these
activities should therefore be reduced if the strength and
endurance of the leg muscles can be improved, e.g. as part of a
pulmonary rehabilitation training programme. Although it is
important to optimise bronchodilatation and reduce hyper-
inflation to enable patients to achieve a sufficiently high
intensity of exercise to accomplish this, it is unlikely that
breathlessness will be completely abolished during these
activities if lower limb muscle function is not also improved
and maintained. In contrast, the upper limb muscles are
largely unaffected by the skeletal muscle abnormalities
associated with COPD, and so daily activities involving upper
limb movement, e.g. brushing hair and lifting groceries onto
shelves, drive breathlessness primarily by the impact that they
have on ventilatory mechanics. Therefore, improvements in
breathlessness during these activities could be achieved with-
out increases in upper limb muscle strength specifically but,
for example, by reducing hyperinflation, medically or surgi-
cally, and using energy conservation techniques [132].

The development of a physiological model for breathlessness
during daily activities in COPD also has implications for the
development of instruments to measure breathlessness in
COPD. When measuring breathlessness, it is important to have
an understanding of the definition of breathlessness, the
mechanisms driving breathlessness and the predicted mode
of efficacy of interventions, as well as the dimensions of
breathlessness that the chosen instrument has been designed to
capture [8]. None of the currently available instruments for
breathlessness in advanced disease [133] were developed in the
context of a theoretical physiological model of breathlessness.
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Instruments based on a robust physiological model of breath-
lessness may be better matched to the needs of studies seeking
to demonstrate that an intervention improves breathlessness
through a physiological mechanism. Indeed, the Food and
Drug Administration has recommended that the development
of a hypothesised conceptual framework is fundamental to the
development of patient-reported outcome instruments [134].
Instruments focusing on the severity of breathlessness during
daily activities, e.g. washing and dressing, which are an
integral part of everyday life, are more likely to capture the
magnitude of deteriorations and improvements in breath-
lessness than instruments focusing on nonessential activities

that may be avoided if the patient associates them with
intolerable breathlessness.

In summary, we have presented a model to describe the
relationship between the physiological basis of breathlessness
in COPD and patients’ sensation of breathlessness during daily
activities. This should help healthcare professionals to under-
stand why COPD patients experience breathlessness during
certain activities, and which interventions may be most beneficial
when palliating breathlessness, and should facilitate the devel-
opment of patient-reported outcome instruments to quantify
breathlessness during activities of daily living in COPD.
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FIGURE 6. The physiological model can also be used to explain the mechanisms by which interventions impact on breathlessness. The final common physiological step

is improved efferent–afferent mismatch through reductions in neuromechanical dissociation. Psychological support aims to impact on breathlessness distal to the

physiological mechanisms. There is currently insufficient evidence to support the routine use of psychological interventions, such as counselling and support programmes

and psychotherapy, alone to palliate breathlessness in routine clinical practice [129]. NRD: neural respiratory drive; PEEPi: intrinsic positive end-expiratory pressure; V9E:

minute ventilation; PO2: oxygen tension; PCO2: carbon dioxide tension.
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