Semin Respir Crit Care Med 2005; 26(4): 355-364
DOI: 10.1055/s-2005-916149
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Current Insights on the Pathogenesis of Pulmonary Arterial Hypertension

Frédéric Perros1 , Peter Dorfmüller1 , Marc Humbert1
  • 1Service de Pneumologie et Réanimation Respiratoire, Centre des Maladies Vasculaires Pulmonaires, Hôpital Antoine-Béclère, Université Paris-Sud, Clamart, France
Further Information

Publication History

Publication Date:
25 August 2005 (online)

ABSTRACT

Regardless of the initial trigger, the elevated pulmonary arterial pressure and vascular resistance in patients with pulmonary arterial hypertension are primarily caused by remodeling and thrombosis of small- and medium-sized pulmonary arteries and arterioles, as well as sustained vasoconstriction. The process of pulmonary vascular remodeling involves all layers of the vessel wall and is complicated by cellular heterogeneity within each compartment. Indeed, each cell type (endothelial cells, smooth muscle cells, and fibroblasts), as well as inflammatory cells and platelets, may play significant roles in this condition. Recent studies have emphasized the relevance of several mediators in this condition, including prostaglandin-I2 (prostacyclin), nitric oxide, endothelin-1, angiopoietin-1, 5-hydroxytryptamine (serotonin), cytokines, chemokines, and members of the transforming growth factor beta (TGF-β) superfamily. Targeting some of these dysfunctional pathways (prostacyclin, nitric oxide, and endothelin-1) has been beneficial in subjects displaying pulmonary arterial hypertension.

REFERENCES

  • 1 Voelkel N F, Tuder R M, Weir E K. Pathophysiology of primary pulmonary hypertension. In: Rubin L, Rich S Primary Pulmonary Hypertension New York; Marcel Dekker 1997: 83-129
  • 2 Jeffery T K, Morrell N W. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension.  Prog Cardiovasc Dis. 2002;  45 173-202
  • 3 Stenmark K R, Gerasimovskaya E, Nemenoff R A, Das M. Hypoxic activation of adventitial fibroblasts: role in vascular remodeling.  Chest. 2002;  122 326S-334S
  • 4 Davie N J, Crossno J T, Frid M G et al.. Hypoxia-induced pulmonary artery advential remodeling and neovascularization: potential contribution of circulating progenitor cells.  Am J Physiol Lung Cell Mol Physiol. 2003;  , Epub ahead of print
  • 5 Cool C D, Stewart J S, Wehareha P et al.. Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers: evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth.  Am J Pathol. 1999;  155 411-419
  • 6 Lee S D, Shroyer K R, Markham N E, Cool C D, Voelkel N F, Tuder R M. Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension.  J Clin Invest. 1998;  101 927-934
  • 7 Yeager M E, Halley G R, Golpon H A, Voelkel N F, Tuder R M. Microsattelite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension.  Circ Res. 2001;  88 e2-e11
  • 8 Cool C D, Rai P R, Yeager M E et al.. Expression of human herpesvirus 8 in primary pulmonary hypertension.  N Engl J Med. 2003;  349 1113-1122
  • 9 Dorfmüller P, Perros F, Balabanian K, Humbert M. Inflammation in pulmonary arterial hypertension.  Eur Respir J. 2003;  22 358-363
  • 10 Tuder R M, Groves B, Badesch D B, Voelkel N F. Exuberant endothelial cell growth and element of inflammation are present in plexiform lesions of pulmonary hypertension.  Am J Pathol. 1994;  144 275-285
  • 11 Hervé P, Humbert M, Sitbon O et al.. Pathobiology of pulmonary hypertension: the role of platelets and thrombosis.  Clin Chest Med. 2001;  22 451-458
  • 12 Christman B W, McPherson C D, Newman J H et al.. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension.  N Engl J Med. 1992;  327 70-75
  • 13 Tuder R M, Cool C D, Geraci M W et al.. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension.  Am J Respir Crit Care Med. 1999;  159 1925-1932
  • 14 Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension.  N Engl J Med. 1995;  333 214-221
  • 15 Michelakis E D, Tymchak W, Noga M et al.. Long-term treatment with oral sildenafil is safe and improves functional capacity and hemodynamics in patients with pulmonary arterial hypertension.  Circulation. 2003;  108 2066-2069
  • 16 Petkov V, Mosgoeller W, Ziesche R et al.. Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension.  J Clin Invest. 2003;  111 1339-1346
  • 17 Giaid A, Yanagisawa M, Langleben D et al.. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension.  N Engl J Med. 1993;  328 1732-1739
  • 18 Archer S, Rich S. Primary pulmonary hypertension: a vascular biology and translational research “work in progress.”  Circulation. 2000;  102 2781-2791
  • 19 Yuan X J, Wang J, Juhaszova M, Gaine S P, Rubin L J. Attenuated K+ channel gene transcription in primary pulmonary hypertension.  Lancet. 1998;  351 726-727
  • 20 Michelakis E D, McMurtry M S, Wu X C et al.. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels.  Circulation. 2002;  105 244-250
  • 21 Geraci M W, Moore M, Gesell T et al.. Gene expression patterns in the lungs of patients with primary pulmonary hypertension: a gene microarray analysis.  Circ Res. 2001;  88 555-562
  • 22 Weir E K, Reeve H L, Huang J MC et al.. Anorexic agents aminorex, fenfluramine, and dexfenfluramine inhibit potassium current in rat pulmonary vascular smooth muscle and cause pulmonary vasoconstriction.  Circulation. 1996;  94 2216-2220
  • 23 Hervé P, Launay J M, Scrobohaci M L et al.. Increased plasma serotonin in primary pulmonary hypertension.  Am J Med. 1995;  99 249-254
  • 24 MacLean M R, Hervé P, Eddahibi S, Adnot S. 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension.  Br J Pharmacol. 2000;  131 161-168
  • 25 Eddahibi S, Humbert M, Fadel E et al.. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension.  J Clin Invest. 2001;  108 1141-1150
  • 26 Eddahibi S, Chaouat A, Morrell N et al.. Polymorphism of the serotonin transporter gene and pulmonary hypertension in chronic obstructive pulmonary disease.  Circulation. 2003;  108 1839-1844
  • 27 MacLean M R, Deuchar G A, Hicks M N et al.. Over-expression of the 5-hydroxytryptamine transporter gene: effect on pulmonary hemodynamics and hypoxia-induced pulmonary hypertension.  Circulation. 2004;  109 2150-2155
  • 28 Marcos E, Adnot S, Pham M H et al.. Serotonin transporter inhibitors protect against hypoxic pulmonary hypertension.  Am J Respir Crit Care Med. 2003;  168 487-493
  • 29 Morecroft I, Heeley R P, Prentice H M, Kirk A, MacLean M R. 5-hydroxytryptamine receptors mediating contraction in human small muscular pulmonary arteries: importance of the 5-HT1B receptor.  Br J Pharmacol. 1999;  128 730-734
  • 30 Keegan A, Morecroft I, Smillie D, Hicks M N, MacLean M R. Contribution of the 5-HT(1B) receptor to hypoxia-induced pulmonary hypertension: converging evidence using 5-HT(1B)-receptor knockout mice and the 5-HT(1B/1D)-receptor antagonist GR127935.  Circ Res. 2001;  89 1231-1239
  • 31 Launay J M, Hervé P, Peoc'h K et al.. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension.  Nat Med. 2002;  8 1129-1135
  • 32 Weir E K, Reeve H L, Peterson D A, Michelakis E D, Nelson D P, Archer S L. Pulmonary vasoconstriction, oxygen sensing, and the role of ion channels: Thomas A. Neff lecture.  Chest. 1998;  114(suppl 1) 17S-22S
  • 33 Massague J, Chen Y G. Controlling TGF-beta signaling.  Genes Dev. 2000;  14 627-644
  • 34 Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to nucleus.  Cell. 2003;  113 685-700
  • 35 Lane K B, Machado R D, Pauciulo M W et al.. Heterozygous germline mutations in a TGF-βreceptor, BMPR2, are the cause of familial primary pulmonary hypertension.  Nat Genet. 2000;  26 81-84
  • 36 Deng Z, Morse J H, Slager S L et al.. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene.  Am J Hum Genet. 2000;  67 737-744
  • 37 Thomson J R, Machado R D, Pauciulo M W et al.. Sporadic primary pulmonary hypertension id associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-β family.  J Med Genet. 2000;  37 741-745
  • 38 Trembath R, Thomson J R, Machado R D et al.. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia.  N Engl J Med. 2001;  345 325-334
  • 39 Chaouat A, Coulet F, Favre C et al.. Endoglin germline mutation in a patient with hereditary hemorrhagic telangiectasia and dexfenfluramine-associated pulmonary arterial hypertension.  Thorax. 2004;  59 446-448
  • 40 Rudarakanchana N, Flanagan J A, Chen H et al.. Functional analysis of bone morphogenetic protein type II receptor mutations underlying primary pulmonary hypertension.  Hum Mol Genet. 2002;  11 1517-1525
  • 41 Beppu H, Kawabata M, Hamamoto T et al.. BMP type II receptor is required for gastrulation and early development of mouse embryos.  Dev Biol. 2000;  221 249-258
  • 42 Atkinson C, Stewart S, Upton P D et al.. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor.  Circulation. 2002;  105 1672-1678
  • 43 Du L, Sullivan C C, Chu D et al.. Signaling molecules in nonfamilial pulmonary hypertension.  N Engl J Med. 2003;  348 500-509
  • 44 Machado R D, Pauciulo M W, Thomson J R et al.. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension.  Am J Hum Genet. 2001;  68 92-102
  • 45 Morrell N W, Yang X, Upton P et al.. Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-β1 and bone morphogenetic proteins.  Circulation. 2001;  104 790-795
  • 46 Botney M D, Bahadori L, Gold L I. Vascular remodeling in primary pulmonary hypertension: potential role for transforming growth factor-β.  Am J Pathol. 1994;  144 286-295
  • 47 Markewitz B A, Farrukh I S, Chen Y, Li Y, Michael J R. Regulation of endothelin-1 synthesis in human pulmonary arterial smooth muscle cells: effects of transforming growth factor-β and hypoxia.  Cardiovasc Res. 2001;  49 200-206
  • 48 Kucich U, Rosenbloom J C, Herrick D J et al.. Signaling events required for transforming growth factor-β stimulation of connective tissue growth factor expression by cultured human lung fibroblasts.  Arch Biochem Biophys. 2001;  395 103-112
  • 49 Tuder R M, Chacon M, Alger L et al.. Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis.  J Pathol. 2001;  195 367-374
  • 50 Wanstall J C, Gambino A, Jeffery T K et al.. Vascular endothelial growth factor-B-deficient mice show impaired development of hypoxic pulmonary hypertension.  Cardiovasc Res. 2002;  55 361-368
  • 51 Campbell A I, Zhao Y, Sandhu R, Stewart D J. Cell-based gene transfer of vascular endothelial growth factor attenuates monocrotaline-induced pulmonary hypertension.  Circulation. 2001;  104 2242-2248
  • 52 Hirose S, Hosoda Y, Furuya S, Otsuki T, Ikeda E. Expression of vascular endothelial growth factor and its receptors correlates closely with formation of the plexiform lesion in human pulmonary hypertension.  Pathol Int. 2000;  50 472-479
  • 53 Taraseviciene-Stewart L, Kasahara Y, Alger L et al.. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension.  FASEB J. 2001;  15 427-438
  • 54 Sullivan C C, Du L, Chu D et al.. Induction of pulmonary hypertension by an angiopoietin 1/TIE2/serotonin pathway.  Proc Natl Acad Sci USA. 2003;  100 12331-12336
  • 55 Zhao Y D, Campbell A IM, Robb M, Ng D, Stewart D J. Protective role of angiopoietin-1 in experimental pulmonary hypertension.  Circ Res. 2003;  92 984-991
  • 56 Rudge J S, Thurston G, Yancopoulos G D. Angiopoietin-1 and pulmonary hypertension: cause or cure?.  Circ Res. 2003;  92 947-949
  • 57 Rabinovitch M. Elastase and the pathobiology of unexplained pulmonary hypertension.  Chest. 1998;  114 213S-224S
  • 58 Cowan K N, Jones P L, Rabinovitch M. Elastase and matrix metalloproteinase inhibitors induce regression, and tenascin-C antisense prevents progression, of vascular disease.  J Clin Invest. 2000;  105 21-34
  • 59 Cowan K N, Heilbut A, Humpl T, Lam C, Ito S, Rabinovitch M. Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor.  Nat Med. 2000;  6 698-702
  • 60 Wigle D A, Thompson K E, Yablonsky S et al.. AML1-like transcription factor induces serine elastase activity in ovine pulmonary artery smooth muscle cells.  Circ Res. 1998;  83 252-263
  • 61 Mitani Y, Zaidi S H, Dufourcq P, Thompson K, Rabinovitch M. Nitric oxide reduces vascular smooth muscle cell elastase activity through cGMP-mediated suppression of ERK phosphorylation and AML1B nuclear partitioning.  FASEB J. 2000;  14 805-814
  • 62 Humbert M, Sitbon O, Simonneau G. Treatment of pulmonary arterial hypertension.  N Engl J Med. 2004;  351 1425-1436
  • 63 Machado R D, James V, Southwood M et al.. Investigation of second genetic hit at the BMPR2 locus as a modulator of disease progression in familial pulmonary arterial hypertension.  Circulation. 2005;  111 607-613
  • 64 Yuan J XJ, Rubin L J. Pathogenesis of pulmonary arterial hypertension: the need for multiple hits.  Circulation. 2005;  111 534-538

Marc HumbertM.D. Ph.D. 

Service de Pneumologie, Hôpital Antoine-Béclère, 157 Rue de la Porte de Trivaux

92140 Clamart, France

Email: marc.humbert@abc.aphp.fr

    >