Eur J Pediatr Surg 2012; 22(05): 345-354
DOI: 10.1055/s-0032-1329409
Review
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Etiological and Pathogenic Factors in Congenital Diaphragmatic Hernia

I. Sluiter
1   Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
,
D. Veenma
1   Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
,
R. van Loenhout
1   Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
,
R. Rottier
1   Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
,
A. de Klein
2   Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
,
R. Keijzer
3   Department of Pediatric Surgery, Children's Hospital Foundation of Manitoba, Winnipeg, Canada
,
M. Post
4   Department of Laboratory Medicine and Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
5   Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
6   Department of Physiology, The Hospital for Sick Children, Toronto, Ontario, Canada
,
D. Tibboel
1   Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
› Author Affiliations
Further Information

Publication History

20 September 2012

21 September 2012

Publication Date:
31 October 2012 (online)

Abstract

Congenital diaphragmatic hernia (CDH) is a congenital anomaly associated with an increased mortality and morbidity. In this article, we review the currently known etiological and pathogenic factors in CDH.

 
  • References

  • 1 van den Hout L, Schaible T, Cohen-Overbeek TE , et al. Actual outcome in infants with congenital diaphragmatic hernia: the role of a standardized postnatal treatment protocol. Fetal Diagn Ther 2011; 29 (1) 55-63
  • 2 Slaughter JL, Pakrashi T, Jones DE, South AP, Shah TA. Echocardiographic detection of pulmonary hypertension in extremely low birth weight infants with bronchopulmonary dysplasia requiring prolonged positive pressure ventilation. J Perinatol 2011; 31 (10) 635-640
  • 3 Farquhar M, Fitzgerald DA. Pulmonary hypertension in chronic neonatal lung disease. Paediatr Respir Rev 2010; 11 (3) 149-153
  • 4 Kleinjan DA, van Heyningen V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 2005; 76 (1) 8-32
  • 5 Kleinjan DJ, Coutinho P. Cis-ruption mechanisms: disruption of cis-regulatory control as a cause of human genetic disease. Brief Funct Genomics Proteomics 2009; 8 (4) 317-332
  • 6 Lupski JR, Stankiewicz P. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet 2005; 1 (6) e49
  • 7 Reymond A, Henrichsen CN, Harewood L, Merla G. Side effects of genome structural changes. Curr Opin Genet Dev 2007; 17 (5) 381-386
  • 8 Holder AM, Klaassens M, Tibboel D, de Klein A, Lee B, Scott DA. Genetic factors in congenital diaphragmatic hernia. Am J Hum Genet 2007; 80 (5) 825-845
  • 9 Wat MJ, Veenma D, Hogue J , et al. Genomic alterations that contribute to the development of isolated and non-isolated congenital diaphragmatic hernia. J Med Genet 2011; 48 (5) 299-307
  • 10 Machado IN, Heinrich JK, Barini R, Peralta CF. Copy number imbalances detected with a BAC-based array comparative genomic hybridization platform in congenital diaphragmatic hernia fetuses. Genet Mol Res 2011; 10 (1) 261-267
  • 11 Teshiba R, Masumoto K, Esumi G , et al. Identification of TCTE3 as a gene responsible for congenital diaphragmatic hernia using a high-resolution single-nucleotide polymorphism array. Pediatr Surg Int 2011; 27 (2) 193-198
  • 12 Srisupundit K, Brady PD, Devriendt K , et al. Targeted array comparative genomic hybridisation (array CGH) identifies genomic imbalances associated with isolated congenital diaphragmatic hernia (CDH). Prenat Diagn 2010; 30 (12–13) 1198-1206
  • 13 Ackerman KG, Greer JJ. Development of the diaphragm and genetic mouse models of diaphragmatic defects. Am J Med Genet C Semin Med Genet 2007; 145C (2) 109-116
  • 14 Goumy C, Gouas L, Marceau G , et al. Retinoid pathway and congenital diaphragmatic hernia: hypothesis from the analysis of chromosomal abnormalities. Fetal Diagn Ther 2010; 28 (3) 129-139
  • 15 Bielinska M, Jay PY, Erlich JM , et al. Molecular genetics of congenital diaphragmatic defects. Ann Med 2007; 39 (4) 261-274
  • 16 Bleyl SB, Moshrefi A, Shaw GM , et al. Candidate genes for congenital diaphragmatic hernia from animal models: sequencing of FOG2 and PDGFRalpha reveals rare variants in diaphragmatic hernia patients. Eur J Hum Genet 2007; 15 (9) 950-958
  • 17 Ackerman KG, Herron BJ, Vargas SO , et al. Fog2 is required for normal diaphragm and lung development in mice and humans. PLoS Genet 2005; 1 (1) 58-65
  • 18 Huggins GS, Bacani CJ, Boltax J, Aikawa R, Leiden JM. Friend of GATA 2 physically interacts with chicken ovalbumin upstream promoter-TF2 (COUP-TF2) and COUP-TF3 and represses COUP-TF2-dependent activation of the atrial natriuretic factor promoter. J Biol Chem 2001; 276 (30) 28029-28036
  • 19 Manuylov NL, Tevosian SG. Cardiac expression of Tnnt1 requires the GATA4-FOG2 transcription complex. ScientificWorldJournal 2009; 9: 575-587
  • 20 Zhou B, Ma Q, Kong SW , et al. Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart. J Clin Invest 2009; 119 (6) 1462-1476
  • 21 Smagulova FO, Manuylov NL, Leach LL, Tevosian SG. GATA4/FOG2 transcriptional complex regulates Lhx9 gene expression in murine heart development. BMC Dev Biol 2008; 8: 67
  • 22 Crispino JD, Lodish MB, Thurberg BL , et al. Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev 2001; 15 (7) 839-844
  • 23 Cai K, Gudas LJ. Retinoic acid receptors and GATA transcription factors activate the transcription of the human lecithin:retinol acyltransferase gene. Int J Biochem Cell Biol 2009; 41 (3) 546-553
  • 24 Wat MJ, Shchelochkov OA, Holder AM , et al. Chromosome 8p23.1 deletions as a cause of complex congenital heart defects and diaphragmatic hernia. Am J Med Genet A 2009; 149A (8) 1661-1677
  • 25 Wat MJ, Beck TF, Hernández-García A , et al. Mouse model reveals the role of SOX7 in the development of congenital diaphragmatic hernia associated with recurrent deletions of 8p23.1. Hum Mol Genet 2012; 21 (18) 4115-4125
  • 26 Lee SB, Haber DA. Wilms tumor and the WT1 gene. Exp Cell Res 2001; 264 (1) 74-99
  • 27 Moore AW, Schedl A, McInnes L, Doyle M, Hecksher-Sorensen J, Hastie ND. YAC transgenic analysis reveals Wilms' tumour 1 gene activity in the proliferating coelomic epithelium, developing diaphragm and limb. Mech Dev 1998; 79 (1–2) 169-184
  • 28 Norden J, Grieskamp T, Lausch E , et al. Wt1 and retinoic acid signaling in the subcoelomic mesenchyme control the development of the pleuropericardial membranes and the sinus horns. Circ Res 2010; 106 (7) 1212-1220
  • 29 Ijpenberg A, Pérez-Pomares JM, Guadix JA , et al. Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis. Dev Biol 2007; 312 (1) 157-170
  • 30 Clugston RD, Zhang W, Alvarez S, de Lera AR, Greer JJ. Understanding abnormal retinoid signaling as a causative mechanism in congenital diaphragmatic hernia. Am J Respir Cell Mol Biol 2010; 42 (3) 276-285
  • 31 Chassaing N, Golzio C, Odent S , et al. Phenotypic spectrum of STRA6 mutations: from Matthew-Wood syndrome to non-lethal anophthalmia. Hum Mutat 2009; 30 (5) E673-E681
  • 32 Kantarci S, Al-Gazali L, Hill RS , et al. Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes. Nat Genet 2007; 39 (8) 957-959
  • 33 Pasutto F, Sticht H, Hammersen G , et al. Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am J Hum Genet 2007; 80 (3) 550-560
  • 34 Beurskens LW, Tibboel D, Lindemans J , et al. Retinol status of newborn infants is associated with congenital diaphragmatic hernia. Pediatrics 2010; 126 (4) 712-720
  • 35 Mark M, Ghyselinck NB, Chambon P. Function of retinoic acid receptors during embryonic development. Nucl Recept Signal 2009; 7: e002
  • 36 Mark M, Ghyselinck NB, Wendling O , et al. A genetic dissection of the retinoid signalling pathway in the mouse. Proc Nutr Soc 1999; 58 (3) 609-613
  • 37 Niederreither K, Dollé P. Retinoic acid in development: towards an integrated view. Nat Rev Genet 2008; 9 (7) 541-553
  • 38 Rochette-Egly C, Germain P. Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs). Nucl Recept Signal 2009; 7: e005
  • 39 Masiá S, Alvarez S, de Lera AR, Barettino D. Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol 2007; 21 (10) 2391-2402
  • 40 Maghsoodi B, Poon MM, Nam CI, Aoto J, Ting P, Chen L. Retinoic acid regulates RARalpha-mediated control of translation in dendritic RNA granules during homeostatic synaptic plasticity. Proc Natl Acad Sci U S A 2008; 105 (41) 16015-16020
  • 41 Beurskens N, Klaassens M, Rottier R, de Klein A, Tibboel D. Linking animal models to human congenital diaphragmatic hernia. Birth Defects Res A Clin Mol Teratol 2007; 79 (8) 565-572
  • 42 Rossant J, Zirngibl R, Cado D, Shago M, Giguère V. Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev 1991; 5 (8) 1333-1344
  • 43 Desai TJ, Malpel S, Flentke GR, Smith SM, Cardoso WV. Retinoic acid selectively regulates Fgf10 expression and maintains cell identity in the prospective lung field of the developing foregut. Dev Biol 2004; 273 (2) 402-415
  • 44 Chen F, Desai TJ, Qian J, Niederreither K, Lü J, Cardoso WV. Inhibition of Tgf beta signaling by endogenous retinoic acid is essential for primary lung bud induction. Development 2007; 134 (16) 2969-2979
  • 45 Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 1997; 124 (23) 4867-4878
  • 46 Malpel S, Mendelsohn C, Cardoso WV. Regulation of retinoic acid signaling during lung morphogenesis. Development 2000; 127 (14) 3057-3067
  • 47 Wongtrakool C, Malpel S, Gorenstein J , et al. Down-regulation of retinoic acid receptor alpha signaling is required for sacculation and type I cell formation in the developing lung. J Biol Chem 2003; 278 (47) 46911-46918
  • 48 Cardoso WV, Lü J. Regulation of early lung morphogenesis: questions, facts and controversies. Development 2006; 133 (9) 1611-1624
  • 49 Shannon JM, Hyatt BA. Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol 2004; 66: 625-645
  • 50 Morrisey EE, Hogan BL. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 2010; 18 (1) 8-23
  • 51 Rottier R, Tibboel D. Fetal lung and diaphragm development in congenital diaphragmatic hernia. Semin Perinatol 2005; 29 (2) 86-93
  • 52 Areechon W, Eid L. Hypoplasia of lung with congenital diaphragmatic hernia. BMJ 1963; 1 (5325) 230-233
  • 53 George DK, Cooney TP, Chiu BK, Thurlbeck WM. Hypoplasia and immaturity of the terminal lung unit (acinus) in congenital diaphragmatic hernia. Am Rev Respir Dis 1987; 136 (4) 947-950
  • 54 Kitagawa M, Hislop A, Boyden EA, Reid L. Lung hypoplasia in congenital diaphragmatic hernia. A quantitative study of airway, artery, and alveolar development. Br J Surg 1971; 58 (5) 342-346
  • 55 Deimling J, Thompson K, Tseu I , et al. Mesenchymal maintenance of distal epithelial cell phenotype during late fetal lung development. Am J Physiol Lung Cell Mol Physiol 2007; 292 (3) L725-L741
  • 56 Shannon JM. Induction of alveolar type II cell differentiation in fetal tracheal epithelium by grafted distal lung mesenchyme. Dev Biol 1994; 166 (2) 600-614
  • 57 van Loenhout RB, Tseu I, Fox EK , et al. The pulmonary mesenchymal tissue layer is defective in an in vitro recombinant model of nitrofen-induced lung hypoplasia. Am J Pathol 2012; 180 (1) 48-60
  • 58 Babiuk RP, Greer JJ. Diaphragm defects occur in a CDH hernia model independently of myogenesis and lung formation. Am J Physiol Lung Cell Mol Physiol 2002; 283 (6) L1310-L1314
  • 59 Warburton D, El-Hashash A, Carraro G , et al. Lung organogenesis. Curr Top Dev Biol 2010; 90: 73-158
  • 60 Andrew DJ, Ewald AJ. Morphogenesis of epithelial tubes: insights into tube formation, elongation, and elaboration. Dev Biol 2010; 341 (1) 34-55
  • 61 Chuang PT, McMahon AP. Branching morphogenesis of the lung: new molecular insights into an old problem. Trends Cell Biol 2003; 13 (2) 86-91
  • 62 Goldin GV, Wessells NK. Mammalian lung development: the possible role of cell proliferation in the formation of supernumerary tracheal buds and in branching morphogenesis. J Exp Zool 1979; 208 (3) 337-346
  • 63 Mollard R, Dziadek M. A correlation between epithelial proliferation rates, basement membrane component localization patterns, and morphogenetic potential in the embryonic mouse lung. Am J Respir Cell Mol Biol 1998; 19 (1) 71-82
  • 64 Del Riccio V, van Tuyl M, Post M. Apoptosis in lung development and neonatal lung injury. Pediatr Res 2004; 55 (2) 183-189
  • 65 Kresch MJ, Christian C, Wu F, Hussain N. Ontogeny of apoptosis during lung development. Pediatr Res 1998; 43 (3) 426-431
  • 66 Scavo LM, Ertsey R, Chapin CJ, Allen L, Kitterman JA. Apoptosis in the development of rat and human fetal lungs. Am J Respir Cell Mol Biol 1998; 18 (1) 21-31
  • 67 Wongtrakool C, Roman J. Apoptosis of mesenchymal cells during the pseudoglandular stage of lung development affects branching morphogenesis. Exp Lung Res 2008; 34 (8) 481-499
  • 68 Clugston RD, Klattig J, Englert C , et al. Teratogen-induced, dietary and genetic models of congenital diaphragmatic hernia share a common mechanism of pathogenesis. Am J Pathol 2006; 169 (5) 1541-1549
  • 69 Clugston RD, Zhang W, Greer JJ. Gene expression in the developing diaphragm: significance for congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2008; 294 (4) L665-L675
  • 70 Henson PM, Tuder RM. Apoptosis in the lung: induction, clearance and detection. Am J Physiol Lung Cell Mol Physiol 2008; 294 (4) L601-L611
  • 71 Moya FR, Thomas VL, Romaguera J , et al. Fetal lung maturation in congenital diaphragmatic hernia. Am J Obstet Gynecol 1995; 173 (5) 1401-1405
  • 72 Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 2006; 99 (7) 675-691
  • 73 Stenmark KR, Orton EC, Reeves JT , et al. Vascular remodeling in neonatal pulmonary hypertension. Role of the smooth muscle cell. Chest 1988; 93 (3, Suppl) 127S-133S
  • 74 Meyrick B, Reid L. Hypoxia-induced structural changes in the media and adventitia of the rat hilar pulmonary artery and their regression. Am J Pathol 1980; 100 (1) 151-178
  • 75 Murphy JD, Rabinovitch M, Goldstein JD, Reid LM. The structural basis of persistent pulmonary hypertension of the newborn infant. J Pediatr 1981; 98 (6) 962-967
  • 76 Asabe K, Tsuji K, Handa N, Kurosaka N, Kajiwara M. Immunohistochemical distribution of surfactant apoprotein-A in congenital diaphragmatic hernia. J Pediatr Surg 1997; 32 (5) 667-672
  • 77 Parera MC, van Dooren M, van Kempen M , et al. Distal angiogenesis: a new concept for lung vascular morphogenesis. Am J Physiol Lung Cell Mol Physiol 2005; 288 (1) L141-L149
  • 78 deMello DE, Sawyer D, Galvin N, Reid LM. Early fetal development of lung vasculature. Am J Respir Cell Mol Biol 1997; 16 (5) 568-581
  • 79 deMello DE, Reid LM. Embryonic and early fetal development of human lung vasculature and its functional implications. Pediatr Dev Pathol 2000; 3 (5) 439-449
  • 80 Galambos C, deMello DE. Molecular mechanisms of pulmonary vascular development. Pediatr Dev Pathol 2007; 10 (1) 1-17
  • 81 Schwarz MA, Caldwell L, Cafasso D, Zheng H. Emerging pulmonary vasculature lacks fate specification. Am J Physiol Lung Cell Mol Physiol 2009; 296 (1) L71-L81
  • 82 Schwarz MA, Zhang F, Gebb S, Starnes V, Warburton D. Endothelial monocyte activating polypeptide II inhibits lung neovascularization and airway epithelial morphogenesis. Mech Dev 2000; 95 (1–2) 123-132
  • 83 van Tuyl M, Liu J, Wang J, Kuliszewski M, Tibboel D, Post M. Role of oxygen and vascular development in epithelial branching morphogenesis of the developing mouse lung. Am J Physiol Lung Cell Mol Physiol 2005; 288 (1) L167-L178
  • 84 van Tuyl M, Groenman F, Wang J , et al. Angiogenic factors stimulate tubular branching morphogenesis of sonic hedgehog-deficient lungs. Dev Biol 2007; 303 (2) 514-526
  • 85 Volckaert T, Dill E, Campbell A , et al. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J Clin Invest 2011; 121 (11) 4409-4419
  • 86 Lazarus A, Del-Moral PM, Ilovich O, Mishani E, Warburton D, Keshet E. A perfusion-independent role of blood vessels in determining branching stereotypy of lung airways. Development 2011; 138 (11) 2359-2368
  • 87 Hall SM, Hislop AA, Pierce CM, Haworth SG. Prenatal origins of human intrapulmonary arteries: formation and smooth muscle maturation. Am J Respir Cell Mol Biol 2000; 23 (2) 194-203
  • 88 Hall SM, Hislop AA, Haworth SG. Origin, differentiation, and maturation of human pulmonary veins. Am J Respir Cell Mol Biol 2002; 26 (3) 333-340
  • 89 Que J, Wilm B, Hasegawa H, Wang F, Bader D, Hogan BL. Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci U S A 2008; 105 (43) 16626-16630
  • 90 Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 1999; 126 (14) 3047-3055
  • 91 Lindahl P, Johansson BR, Levéen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997; 277 (5323) 242-245
  • 92 Hirschi KK, Rohovsky SA, D'Amore PA. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 1998; 141 (3) 805-814
  • 93 Hirschi KK, Rohovsky SA, Beck LH, Smith SR, D'Amore PA. Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 1999; 84 (3) 298-305
  • 94 Stenmark KR, Abman SH. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol 2005; 67: 623-661
  • 95 von Tell D, Armulik A, Betsholtz C. Pericytes and vascular stability. Exp Cell Res 2006; 312 (5) 623-629
  • 96 Gaengel K, Genové G, Armulik A, Betsholtz C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 2009; 29 (5) 630-638
  • 97 Ribatti D, Nico B, Crivellato E. Morphological and molecular aspects of physiological vascular morphogenesis. Angiogenesis 2009; 12 (2) 101-111
  • 98 Rossant J, Howard L. Signaling pathways in vascular development. Annu Rev Cell Dev Biol 2002; 18: 541-573
  • 99 Jain RK. Molecular regulation of vessel maturation. Nat Med 2003; 9 (6) 685-693
  • 100 Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res 2005; 97 (6) 512-523
  • 101 Sims DE. Diversity within pericytes. Clin Exp Pharmacol Physiol 2000; 27 (10) 842-846
  • 102 Nehls V, Drenckhahn D. The versatility of microvascular pericytes: from mesenchyme to smooth muscle?. Histochemistry 1993; 99 (1) 1-12
  • 103 Schlingemann RO, Rietveld FJ, Kwaspen F, van de Kerkhof PC, de Waal RM, Ruiter DJ. Differential expression of markers for endothelial cells, pericytes, and basal lamina in the microvasculature of tumors and granulation tissue. Am J Pathol 1991; 138 (6) 1335-1347
  • 104 Miano JM, Vlasic N, Tota RR, Stemerman MB. Smooth muscle cell immediate-early gene and growth factor activation follows vascular injury. A putative in vivo mechanism for autocrine growth. Arterioscler Thromb 1993; 13 (2) 211-219
  • 105 Pease DCWJ, Paule WJ. Electron microscopy of elastic arteries; the thoracic aorta of the rat. J Ultrastruct Res 1960; 3: 469-483
  • 106 Gerrity RG, Cliff WJ. The aortic tunica media of the developing rat. I. Quantitative stereologic and biochemical analysis. Lab Invest 1975; 32 (5) 585-600
  • 107 Chamley-Campbell J, Campbell GR, Ross R. The smooth muscle cell in culture. Physiol Rev 1979; 59 (1) 1-61
  • 108 Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 1995; 75 (3) 487-517
  • 109 Clowes AW, Clowes MM, Kocher O, Ropraz P, Chaponnier C, Gabbiani G. Arterial smooth muscle cells in vivo: relationship between actin isoform expression and mitogenesis and their modulation by heparin. J Cell Biol 1988; 107 (5) 1939-1945
  • 110 Kocher O, Gabbiani F, Gabbiani G , et al. Phenotypic features of smooth muscle cells during the evolution of experimental carotid artery intimal thickening. Biochemical and morphologic studies. Lab Invest 1991; 65 (4) 459-470
  • 111 Glukhova MA, Kabakov AE, Frid MG , et al. Modulation of human aorta smooth muscle cell phenotype: a study of muscle-specific variants of vinculin, caldesmon, and actin expression. Proc Natl Acad Sci U S A 1988; 85 (24) 9542-9546
  • 112 Frid MG, Moiseeva EP, Stenmark KR. Multiple phenotypically distinct smooth muscle cell populations exist in the adult and developing bovine pulmonary arterial media in vivo. Circ Res 1994; 75 (4) 669-681
  • 113 Frid MG, Aldashev AA, Dempsey EC, Stenmark KR. Smooth muscle cells isolated from discrete compartments of the mature vascular media exhibit unique phenotypes and distinct growth capabilities. Circ Res 1997; 81 (6) 940-952
  • 114 Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 2007; 15 (3) 100-108
  • 115 Glukhova MA, Frid MG, Koteliansky VE. Phenotypic changes of human aortic smooth muscle cells during development and in the adult vessel. Am J Physiol 1991; 261 (4, Suppl) 78-80
  • 116 Wohrley JD, Frid MG, Moiseeva EP, Orton EC, Belknap JK, Stenmark KR. Hypoxia selectively induces proliferation in a specific subpopulation of smooth muscle cells in the bovine neonatal pulmonary arterial media. J Clin Invest 1995; 96 (1) 273-281
  • 117 Mitani Y, Ueda M, Komatsu R , et al. Vascular smooth muscle cell phenotypes in primary pulmonary hypertension. Eur Respir J 2001; 17 (2) 316-320
  • 118 Shehata SM, Tibboel D, Sharma HS, Mooi WJ. Impaired structural remodelling of pulmonary arteries in newborns with congenital diaphragmatic hernia: a histological study of 29 cases. J Pathol 1999; 189 (1) 112-118
  • 119 Taira Y, Yamataka T, Miyazaki E, Puri P. Comparison of the pulmonary vasculature in newborns and stillborns with congenital diaphragmatic hernia. Pediatr Surg Int 1998; 14 (1–2) 30-35
  • 120 Shehata SM, Sharma HS, van der Staak FH, van de Kaa-Hulsbergen C, Mooi WJ, Tibboel D. Remodeling of pulmonary arteries in human congenital diaphragmatic hernia with or without extracorporeal membrane oxygenation. J Pediatr Surg 2000; 35 (2) 208-215
  • 121 Arkovitz MS, Hyatt BA, Shannon JM. Lung development is not necessary for diaphragm development in mice. J Pediatr Surg 2005; 40 (9) 1390-1394
  • 122 Chou AK, Huang SC, Chen SJ , et al. Unilateral lung agenesis—detrimental roles of surrounding vessels. Pediatr Pulmonol 2007; 42 (3) 242-248
  • 123 Li Y, Zhang H, Choi SC, Litingtung Y, Chiang C. Sonic hedgehog signaling regulates Gli3 processing, mesenchymal proliferation, and differentiation during mouse lung organogenesis. Dev Biol 2004; 270 (1) 214-231
  • 124 Clugston RD, Zhang W, Greer JJ. Early development of the primordial mammalian diaphragm and cellular mechanisms of nitrofen-induced congenital diaphragmatic hernia. Birth Defects Res A Clin Mol Teratol 2010; 88 (1) 15-24