Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Stem cell dynamics, migration and plasticity during wound healing

Abstract

Tissue repair is critical for animal survival. The skin epidermis is particularly exposed to injuries, which necessitates rapid repair. The coordinated action of distinct epidermal stem cells recruited from various skin regions together with other cell types, including fibroblasts and immune cells, is required to ensure efficient and harmonious wound healing. A complex crosstalk ensures the activation, migration and plasticity of these cells during tissue repair.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of skin homeostasis and wound-healing phases.
Fig. 2: Skin epithelial stem cell populations during homeostasis and repair.
Fig. 3: Epidermal migration, proliferation and compartmentalization during wound healing.

Similar content being viewed by others

References

  1. Blanpain, C. & Fuchs, E. Epidermal stem cells of the skin. Annu. Rev. Cell Dev. Biol. 22, 339–373 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hsu, Y. C., Li, L. & Fuchs, E. Emerging interactions between skin stem cells and their niches. Nat. Med. 20, 847–856 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lynch, M. D. & Watt, F. M. Fibroblast heterogeneity: implications for human disease. J. Clin. Invest. 128, 26–35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Driskell, R. R., Jahoda, C. A., Chuong, C. M., Watt, F. M. & Horsley, V. Defining dermal adipose tissue. Exp. Dermatol. 23, 629–631 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sun, B. K., Siprashvili, Z. & Khavari, P. A. Advances in skin grafting and treatment of cutaneous wounds. Science 346, 941–945 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, X. et al. Principles and mechanisms of regeneration in the mouse model for wound-induced hair follicle neogenesis. Regeneration (Oxf.) 2, 169–181 (2015).

    Article  CAS  Google Scholar 

  8. Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Aragona, M. et al. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat. Commun. 8, 14684 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Park, S. et al. Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice. Nat. Cell Biol. 19, 155–163 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ge, Y. et al. Stem cell lineage infidelity drives wound repair and cancer. Cell 169, 636–650.e14 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blanpain, C. & Fuchs, E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 10, 207–217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Belokhvostova, D. et al. Homeostasis, regeneration and tumour formation in the mammalian epidermis. Int. J. Dev. Biol. 62, 571–582 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gonzales, K. A. U. & Fuchs, E. Skin and its regenerative powers: an alliance between stem cells and their niche. Dev. Cell 43, 387–401 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Kretzschmar, K. & Watt, F. M. Markers of epidermal stem cell subpopulations in adult mammalian skin. Cold Spring Harb. Perspect. Med. 4, a013631 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rochat, A., Kobayashi, K. & Barrandon, Y. Location of stem cells of human hair follicles by clonal analysis. Cell 76, 1063–1073 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Braun, K. M. et al. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130, 5241–5255 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T. & Lavker, R. M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451–461 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Trempus, C. S. et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J. Invest. Dermatol. 120, 501–511 (2003).

    CAS  PubMed  Google Scholar 

  24. Claudinot, S., Nicolas, M., Oshima, H., Rochat, A. & Barrandon, Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc. Natl Acad. Sci. USA 102, 14677–14682 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Lyle, S. et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell Sci. 111, 3179–3188 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Y., Lyle, S., Yang, Z. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol. 121, 963–968 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Youssef, K. K. et al. Identification of the cell lineage at the origin of basal cell carcinoma. Nat. Cell Biol. 12, 299–305 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet. 40, 1291–1299 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Vidal, V. P. et al. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr. Biol. 15, 1340–1351 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Nowak, J. A., Polak, L., Pasolli, H. A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33–43 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Howard, J. M., Nuguid, J. M., Ngole, D. & Nguyen, H. Tcf3 expression marks both stem and progenitor cells in multiple epithelia. Development 141, 3143–3152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11, 1351–1354 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Levy, V., Lindon, C., Harfe, B. D. & Morgan, B. A. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev. Cell 9, 855–861 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Potten, C. S. Epidermal cell production rates. J. Invest. Dermatol. 65, 488–500 (1975).

    Article  CAS  PubMed  Google Scholar 

  37. Potten, C. S. The epidermal proliferative unit: the possible role of the central basal cell. Cell Tissue Kinet. 7, 77–88 (1974).

    CAS  PubMed  Google Scholar 

  38. Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Ro, S. & Rannala, B. A stop-EGFP transgenic mouse to detect clonal cell lineages generated by mutation. EMBO Rep. 5, 914–920 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roy, E. et al. Bimodal behaviour of interfollicular epidermal progenitors regulated by hair follicle position and cycling. EMBO J. 35, 2658–2670 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lim, X. et al. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science 342, 1226–1230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Doupe, D. P., Klein, A. M., Simons, B. D. & Jones, P. H. The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. Dev. Cell 18, 317–323 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Rompolas, P. et al. Spatiotemporal coordination of stem cell commitment during epidermal homeostasis. Science 352, 1471–1474 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mascre, G. et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489, 257–262 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Sanchez-Danes, A. et al. Defining the clonal dynamics leading to mouse skin tumour initiation. Nature 536, 298–303 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jones, P. H. & Watt, F. M. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73, 713–724 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Horsley, V. et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126, 597–609 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Snippert, H. J. et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385–1389 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Jensen, K. B. et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4, 427–439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Donati, G., Rognoni, E., Hiratsuka, T., Liakath-Ali, K. & Hoste, E. Wounding induces dedifferentiation of epidermal Gata6+ cells and acquisition of stem cell properties. Nat. Cell Biol. 19, 603–613 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nijhof, J. G. et al. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133, 3027–3037 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Jensen, U. B. et al. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J. Cell Sci. 121, 609–617 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Fullgrabe, A. et al. Dynamics of Lgr6+ progenitor cells in the hair follicle, sebaceous gland, and interfollicular epidermis. Stem Cell Rep. 5, 843–855 (2015).

    Article  CAS  Google Scholar 

  54. Page, M. E., Lombard, P., Ng, F., Gottgens, B. & Jensen, K. B. The epidermis comprises autonomous compartments maintained by distinct stem cell populations. Cell Stem Cell 13, 471–482 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Batlle, E. et al. β-Catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111, 251–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Jaks, V., Kasper, M. & Toftgard, R. The hair follicle—a stem cell zoo. Exp. Cell Res. 316, 1422–1428 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Levy, V., Lindon, C., Zheng, Y., Harfe, B. D. & Morgan, B. A. Epidermal stem cells arise from the hair follicle after wounding. FASEB J. 21, 1358–1366 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Argyris, T. Kinetics of epidermal production during epidermal regeneration following abrasion in mice. Am. J. Pathol. 83, 329–340 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sada, A., Jacob, F., Leung, E., Wang, S. & White, B. S. Defining the cellular lineage hierarchy in the interfollicular epidermis of adult skin. Nat. Cell Biol. 18, 619–631 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ito, M. & Cotsarelis, G. Is the hair follicle necessary for normal wound healing? J. Invest. Dermatol. 128, 1059–1061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lu, C. P. et al. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150, 136–150 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Coulombe, P. A. Wound epithelialization: accelerating the pace of discovery. J. Invest. Dermatol. 121, 219–230 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Savagner, P. et al. Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J. Cell. Physiol. 202, 858–866 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Haensel, D. & Dai, X. Epithelial-to-mesenchymal transition in cutaneous wound healing: where we are and where we are heading. Dev. Dyn. 247, 473–480 (2018).

    Article  PubMed  Google Scholar 

  65. Blanpain, C. & Simons, B. D. Unravelling stem cell dynamics by lineage tracing. Nat. Rev. Mol. Cell Biol. 14, 489–502 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Doupe, D. P. et al. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science 337, 1091–1093 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Roshan, A. et al. Human keratinocytes have two interconvertible modes of proliferation. Nat. Cell Biol. 18, 145–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Hirsch, T. et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature 551, 327–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Latil, M. et al. Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition. Cell Stem Cell 20, 191–204.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Fu, X., Sun, X., Li, X. & Sheng, Z. Dedifferentiation of epidermal cells to stem cells in vivo. Lancet 358, 1067–1068 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Mannik, J., Alzayady, K. & Ghazizadeh, S. Regeneration of multilineage skin epithelia by differentiated keratinocytes. J. Invest. Dermatol. 130, 388–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Tata, P. R. et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503, 218–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ito, M., Kizawa, K., Hamada, K. & Cotsarelis, G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation 72, 548–557 (2004).

    Article  PubMed  Google Scholar 

  74. Rompolas, P., Mesa, K. R. & Greco, V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van Es, J. H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 14, 1099–1104 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Buczacki, S. J. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Metcalfe, C., Kljavin, N. M., Ybarra, R. & de Sauvage, F. J. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 14, 149–159 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, Y. et al. Reciprocal requirements for EDA/EDAR/NF-κB and Wnt/β-catenin signaling pathways in hair follicle induction. Dev. Cell 17, 49–61 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Andl, T., Reddy, S. T., Gaddapara, T. & Millar, S. E. WNT signals are required for the initiation of hair follicle development. Dev. Cell 2, 643–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Myung, P. S., Takeo, M., Ito, M. & Atit, R. P. Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J. Invest. Dermatol. 133, 31–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Nelson, A. M. et al. Prostaglandin D2 inhibits wound-induced hair follicle neogenesis through the receptor, Gpr44. J. Invest. Dermatol. 133, 881–889 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Nelson, A. M. et al. dsRNA released by tissue damage activates TLR3 to drive skin regeneration. Cell Stem Cell 17, 139–151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hughes, M. W. et al. Msx2 supports epidermal competency during wound-induced hair follicle neogenesis. J. Invest. Dermatol. 138, 2041–2050 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gay, D. et al. Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding. Nat. Med. 19, 916–923 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Plikus, M. V. & Guerrero-Juarez, C. F. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Blanpain, C. & Fuchs, E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science 344, 1242281 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Szpaderska, A. M., Zuckerman, J. D. & DiPietro, L. A. Differential injury responses in oral mucosal and cutaneous wounds. J. Dent. Res. 82, 621–626 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rinkevich, Y. et al. Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 348, aaa2151 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Rognoni, E. et al. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing. Development 143, 2522–2535 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jiang, D. et al. Two succeeding fibroblastic lineages drive dermal development and the transition from regeneration to scarring. Nat. Cell Biol. 20, 422–431 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Rodgers, J. T. et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert. Nature 510, 393–396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Keyes, B. E. et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin. Nat. Cell Biol. 167, 1323–1338.e14 (2016).

    CAS  Google Scholar 

  96. Munz, B. et al. Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair. Eur. J. Immunol. 18, 5205–5215 (1999).

    CAS  Google Scholar 

  97. Haertel, E., Joshi, N., Hiebert, P., Kopf, M. & Werner, S. Regulatory T cells are required for normal and activin-promoted wound repair in mice. Eur. J. Immunol. 48, 1001–1013 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Wankell, M. et al. Impaired wound healing in transgenic mice overexpressing the activin antagonist follistatin in the epidermis. EMBO J. 20, 5361–5372 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bamberger, C. et al. Activin controls skin morphogenesis and wound repair predominantly via stromal cells and in a concentration-dependent manner via keratinocytes. Am. J. Pathol. 167, 733–747 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to all authors whose work could not be cited owing to space constraints. C.B. is an investigator of WELBIO. S.D. is supported by a fellowship of the FNRS/TELEVIE. This work was supported by a consolidator grant of the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Blanpain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekoninck, S., Blanpain, C. Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol 21, 18–24 (2019). https://doi.org/10.1038/s41556-018-0237-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-018-0237-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing