Semin Respir Crit Care Med 2015; 36(02): 217-224
DOI: 10.1055/s-0035-1546751
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Nontuberculous Mycobacteria in Cystic Fibrosis and Non–Cystic Fibrosis Bronchiectasis

In Kwon Park
1   Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
,
Kenneth N. Olivier
2   Pulmonary Clinical Medicine Section, Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland
› Author Affiliations
Further Information

Publication History

Publication Date:
31 March 2015 (online)

Abstract

Increasing numbers of cystic fibrosis (CF) and non-CF bronchiectasis patients are affected by pulmonary nontuberculous mycobacteria (NTM) infection worldwide. Two species of NTM account for up to 95% of the pulmonary NTM infections: Mycobacterium avium complex (MAC) and Mycobacterium abscessus complex (MABSC). Diagnosis of pulmonary NTM infection is based on criteria specified in the 2007 American Thoracic Society/Infectious Disease Society of America (ATS/IDSA) guidelines. While many initial positive cultures do not progress to active NTM disease, even a single positive NTM sputum culture obtained from higher risk groups such as classic CF or older women with bronchiectasis and very low body mass index should be closely monitored for progressive disease. Macrolides remain the most effective agents available against MAC and MABSC. Infection with MABSC may be associated with worse clinical outcomes, as more than half of MABSC isolates have inducible macrolide resistance conferred by an active erm(41) gene. Of growing concern in CF is that MABSC is becoming more common than MAC, seems to target younger patients with classic CF, and is more difficult to manage, often requiring prolonged courses of intravenous antibiotics. Recurrence rates of NTM after initial successful treatment remain high, likely due to nonmodifiable risk factors raising the question of whether secondary prophylaxis is feasible. More rapid and readily available methods for detecting inducible macrolide resistance and better in vitro susceptibility testing methods for other drugs that correlate with clinical responses are needed. This is crucial to identify more effective regimens of existing drugs and for development of novel drugs for NTM infection.

Note

This work was supported in part by the Intramural Research Programs of the National Heart, Lung and Blood Institute and the National Institute of Allergy and Infectious Diseases, NIH.


 
  • References

  • 1 Neves PC, Guerra M, Ponce P, Miranda J, Vouga L. Non-cystic fibrosis bronchiectasis. Interact Cardiovasc Thorac Surg 2011; 13 (6) 619-625
  • 2 Sly PD, Gangell CL, Chen L , et al; AREST CF Investigators. Risk factors for bronchiectasis in children with cystic fibrosis. N Engl J Med 2013; 368 (21) 1963-1970
  • 3 McShane PJ, Naureckas ET, Strek ME. Bronchiectasis in a diverse US population: effects of ethnicity on etiology and sputum culture. Chest 2012; 142 (1) 159-167
  • 4 Seitz AE, Olivier KN, Adjemian J, Holland SM, Prevots R. Trends in bronchiectasis among medicare beneficiaries in the United States, 2000 to 2007. Chest 2012; 142 (2) 432-439
  • 5 Pasteur MC, Helliwell SM, Houghton SJ , et al. An investigation into causative factors in patients with bronchiectasis. Am J Respir Crit Care Med 2000; 162 (4, Pt 1) 1277-1284
  • 6 Olivier KN, Weber DJ, Wallace Jr RJ , et al; Nontuberculous Mycobacteria in Cystic Fibrosis Study Group. Nontuberculous mycobacteria. I: multicenter prevalence study in cystic fibrosis. Am J Respir Crit Care Med 2003; 167 (6) 828-834
  • 7 Levy I, Grisaru-Soen G, Lerner-Geva L , et al. Multicenter cross-sectional study of nontuberculous mycobacterial infections among cystic fibrosis patients, Israel. Emerg Infect Dis 2008; 14 (3) 378-384
  • 8 Roux AL, Catherinot E, Ripoll F , et al; Jean-Louis Herrmann for the OMA Group. Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in France. J Clin Microbiol 2009; 47 (12) 4124-4128
  • 9 Seddon P, Fidler K, Raman S , et al. Prevalence of nontuberculous mycobacteria in cystic fibrosis clinics, United Kingdom, 2009. Emerg Infect Dis 2013; 19 (7) 1128-1130
  • 10 Qvist T, Gilljam M, Jönsson B , et al; Scandinavian Cystic Fibrosis Study Consortium (SCFSC). Epidemiology of nontuberculous mycobacteria among patients with cystic fibrosis in Scandinavia. J Cyst Fibros 2015; 14 (1) 46-52
  • 11 Pierre-Audigier C, Ferroni A, Sermet-Gaudelus I , et al. Age-related prevalence and distribution of nontuberculous mycobacterial species among patients with cystic fibrosis. J Clin Microbiol 2005; 43 (7) 3467-3470
  • 12 Aitken ML, Limaye A, Pottinger P , et al. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med 2012; 185 (2) 231-232
  • 13 Bryant JM, Grogono DM, Greaves D , et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 2013; 381 (9877) 1551-1560
  • 14 Tettelin H, Davidson RM, Agrawal S , et al. High-level relatedness among Mycobacterium abscessus subsp. massiliense strains from widely separated outbreaks. Emerg Infect Dis 2014; 20 (3) 364-371
  • 15 Prevots DR, Shaw PA, Strickland D , et al. Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med 2010; 182 (7) 970-976
  • 16 Mirsaeidi M, Hadid W, Ericsoussi B, Rodgers D, Sadikot RT. Non-tuberculous mycobacterial disease is common in patients with non-cystic fibrosis bronchiectasis. Int J Infect Dis 2013; 17 (11) e1000-e1004
  • 17 Koh WJ, Lee KS, Kwon OJ, Jeong YJ, Kwak SH, Kim TS. Bilateral bronchiectasis and bronchiolitis at thin-section CT: diagnostic implications in nontuberculous mycobacterial pulmonary infection. Radiology 2005; 235 (1) 282-288
  • 18 Griffith DE, Aksamit TR. Bronchiectasis and nontuberculous mycobacterial disease. Clin Chest Med 2012; 33 (2) 283-295
  • 19 Middleton AM, Chadwick MV, Nicholson AG , et al. The role of Mycobacterium avium complex fibronectin attachment protein in adherence to the human respiratory mucosa. Mol Microbiol 2000; 38 (2) 381-391
  • 20 Middleton AM, Chadwick MV, Nicholson AG , et al. Inhibition of adherence of Mycobacterium avium complex and Mycobacterium tuberculosis to fibronectin on the respiratory mucosa. Respir Med 2004; 98 (12) 1203-1206
  • 21 Fowler SJ, French J, Screaton NJ , et al. Nontuberculous mycobacteria in bronchiectasis: Prevalence and patient characteristics. Eur Respir J 2006; 28 (6) 1204-1210
  • 22 Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR. Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci U S A 2009; 106 (38) 16393-16399
  • 23 Falkinham III JO. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis 2011; 17 (3) 419-424
  • 24 Griffith DE, Aksamit T, Brown-Elliott BA , et al; ATS Mycobacterial Diseases Subcommittee; American Thoracic Society; Infectious Disease Society of America. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175 (4) 367-416
  • 25 Olivier KN, Weber DJ, Lee JH , et al; Nontuberculous Mycobacteria in Cystic Fibrosis Study Group. Nontuberculous mycobacteria. II: nested-cohort study of impact on cystic fibrosis lung disease. Am J Respir Crit Care Med 2003; 167 (6) 835-840
  • 26 Martiniano SL, Sontag MK, Daley CL, Nick JA, Sagel SD. Clinical significance of a first positive nontuberculous mycobacteria culture in cystic fibrosis. Ann Am Thorac Soc 2014; 11 (1) 36-44
  • 27 Kim RD, Greenberg DE, Ehrmantraut ME , et al. Pulmonary nontuberculous mycobacterial disease: prospective study of a distinct preexisting syndrome. Am J Respir Crit Care Med 2008; 178 (10) 1066-1074
  • 28 Kartalija M, Ovrutsky AR, Bryan CL , et al. Patients with nontuberculous mycobacterial lung disease exhibit unique body and immune phenotypes. Am J Respir Crit Care Med 2013; 187 (2) 197-205
  • 29 Iseman MD, Buschman DL, Ackerson LM. Pectus excavatum and scoliosis. Thoracic anomalies associated with pulmonary disease caused by Mycobacterium avium complex. Am Rev Respir Dis 1991; 144 (4) 914-916
  • 30 Lee AR, Lee J, Choi SM , et al. Phenotypic, immunologic, and clinical characteristics of patients with nontuberculous mycobacterial lung disease in Korea. BMC Infect Dis 2013; 13: 558
  • 31 Zelazny AM, Calhoun LB, Li L, Shea YR, Fischer SH. Identification of Mycobacterium species by secA1 sequences. J Clin Microbiol 2005; 43 (3) 1051-1058
  • 32 Zelazny AM, Root JM, Shea YR , et al. Cohort study of molecular identification and typing of Mycobacterium abscessus, Mycobacterium massiliense, and Mycobacterium bolletii. J Clin Microbiol 2009; 47 (7) 1985-1995
  • 33 Judson MA, Chaudhry H, Compa DR, OʼDonnell AE. A Delphi study of pharmacotherapy for noncystic fibrosis bronchiectasis. Am J Med Sci 2014; 348 (5) 387-393
  • 34 McCullough AR, Tunney MM, Quittner AL, Elborn JS, Bradley JM, Hughes CM. Treatment adherence and health outcomes in patients with bronchiectasis. BMC Pulm Med 2014; 14: 107
  • 35 Lee AL, Hill CJ, Cecins N , et al. The short and long term effects of exercise training in non-cystic fibrosis bronchiectasis—a randomised controlled trial. Respir Res 2014; 15: 44
  • 36 Griffith DE, Brown-Elliott BA, Langsjoen B , et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2006; 174 (8) 928-934
  • 37 Meier A, Kirschner P, Springer B , et al. Identification of mutations in 23S rRNA gene of clarithromycin-resistant Mycobacterium intracellulare. Antimicrob Agents Chemother 1994; 38 (2) 381-384
  • 38 Wallace Jr RJ, Brown-Elliott BA, McNulty S , et al. Macrolide/Azalide therapy for nodular/bronchiectatic mycobacterium avium complex lung disease. Chest 2014; 146 (2) 276-282
  • 39 Binder AM, Adjemian J, Olivier KN, Prevots DR. Epidemiology of nontuberculous mycobacterial infections and associated chronic macrolide use among persons with cystic fibrosis. Am J Respir Crit Care Med 2013; 188 (7) 807-812
  • 40 Olivier KN, Shaw PA, Glaser TS , et al. Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial disease. Ann Am Thorac Soc 2014; 11 (1) 30-35
  • 41 Davis KK, Kao PN, Jacobs SS, Ruoss SJ. Aerosolized amikacin for treatment of pulmonary Mycobacterium avium infections: an observational case series. BMC Pulm Med 2007; 7: 2
  • 42 Griffith DE, Girard WM, Wallace Jr RJ. Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 154 patients. Am Rev Respir Dis 1993; 147 (5) 1271-1278
  • 43 Lyu J, Jang HJ, Song JW , et al. Outcomes in patients with Mycobacterium abscessus pulmonary disease treated with long-term injectable drugs. Respir Med 2011; 105 (5) 781-787
  • 44 Nash KA, Brown-Elliott BA, Wallace Jr RJ. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother 2009; 53 (4) 1367-1376
  • 45 Bastian S, Veziris N, Roux AL , et al. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob Agents Chemother 2011; 55 (2) 775-781
  • 46 Esther Jr CR, Esserman DA, Gilligan P, Kerr A, Noone PG. Chronic Mycobacterium abscessus infection and lung function decline in cystic fibrosis. J Cyst Fibros 2010; 9 (2) 117-123
  • 47 Catherinot E, Roux AL, Vibet MA , et al; OMA group. Mycobacterium avium and Mycobacterium abscessus complex target distinct cystic fibrosis patient subpopulations. J Cyst Fibros 2013; 12 (1) 74-80
  • 48 Leung JM, Olivier KN. Nontuberculous mycobacteria in patients with cystic fibrosis. Semin Respir Crit Care Med 2013; 34 (1) 124-134
  • 49 Roux AL, Catherinot E, Soismier N , et al; OMA group. Comparing Mycobacterium massiliense and Mycobacterium abscessus lung infections in cystic fibrosis patients. J Cyst Fibros 2015; 14 (1) 63-69
  • 50 Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother 2012; 67 (4) 810-818
  • 51 Koh WJ, Jeon K, Lee NY , et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med 2011; 183 (3) 405-410
  • 52 Howard ST, Rhoades E, Recht J , et al. Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology 2006; 152 (Pt 6) 1581-1590
  • 53 Catherinot E, Clarissou J, Etienne G , et al. Hypervirulence of a rough variant of the Mycobacterium abscessus type strain. Infect Immun 2007; 75 (2) 1055-1058
  • 54 Jönsson B, Ridell M, Wold AE. Phagocytosis and cytokine response to rough and smooth colony variants of Mycobacterium abscessus by human peripheral blood mononuclear cells. APMIS 2013; 121 (1) 45-55
  • 55 Bernut A, Herrmann JL, Kissa K , et al. Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc Natl Acad Sci U S A 2014; 111 (10) E943-E952
  • 56 Kreutzfeldt KM, McAdam PR, Claxton P , et al. Molecular longitudinal tracking of Mycobacterium abscessus spp. during chronic infection of the human lung. PLoS ONE 2013; 8 (5) e63237
  • 57 Yu JA, Pomerantz M, Bishop A, Weyant MJ, Mitchell JD. Lady Windermere revisited: treatment with thoracoscopic lobectomy/segmentectomy for right middle lobe and lingular bronchiectasis associated with non-tuberculous mycobacterial disease. Eur J Cardiothorac Surg 2011; 40 (3) 671-675
  • 58 Cremades R, Santos A, Rodríguez JC, Garcia-Pachón E, Ruiz M, Royo G. Mycobacterium abscessus from respiratory isolates: activities of drug combinations. J Infect Chemother 2009; 15 (1) 46-48
  • 59 van Ingen J, Totten SE, Helstrom NK, Heifets LB, Boeree MJ, Daley CL. In vitro synergy between clofazimine and amikacin in treatment of nontuberculous mycobacterial disease. Antimicrob Agents Chemother 2012; 56 (12) 6324-6327
  • 60 Field SK, Cowie RL. Treatment of Mycobacterium avium-intracellulare complex lung disease with a macrolide, ethambutol, and clofazimine. Chest 2003; 124 (4) 1482-1486