Skip to main content

Hypoxia, Hypobaria, and Exercise Duration Affect Acute Mountain Sickness

Buy Article:

$27.00 + tax (Refund Policy)

INTRODUCTION: This study simultaneously quantified the effects of normobaric hypoxia (NH), hypobaric hypoxia (HH), exercise duration, and exposure time on acute mountain sickness severity (AMS-C).

METHODS: Thirty-six subjects (27.7 ± 7.8 yr) participated in a partial repeated measures study, completing two of six conditions: normobaric normoxia (NN: 300 m/984 ft equivalent), NH or HH (Po2 = 91 mmHg; 4400 m/14,436 ft equivalent), combined with moderate intensity cycling for 10 or 60 min. Subjects completed the Environmental Symptoms Questionnaire and oxygen saturation (Spo2) was measured before, 1.5 h, 4 h, and 6.5 h into an 8-h exposure, and 1.5 h post-exposure. We fit multiple linear regression models with cluster adjusted standard errors on the exposure times using NH, HH, and long exercise as indicator variables, and AMS-C as the outcome variable. The Spo2 and pre-exposure AMS-C score were used as covariates.

RESULTS: NH and HH led to substantial and progressively increasing AMS-C, but NN did not. The effect of HH on AMS-C was significantly different from NH, with AMS-C in HH being 1.6 times higher than in NH. HH led to significantly increasing AMS-C, regardless of the exercise duration, while NH only did so in combination with longer exercise.

DISCUSSION: Increases in AMS-C were each independently related to NH, HH, and long duration exercise, with HH affecting AMS-C more severely. This suggests that hypobaria may affect AMS development above the level induced by hypoxia alone. This further suggests that NH and HH may not be interchangeable for studying AMS and that exercise duration may impact physiological responses.

DiPasquale DM, Strangman GE, Harris NS, Muza SR. Hypoxia, hypobaria, and exercise duration affect acute mountain sickness. Aerosp Med Hum Perform. 2015; 86(7):614–619.

Keywords: acute mountain sickness; altitude; hypobaric; normobaric; physical activity; severity

Document Type: Research Article

Publication date: 01 July 2015

More about this publication?
  • This journal (formerly Aviation, Space, and Environmental Medicine), representing the members of the Aerospace Medical Association, is published monthly for those interested in aerospace medicine and human performance. It is devoted to serving and supporting all who explore, travel, work, or live in hazardous environments ranging from beneath the sea to the outermost reaches of space. The original scientific articles in this journal provide the latest available information on investigations into such areas as changes in ambient pressure, motion sickness, increased or decreased gravitational forces, thermal stresses, vision, fatigue, circadian rhythms, psychological stress, artificial environments, predictors of success, health maintenance, human factors engineering, clinical care, and others. This journal also publishes notes on scientific news and technical items of interest to the general reader, and provides teaching material and reviews for health care professionals.

    To access volumes 74 through 85, please click here.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Submit Articles
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content