Skip to main navigation menu Skip to main content Skip to site footer

Viewpoint

Vol. 150 No. 1516 (2020)

Is antibody-dependent enhancement playing a role in COVID-19 pathogenesis?

  • Francesco Negro
DOI
https://doi.org/10.4414/smw.2020.20249
Cite this as:
Swiss Med Wkly. 2020;150:w20249
Published
16.04.2020

References

  1. Jin Y Yang H Ji W Wu W Chen S Zhang W Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12(4):372. [doi:.].https://doi.org/10.3390/v12040372
  2. Takada A Kawaoka Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol. 2003;13(6):387–98. [doi:.].https://doi.org/10.1002/rmv.405
  3. Peiris JS Gordon S Unkeless JC Porterfield JS. Monoclonal anti-Fc receptor IgG blocks antibody enhancement of viral replication in macrophages. Nature. 1981;289(5794):189–91. [doi:.].https://doi.org/10.1038/289189a0
  4. Roth GA Abate D Abate KH Abay SM Abbafati C Abbasi N GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–88. [doi:.].https://doi.org/10.1016/S0140-6736(18)32203-7
  5. Montoya M Gresh L Mercado JC Williams KL Vargas MJ Gutierrez G Symptomatic versus inapparent outcome in repeat dengue virus infections is influenced by the time interval between infections and study year. PLoS Negl Trop Dis. 2013;7(8):e2357. [doi:.].https://doi.org/10.1371/journal.pntd.0002357
  6. Katzelnick LC Montoya M Gresh L Balmaseda A Harris E. Neutralizing antibody titers against dengue virus correlate with protection from symptomatic infection in a longitudinal cohort. Proc Natl Acad Sci USA. 2016;113(3):728–33. [doi:.].https://doi.org/10.1073/pnas.1522136113
  7. Katzelnick LC Gresh L Halloran ME Mercado JC Kuan G Gordon A Antibody-dependent enhancement of severe dengue disease in humans. Science. 2017;358(6365):929–32. [doi:.].https://doi.org/10.1126/science.aan6836
  8. Endy TP Nisalak A Chunsuttitwat S Vaughn DW Green S Ennis FA Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand. J Infect Dis. 2004;189(6):990–1000. [doi:.].https://doi.org/10.1086/382280
  9. Waggoner JJ, Katzelnick LC, Burger-Calderon R, Gallini J, Moore RH, Kuan G, et al. Antibody-dependent enhancement of severe disease is mediated by serum viral load in pediatric Dengue virus infections. J Infect Dis. 2020;jiz618. Published online April 1, 2020.
  10. who.int. [Internet]. Immunization, Vaccines and Biologicals. Questions and Answers on Dengue Vaccines [cited 2020 Apr 9]. Available from: https://www.who.int/immunization/research/development.
  11. Hadinegoro SR Arredondo-García JL Capeding MR Deseda C Chotpitayasunondh T Dietze R CYD-TDV Dengue Vaccine Working Group. Efficacy and long-term safety of a Dengue vaccine in regions of endemic disease. N Engl J Med. 2015;373(13):1195–206. [doi:.].https://doi.org/10.1056/NEJMoa1506223
  12. Sridhar S Luedtke A Langevin E Zhu M Bonaparte M Machabert T Effect of Dengue serostatus on Dengue vaccine safety and efficacy. N Engl J Med. 2018;379(4):327–40. [doi:.].https://doi.org/10.1056/NEJMoa1800820
  13. Vennema H Poland A Foley J Pedersen NC. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology. 1998;243(1):150–7. [doi:.].https://doi.org/10.1006/viro.1998.9045
  14. Vennema H de Groot RJ Harbour DA Dalderup M Gruffydd-Jones T Horzinek MC Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J Virol. 1990;64(3):1407–9. [doi:.].https://doi.org/10.1128/JVI.64.3.1407-1409.1990
  15. Hohdatsu T Nakamura M Ishizuka Y Yamada H Koyama H. A study on the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection in feline macrophages by monoclonal antibodies. Arch Virol. 1991;120(3-4):207–17. [doi:.].https://doi.org/10.1007/BF01310476
  16. Takano T Yamada S Doki T Hohdatsu T. Pathogenesis of oral type I feline infectious peritonitis virus (FIPV) infection: Antibody-dependent enhancement infection of cats with type I FIPV via the oral route. J Vet Med Sci. 2019;81(6):911–5. [doi:.].https://doi.org/10.1292/jvms.18-0702
  17. Kam YW Kien F Roberts A Cheung YC Lamirande EW Vogel L Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcgammaRII-dependent entry into B cells in vitro. Vaccine. 2007;25(4):729–40. [doi:.].https://doi.org/10.1016/j.vaccine.2006.08.011
  18. Jaume M Yip MS Cheung CY Leung HL Li PH Kien F Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway. J Virol. 2011;85(20):10582–97. [doi:.].https://doi.org/10.1128/JVI.00671-11
  19. Wang SF Tseng SP Yen CH Yang JY Tsao CH Shen CW Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun. 2014;451(2):208–14. [doi:.].https://doi.org/10.1016/j.bbrc.2014.07.090
  20. Liu L Wei Q Lin Q Fang J Wang H Kwok H Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019;4(4):e123158. [doi:.].https://doi.org/10.1172/jci.insight.123158
  21. Tetro JA. Is COVID-19 receiving ADE from other coronaviruses? Microbes Infect. 2020;22(2):72–3. [doi:.].https://doi.org/10.1016/j.micinf.2020.02.006
  22. Lv N, Wu NC, Tsang OTY, Yuan M, Perera RAPM, Leung WS, et al. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. BioRxiv 2020.03.15.993097 [Preprint]. 2020 [posted 2020 March 17, cited 2020 April 9]. Available from: https://www.biorxiv.org/content/10.1101/2020.03.15.993097v1
  23. Israel EJ Simister N Freiberg E Caplan A Walker WA. Immunoglobulin G binding sites on the human foetal intestine: a possible mechanism for the passive transfer of immunity from mother to infant. Immunology. 1993;79(1):77–81.
  24. Dickinson BL Badizadegan K Wu Z Ahouse JC Zhu X Simister NE Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest. 1999;104(7):903–11. [doi:.].https://doi.org/10.1172/JCI6968
  25. Haymann JP Levraud JP Bouet S Kappes V Hagège J Nguyen G Characterization and localization of the neonatal Fc receptor in adult human kidney. J Am Soc Nephrol. 2000;11(4):632–9.
  26. Borvak J Richardson J Medesan C Antohe F Radu C Simionescu M Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int Immunol. 1998;10(9):1289–98. [doi:.].https://doi.org/10.1093/intimm/10.9.1289
  27. Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. MedRxiv 2020.03.30.20047365 [Preprint]. 2020 [posted 2020 April 6, cited 2020 April 9]. Available at https://www.medrxiv.org/content/10.1101/2020.03.30.20047365v1
  28. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA. 2020;202004168. Published online April 6, 2020. doi:https://doi.org/10.1073/pnas.2004168117.
  29. Subramanian S. 'It’s a razor’s edge we’re walking': inside the race to develop a coronavirus vaccine. The Guardian. 2020 Mar 27.
  30. Jiang S. Don’t rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees. Nature. 2020;579(7799):321. [doi:.].https://doi.org/10.1038/d41586-020-00751-9

Most read articles by the same author(s)

1 2 > >>