The emerging genetics of primary ciliary dyskinesia

Proc Am Thorac Soc. 2011 Sep;8(5):430-3. doi: 10.1513/pats.201103-023SD.

Abstract

Primary ciliary dyskinesia (PCD) is an autosomal recessive, rare, genetically heterogeneous condition characterized by oto-sino-pulmonary disease together with situs abnormalities (Kartagener syndrome) owing to abnormal ciliary structure and function. Most patients are currently diagnosed with PCD based on the presence of defective ciliary ultrastructure. However, diagnosis often remains challenging due to variability in the clinical phenotype and ciliary ultrastructural changes. Some patients with PCD have normal ciliary ultrastructure, which further confounds the diagnosis. A genetic test for PCD exists but is of limited value because it investigates only a limited number of mutations in only two genes. The genetics of PCD is complicated owing to the complexity of axonemal structure that is highly conserved through evolution, which is comprised of multiple proteins. Identifying a PCD-causing gene is challenging due to locus and allelic heterogeneity. Despite genetic heterogeneity, multiple tools have been used, and there are 11 known PCD-causing genes. All of these genes combined explain approximately 50% of PCD cases; hence, more genes need to be identified. This review briefly describes the current knowledge regarding the genetics of PCD and focuses on the methodologies used to identify novel PCD-causing genes, including a candidate gene approach using model organisms, next-generation massively parallel sequencing techniques, and the use of genetically isolated populations. In conclusion, we demonstrate the multipronged approach that is necessary to circumvent challenges due to genetic heterogeneity to uncover genetic causes of PCD.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amish / genetics
  • Axonemal Dyneins
  • Cilia / physiology
  • Cilia / ultrastructure
  • Genetic Association Studies
  • Genetic Heterogeneity
  • Genotype
  • Humans
  • Kartagener Syndrome / complications
  • Kartagener Syndrome / diagnosis
  • Kartagener Syndrome / genetics*
  • Kartagener Syndrome / pathology
  • Mutation
  • Phenotype

Substances

  • Axonemal Dyneins