Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of airway epithelial cells and innate immune cells in chronic respiratory disease

Key Points

  • The innate immune system is crucial for host defence but is also implicated in driving inflammatory diseases of the lower respiratory tract, such as asthma and chronic obstructive pulmonary disease (COPD). This mechanism of pathogenesis is distinct from the conventional view that the adaptive immune system is responsible for chronic inflammatory disease.

  • Airway epithelial cells that line the mucosal surface of the lower airways and various immune cell populations (such as natural killer T cells, macrophages and innate lymphoid cells) actively participate in both host defence and disease in the lungs.

  • Airway epithelial cells are equipped with pattern recognition receptors (PRRs) to trigger the innate immune response to microbial pathogens, although the specific subsets of PRRs and the types of airway epithelial cells (for example, ciliated cells, mucous cells, secretory cells and basal cells) that express these receptors still need to be better defined. A key effect of PRR activation is the downstream production of interferons (IFNs) and expression of IFN-stimulated genes, and precisely how this contributes to host defence (particularly against respiratory viruses) is currently under study.

  • Airway epithelial cells are also capable of expansion as a special progenitor or stem cell niche, and this subpopulation of airway progenitor epithelial cells has the capacity for the long-term production of cytokines — for example, interleukin-33 (IL-33) — that can drive type 2 immune responses and consequent airway disease.

  • Innate immune cells can respond to cytokine signals with a type 2 immune response (typified by IL-13 production) that in turn causes remodelling of the airway epithelium to a disease phenotype — for example, mucous cell metaplasia. The precise subsets of innate immune cells that are involved still need to be better defined in humans with chronic airway disease. Similarly, the role of granulocyte populations and the link to non-type 2 cytokine (for example, IL-17) production and consequent airway disease also needs further characterization.

  • New therapeutics aimed at correcting excessive innate immune responses have reached the stage of clinical trials for asthma and COPD. Current trials focus particularly on targeting type 2 cytokines (for example, IL-13) to attenuate chronic airway disease. These approaches are challenged by the need to develop biomarkers that can stratify patients and thereby identify patient subsets that might benefit from specific immunotherapies.

Abstract

An abnormal immune response to environmental agents is generally thought to be responsible for causing chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Based on studies of experimental models and human subjects, there is increasing evidence that the response of the innate immune system is crucial for the development of this type of airway disease. Airway epithelial cells and innate immune cells represent key components of the pathogenesis of chronic airway disease and are emerging targets for new therapies. In this Review, we summarize the innate immune mechanisms by which airway epithelial cells and innate immune cells regulate the development of chronic respiratory diseases. We also explain how these pathways are being targeted in the clinic to treat patients with these diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adaptive and innate immune responses in chronic respiratory disease.
Figure 2: PRR pathways in AECs leading to airway disease.
Figure 3: Innate immune responses of AECs drive airway disease.
Figure 4: Innate immune cells in post-viral airway disease.

Similar content being viewed by others

References

  1. Minino, A. M., Murphy, S. L., Xu, J. & Kochanek, K. D. in National vital statistics reports (Centers for Disease Control and Prevention, 2011).

    Google Scholar 

  2. World Health Organization. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. (eds Bousquet, J. & Khaltaev, N.) (WHO, 2007).

  3. Holtzman, M. J. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens. J. Clin. Invest. 122, 2741–2748 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Galli, S. J. & Tsai, M. IgE and mast cells in allergic disease. Nature Med. 18, 693–704 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Spits, H. & Cupedo, T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 30, 647–675 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Walker, J. A., Barlow, J. L. & McKenzie, A. N. J. Innate lymphoid cells — how did we miss them? Nature Rev. Immunol. 13, 75–87 (2013).

    Article  CAS  Google Scholar 

  7. Van Dyken, S. J. & Locksley, R. M. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu. Rev. Immunol. 31, 317–343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siracusa, M. C., Kim, B. S., Spergel, J. M. & Artis, D. Basophils and allergic inflammation. J. Allergy Clin. Immunol. 132, 789–801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paget, C. & Trottein, F. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol. 6, 1054–1067 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Holt, P. G., Strickland, D. H., Hales, B. J. & Sly, P. D. Defective respiratory tract immune surveillance in asthma. Chest 145, 370–378 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Holtzman, M. J. et al. Importance of airway inflammation for hyperresponsiveness induced by ozone. Am. Rev. Respir. Dis. 127, 686–690 (1983).

    CAS  PubMed  Google Scholar 

  12. Boushey, H. A. & Holtzman, M. J. Experimental airway inflammation and hyperresponsiveness: searching for cells and mediators. Am. Rev. Respir. Dis. 131, 312–313 (1985).

    CAS  PubMed  Google Scholar 

  13. Holtzman, M. J. et al. Control of epithelial immune-response genes and implications for airway immunity and inflammation. Proc. Assoc. Am. Phys. 110, 1–11 (1998).

    CAS  PubMed  Google Scholar 

  14. Holgate, S. T. et al. Epithelial-mesenchymal interactions in the pathogenesis of asthma. J. Allergy Clin. Immunol. 105, 193–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lambrecht, B. & Hammad, H. The airway epithelium in asthma. Nature Med. 18, 684–692 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Byers, D. E. et al. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. J. Clin. Invest. 123, 3967–3982 (2013). This study identifies the role of an APEC population that releases IL-33 to drive IL-13-dependent airway disease in a post-viral mouse model and in patients with very severe COPD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alexander-Brett, J. & Holtzman, M. J. in Mucosal Immunology (eds Cheroutre, H., Kelsall, B., Lambrecht, B. & Russell, M.) (Academic Press, 2014).

    Google Scholar 

  18. Trompette, A. & Karp, C. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457, 585–588 (2009). This study was the first to demonstrate that allergens might use molecular mimicry of TLR ligands to trigger an allergic reaction.

    Article  CAS  PubMed  Google Scholar 

  19. Millien, V. O. et al. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4. Science 341, 792–796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gitlin, L. et al. Melanoma differentiation-associated gene 5 (MDA5) is involved in the innate immune response to Paramyxoviridae infection in vivo. PLoS Pathog. 6, e10000734 (2010).

    Article  CAS  Google Scholar 

  21. Barton, G. M. & Kagan, J. C. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature Rev. Immunol. 9, 535–542 (2009).

    Article  CAS  Google Scholar 

  22. Ioannidis, I., Ye, F., McNally, B., Willette, M. & Flano, E. Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells. J. Virol. 87, 3261–3270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Groskreutz, D. J. et al. Respiratory syncytial virus induces TLR3 protein and protein kinase R, leading to increased double-stranded RNA responsiveness in airway epithelial cells. J. Immunol. 176, 1733–1740 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Hewson, C. A., Jardine, A., Edwards, M. R., Laza-Stanca, V. & Johnston, S. L. Toll-like receptor 3 is induced by and mediates antiviral activity against rhinovirus infection of human bronchial epithelial cells. J. Virol. 79, 12273–12279 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kato, A., Favoreto, S., Avila, P. C. & Schleimer, R. P. TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J. Immunol. 179, 1080–1087 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guillot, L. et al. Involvement of Toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J. Biol. Chem. 280, 5571–5580 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Triantafilou, K. et al. Human rhinovirus recognition in non-immune cells is mediated by Toll-like receptors and MDA-5, which trigger a synergetic pro-inflammatory immune response. Virulence 2, 22–29 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang, T. et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature Med. 10, 1366–1373 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Le Goffic, R. et al. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2, e53 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Gowen, B. B. et al. TLR3 deletion limits mortality and disease severity due to Phlebovirus infection. J. Immunol. 177, 6301–6307 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Hutchens, M. et al. TLR3 increases disease morbidity and mortality from vaccinia infection. J. Immunol. 180, 483–491 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rudd, B. D. et al. Deletion of TLR3 alters the pulmonary immune environment and mucus production during respiratory syncytial virus infection. J. Immunol. 176, 1937–1942 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Q. et al. MDA5 and TLR3 initiate pro-inflammatory signaling pathways leading to rhinovirus-induced airways inflammation and hyperresponsiveness. PLoS Pathog. 7, e1002070 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lukacs, N. W. et al. Respiratory virus-induced TLR7 activation controls IL-17-associated increased mucus via IL-23 regulation. J. Immunol. 185, 2231–2239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bezemer, G. F. G. et al. Dual role of Toll-like receptors in asthma and chronic obstructive pulmonary disease. Pharmacol. Rev. 64, 337–358 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunol. 5, 730–737 (2004).

    Article  CAS  Google Scholar 

  40. Gitlin, L. et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl Acad. Sci. USA 103, 8459–8464 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122, 669–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Xu, L. G. et al. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19, 727–740 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Ichinohe, T., Lee, H. K., Ogura, Y., Flavell, R. A. & Iwasaki, A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 206, 79–87 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thomas, P. G. et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30, 566–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lamkanfi, M. & Dixit, V. M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol. 28, 137–161 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Muruve, D. A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innnate immune response. Nature 452, 103–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Allen, I. C. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Allen, I. C. et al. Analysis of NLRP3 in the development of allergic airway disease in mice. J. Immunol. 188, 2884–2893 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iversen, M. B. & Paludan, S. R. Mechanisms of type III interferon expression. J. Interferon Cytokine Res. 30, 573–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Osterlund, P. I., Pietila, T. E., Veckman, V., Kotenko, S. V. & Julkunen, I. IFN regulatory factor family members differentially regulate the expression of type III IFN (IFN-λ) genes. J. Immunol. 179, 3434–3442 (2007).

    Article  PubMed  Google Scholar 

  54. Sommereyns, C., Paul, S., Staeheli, P. & Michiels, T. IFN-lambda (IFN-λ) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog. 4, e1000017 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ioannidis, I. et al. Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection. J. Virol. 86, 5422–5436 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Okabayashi, T. et al. Type-III interferon, not type-I, is the predominant interferon induced by respiratory viruses in nasal epithelial cells. Virus Res. 160, 360–366 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Shornick, L. P. et al. Airway epithelial versus immune cell Stat1 function for innate defense against respiratory viral infection. J. Immunol. 180, 3319–3328 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Wark, P. A. et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J. Exp. Med. 201, 937–947 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Contoli, M. et al. Role of deficient type III interferon-λ production in asthma exacerbations. Nature Med. 12, 1023–1026 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Edwards, M. R. et al. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol. 6, 797–806 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Djukanovic, R. et al. The effect of inhaled interferon-β on worsening of asthma symptoms caused by viral infections: a randomized trial. Am. J. Respir. Crit. Care Med. 190, 145–154 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cakebread, J. A. et al. Exogenous IFN-β has antiviral and anti-inflammatory properties in primary bronchial epithelial cells from asthmatic subjects exposed to rhinovirus. J. Allergy Clin. Immunol. 127, 1148–1154 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Harada, M. et al. Functional polymorphism in the suppressor of cytokine signaling 1 gene associated with adult asthma. Am. J. Respir. Cell. Mol. Biol. 36, 491–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Torgerson, D. G. et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nature Genet. 43, 887–893 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Zheng, S. et al. Impaired innate host defense causes susceptibility to respiratory virus infections in cystic fibrosis. Immunity 18, 619–630 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Schneider, D. et al. Increased cytokine resonse of rhinovirus-infected airway epithelial cells in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 182, 332–340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mallia, P. et al. Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation. Am. J. Respir. Crit. Care Med. 183, 734–742 (2011).

    Article  PubMed  Google Scholar 

  68. Bochkov, Y. A. et al. Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol. 3, 69–80 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Lopez-Souza, N. et al. In vitro susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects. J. Allergy Clin. Immunol. 123, 1384–1390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. DeMore, J. P. et al. Similar colds in subjects with allergic asthma and nonatopic subjects after inoculation with rhinovirus-16. J. Allergy Clin. Immunol. 124, 245–252 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Message, S. D. et al. Rhinovirus-induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL-10 production. Proc. Natl Acad. Sci. USA 105, 13562–13567 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Sampath, D., Castro, M., Look, D. C. & Holtzman, M. J. Constitutive activation of an epithelial signal transducer and activator of transcription (Stat1) pathway in asthma. J. Clin. Invest. 103, 1353–1361 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bullens, D. M. et al. Type III IFN-λ mRNA expression in sputum of adult and school-aged asthmatics. Clin. Exp. Allergy 38, 1459–1467 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Jakiela, B. et al. Th2-type cytokine induced mucous metaplasia decreases susceptibility of human bronchial epithelium to rhinovirus infection. Am. J. Respir. Cell. Mol. Biol. 51, 229–241 (2014).

    PubMed  Google Scholar 

  75. Patel, D. A. et al. Interferon response and respiratory virus control are preserved in bronchial epithelial cells in asthma. J. Allergy Clin. Immunol. http://dx.doi.org/10.1016/j.jaci.2014.07.013 (2014).

  76. Zhang, Y. et al. Modification of the Stat1 SH2 domain broadly improves interferon efficacy in proportion to p300/CREB-binding protein coactivator recruitment. J. Biol. Chem. 280, 34306–34315 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Patel, D. A., Patel, A. C., Nolan, W. C., Zhang, Y. & Holtzman, M. J. High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery. PLoS ONE 7, e36594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Patel, D. A. et al. High-throughput screening normalized to biological response: application to antiviral drug discovery. J. Biomol. Screen. 19, 119–130 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Ibricevic, A. et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J. Virol. 80, 7469–7480 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lachowicz-Scroggins, M. E., Boushey, H. A., Finkbeiner, W. E. & Widdicombe, J. H. Interleukin-13 induced mucous metaplasia increases susceptibility of human airway epithelium to rhinovirus infection. Am. J. Respir. Cell. Mol. Biol. 43, 652–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gu, B. et al. Volatile sensing functions for pulmonary neuroendocrine cells. Am. J. Respir. Cell. Mol. Biol. 50, 637–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Walter, M. J., Morton, J. D., Kajiwara, N., Agapov, E. & Holtzman, M. J. Viral induction of a chronic asthma phenotype and genetic segregation from the acute response. J. Clin. Invest. 110, 165–175 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim, E. Y. et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic inflammatory lung disease. Nature Med. 14, 633–640 (2008). This study identifies the iNKT cell–macrophage axis that drives chronic lung disease and is characterized by IL-13 production, alternative M2 macrophage activation, airway hyperreactivity and excessive mucus production.

    Article  CAS  PubMed  Google Scholar 

  84. Rawlins, E. L. et al. The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 4, 525–534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Evans, C. M. et al. Mucin is produced by Clara cells in the proximal airway of antigen-challenged mice. Am. J. Respir. Cell. Mol. Biol. 31, 382–394 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Patel, A. C. et al. Genetic segregation of airway disease traits despite redundancy of chloride channel calcium-activated family members. Physiol. Genom. 25, 502–513 (2006).

    Article  CAS  Google Scholar 

  88. Alevy, Y. et al. IL-13-induced airway mucus production is attenuated by MAPK13 inhibition. J. Clin. Invest. 122, 4555–4568 (2012). This study identifies the IL-13–CLCA1–MAPK13 signalling pathway to excessive mucus production in AECs and provides structure-based drug design for MAPK13 inhibitors that attenuate inflammatory mucus production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lefrancais, E. et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc. Natl Acad. Sci. USA 109, 1673–1678 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Moffat, M. F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Eng. J. Med. 363, 1211–1221 (2010).

    Article  Google Scholar 

  91. Kouzaki, H., Iijima, K., Kobayashi, T., O'Grady, S. M. & Kita, H. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J. Immunol. 186, 4375–4387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Willart, M. A. et al. Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. J. Exp. Med. 209, 1505–1517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lommatzsch, M. et al. Extracellular adenosine triphosphate and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 181, 928–934 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Gauvreau, G. M. et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N. Engl. J. Med. 370, 2102–2110 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Teisanu, R. M. et al. Functional analysis of two distinct bronchiolar progenitors during lung injury and repair. Am. J. Respir. Cell. Mol. Biol. 44, 794–803 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Chapman, H. A. et al. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. J. Clin. Invest. 121, 2855–2862 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McQualter, J. L., Yuen, K., Williams, B. & Bertoncello, I. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc. Natl Acad. Sci. USA 107, 1414–1419 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Kajstura, J. et al. Evidence for human lung stem cells. N. Engl. J. Med. 364, 1795–1806 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kumar, P. A. et al. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell 147, 525–538 (2011). This study demonstrates that a lung progenitor cell population expands in the setting of influenza virus infection and might participate in alveolar repair.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Papadopoulos, N. G. et al. Viruses and bacteria in acute asthma exacerbations–a GA2LEN-DARE systematic review. Allergy 66, 458–468 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Kuyper, L. M. et al. Characterization of airway plugging in fatal asthma. Am. J. Med. 115, 6–11 (2003).

    Article  PubMed  Google Scholar 

  102. Hogg, J. C. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Eng. J. Med. 350, 2645–2653 (2004).

    Article  CAS  Google Scholar 

  103. Yurtsever, Z. et al. Self-cleavage of human CLCA1 by a novel internal metalloprotease domain controls calcium-activated chloride channel activation. J. Biol. Chem. 287, 42138–42149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lisbonne, M. et al. Cutting edge: invariant Vα14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model. J. Immunol. 171, 1637–1641 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Akbari, O. et al. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyper-reactivity. Nature Med. 9, 582–588 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Sen, Y. et al. Vα24-invariant NKT cells from patients with allergic asthma express CCR9 at high frequency and induce Th2 bias of CD3+ T cells upon CD226 engagement. J. Immunol. 175, 4914–4926 (2005).

    Article  PubMed  Google Scholar 

  107. Akbari, O. et al. CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. New. Engl. J. Med. 354, 1117–1129 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Das, J. et al. Natural killer T cells and CD8+ T cells are dispensable for T cell-dependent allergic airway inflammation. Nature Med. 12, 1345–1346 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Vijayanand, P. et al. Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. New. Engl. J. Med. 356, 1410–1422 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Reynolds, C. et al. Natural killer T cells in bronchial biopsies from human allergen challenge model of allergic asthma. J. Allergy Clin. Immunol. 124, 860–862 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Matangkasombut, P. et al. Natural killer T cells in the lungs of patients with asthma. J. Allergy Clin. Immunol. 123, 1181–1185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brennan, P. J., Brigl, M. & Brenner, M. B. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nature Rev. Immunol. 13, 101–117 (2013).

    Article  CAS  Google Scholar 

  113. Albacker, L. A. et al. Invariant natural killer T cells recognize a fungal glycophingolipid that can induce airway hyperreactivity. Nature Med. 19, 1297–1304 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Parsons, M. W. et al. Dectin-2 regulates the effector phase of house dust mite-elicited pulmonary inflammation independently from its role in sensitization. J. Immunol. 192, 1361–1371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gordon, S. & Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Byers, D. E. & Holtzman, M. J. Alternatively activated macrophages as cause or effect in asthma. Am. J. Respir. Cell. Mol. Biol. 43, 1–4 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Agapov, E. et al. Macrophage chitinase 1 stratifies chronic obstructive lung disease. Am. J. Respir. Cell. Mol. Biol. 41, 379–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kaku, Y. et al. Overexpression of CD163, CD204, and CD206 on alveolar macrophages in the lungs of patients with severe chronic obstructive pulmonary disease. PLoS ONE 9, e87400 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chaudhuri, R. et al. Sputum matrix metallo-proteinase-12 in patients with chronic obstructive pulmonary disease and asthma: relationship to disease severity. J. Allergy Clin. Immunol. 129, 655–663 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Spits, H. et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nature Rev. Immunol. 13, 145–149 (2013). This consensus statement provides an approach to categorize ILC1s, ILC2s and ILC3s on the basis of their patterns of receptor expression, cytokine production and pathways for development from a common progenitor cell.

    Article  CAS  Google Scholar 

  121. Constantinides, M. G., McDonald, B. D., Verhoef, P. A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Saenz, S. A. et al. IL-25 elicits a multi-potent progenitor cell population that promotes Th2 cytokine responses. Nature 464, 1362–1366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+ Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Fallon, P. G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth explusion. J. Exp. Med. 203, 1105–1116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Byers, D. E. et al. A distinct population of non-B, non-T (NBNT) cells express high levels of IL-13 during acute and chronic airway disease after viral infection. Am. J. Respir. Crit. Care Med. 179, A4293 (2009).

    Google Scholar 

  128. Barlow, J. L. et al. IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction. J. Allergy Clin. Immunol. 132, 933–941 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunol. 12, 1045–1054 (2011).

    Article  CAS  Google Scholar 

  130. Barlow, J. L. et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J. Allergy Clin. Immunol. 129, 191–198 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Bartemes, K. R. et al. IL-33–responsive lineage-CD25+ CD44hi lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J. Immunol. 188, 1503–1513 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Chang, Y. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nature Immunol. 12, 631–638 (2011).

    Article  CAS  Google Scholar 

  133. Mjosberg, J. M. et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nature Immunol. 12, 1055–1162 (2011). This study represents one of the initial efforts to examine ILC2s across several mucosal barriers in humans.

    Article  CAS  Google Scholar 

  134. Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Barnig, C. et al. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci. Transl. Med. 5, 174ra26 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Gregoire, C. et al. The trafficking of natural killer cells. Immunol. Rev. 220, 169–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Jayaraman, A. et al. IL-15 complexes induce NK- and T-cell responses independent of type I IFN signaling during rhinovirus infection. Mucosal Immunol. 7, 1151–1164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fahradi, N. et al. Natural killer cell NKG2D and granzyme B are critical for allergic pulmonary inflammation. J. Allergy Clin. Immunol. 133, 827–835 (2013).

    Article  CAS  Google Scholar 

  139. Kim, H. Y. et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nature Med. 20, 54–61 (2014). This study suggests that IL-17-producing ILC3s may contribute to the pathogenesis of obesity-related asthma.

    Article  CAS  PubMed  Google Scholar 

  140. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hams, E., Locksley, R. M., McKenzie, A. N. & Fallon, P. G. IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J. Immunol. 191, 5349–5353 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Spencer, S. P. et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343, 432–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Neves, J. S. & Weller, P. F. Functional extracellular eosinophil granules: novel implications in eosinophil immunobiology. Curr. Opin. Immunol. 21, 694–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Woodruff, P. G. et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc. Natl Acad. Sci. USA 104, 15858–15863 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Corren, J. et al. Lebrikizumab treatment in adults with asthma. New. Engl. J. Med. 365, 1088–1098 (2011). This study identifies serum periostin as a useful biomarker for patients who might respond to treatment with the IL-13-specific monoclonal antibody lebrikizumab.

    Article  CAS  PubMed  Google Scholar 

  146. Corren, J. Anti-interleukin-5 antibody therapy in asthma and allergies. Curr. Opin. Allergy Clin. Immunol. 11, 565–570 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Kitaguchi, Y., Komatsu, Y., Fujimoto, K., Hanaoka, M. & Kubo, K. Sputum eosinophilia can predict responsiveness to inhaled corticosteroid treatment in patients with overlap syndrome of COPD and asthma. Int. J. Chron. Obstruct. Pulmon. Dis. 7, 283–289 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Bafadhel, M. et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am. J. Respir. Crit. Care Med. 186, 48–55 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bouffi, C. et al. IL-33 markedly activates murine eosinophils by an NF-κB-dependent mechanism differentially dependent upon an IL-4–driven autoinflammatory loop. J. Immunol. 191, 4317–4325 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Balzar, S. et al. Mast cell phenotype, location, and activation in severe asthma. Data from the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 183, 299–309 (2011).

    Article  PubMed  Google Scholar 

  151. Ballarin, A. et al. Mast cell infiltration discriminates between histopathological phenotypes of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 186, 233–239 (2012).

    Article  PubMed  Google Scholar 

  152. Kawakami, T. & Galli, S. J. Regulation of mast-cell and basophil function and survival by IgE. Nature Rev. Immunol. 2, 773–786 (2002).

    Article  CAS  Google Scholar 

  153. Ho, L. H. et al. IL-33 induces IL-13 production by mouse mast cells independently of IgE-FcɛRI signals. J. Leukoc. Biol. 82, 1481–1490 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Hoenderdos, K. & Condliffe, A. The neutrophil in chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 48, 531–539 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. O'Byrne, P. M. et al. Neutrophil depletion inhibits airway hyperresponsiveness induced by ozone exposure. Am. Rev. Respir. Dis. 130, 214–219 (1984).

    Article  CAS  PubMed  Google Scholar 

  156. Grayson, M. H. et al. Induction of high-affinity IgE receptor on lung dendritic cells during viral infection leads to mucous cell metaplasia. J. Exp. Med. 204, 2759–2769 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cheung, D. S. et al. Cutting Edge: CD49d+ neutrophils induce FcɛRI expression on lung dendritic cells in a mouse model of postviral asthma. J. Immunol. 185, 4983–4987 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Busse, W. W. et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N. Engl. J. Med. 364, 1005–1015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Manni, M. L., Robinson, K. R. & Alcorn, J. F. A tale of two cytokines: IL-17 and IL-22 in asthma and infection. Expert Rev. Respir. Med. 8, 25–42 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Nakae, S., Suto, H., Berry, G. J. & Galli, S. J. Mast cell-derived TNF can promote Th17 cell-dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood 109, 3640–3648 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hellings, P. W. et al. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am. J. Respir. Cell. Mol. Biol. 28, 42–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Alcorn, J. F., Crowe, C. R. & Kolls, J. K. TH17 cells in asthma and COPD. Annu. Rev. Physiol. 72, 495–516 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Lajole, S. et al. Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nature Immunol. 11, 928–935 (2010).

    Article  CAS  Google Scholar 

  164. Kudo, M. et al. IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nature Med. 18, 547–554 (2013).

    Article  CAS  Google Scholar 

  165. Busse, W. W. et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am. J. Respir. Crit. Care Med. 188, 1294–1302 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Moore, W. C. et al. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J. Allergy Clin. Immunol. 133, 1557–1563 (2014).

    Article  PubMed  Google Scholar 

  167. Pelaia, G., Vatrella, A. & Maselli, R. The potential of biologics for the treatment of asthma. Nature Rev. Drug Discov. 11, 958–972 (2012).

    Article  CAS  Google Scholar 

  168. Holgate, S. T. Trials and tribulations in identifying new biologic treatments for asthma. Trends Immunol. 33, 238–246 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Busse, W. W., Ring, J., Huss-Marp, J. & Kahn, J. E. A review of treatment with mepolizumab, an anti-IL-5 mAb, in hypereosinophilic syndromes and asthma. J. Allergy Clin. Immunol. 125, 803–813 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Nair, P. et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 360, 985–993 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Haldar, P. et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 360, 973–984 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Castro, M. et al. Relizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am. J. Respir. Crit. Care Med. 184, 1125–1132 (2011).

    Article  CAS  PubMed  Google Scholar 

  173. Kolbeck, R. et al. MEDI-563, a humanized anti-IL-5 receptor α mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J. Allergy Clin. Immunol. 125, 1344–1353 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Laviolette, M. et al. Effect of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J. Allergy Clin. Immunol. 132, 1086–1096 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Brightling, C. E., She, D., Ranade, K. & Piper, E. Efficacy and safety of tralokinumab, an anti-IL-13 monoclonal antibody, in a Phase 2b study of uncontrolled severe asthma. Am. J. Respir. Crit. Care Med. 189, A6770 (2014).

    Google Scholar 

  176. Piper, E. et al. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur. Respir. J. 41, 330–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Wenzel, S., Wilbraham, D., Fuller, R., Getz, E. B. & Longphre, M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370, 1396–1398 (2007).

    Article  CAS  Google Scholar 

  178. Slager, R. E. et al. IL-4-receptor polymorphisms predict reduction in asthma exacerbations during response to an anti-IL-4 receptor α antagonist. J. Allergy Clin. Immunol. 130, 516–522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Pavord, I. D. et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 380, 651–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Wenzel, S. et al. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med. 368, 2455–2466 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the members of the Holtzman laboratory and their collaborators for generating the research perspective that underlies this review. Research on this topic in the laboratory of M.J.H. was supported by grants from the US National Institutes of Health (U19-AI070489, R01-HL121791, U01-AI095776, P01-HL29594 and P50-HL107183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Holtzman.

Ethics declarations

Competing interests

M.J.H. is the principal investigator for research grants to Washington University from Hoffman-LaRoche and Forest Laboratories. D.E.B, J.A.-B. and X.W. declare no competing interests.

Related links

PowerPoint slides

Glossary

Airway epithelial cells

(AECs). The AECs that line the airways include ciliated, mucous, secretory and basal cell types. The AECs also line the alveoli and include type 1 and type 2 epithelial cells.

Pattern recognition receptors

(PRRs). These receptors are a key part of the initial activation step for innate immune cells. They recognize pathogen-associated molecular patterns that are associated with microbial pathogens, as well as damage-associated molecular patterns associated with cell damage.

Airway progenitor epithelial cell

(APEC). These cells are able to proliferate and then differentiate into different airway epithelial cell subsets.

Innate lymphoid cells

(ILCs). A group of cells that are similar in size and shape to lymphocytes but that do not express typical markers of T cells, B cells, natural killer (NK) cells, NKT cells or the granulocyte lineage. A current paradigm divides ILCs into three groups: ILC1s that produce interferon-γ; ILC2s that produce interleukin-5 (IL-5) and IL-13; and ILC3s that produce IL-17 and/or IL-22 and are also known as ILC17s and ILC22s.

M2-type macrophage activation

An immune response that involves the alternative activation of macrophages and monocytes, and is characterized by a gene expression profile that is distinctive of stimulation by interleukin-4 (IL-4) or IL-13. There is still some uncertainty over the best markers for interferon-γ-driven classical activation of M1-type macrophages versus IL-4- and IL-13-driven alternative activation of M2-type macrophages, but the concept remains useful in mouse models of disease and is a starting point for defining macrophage responses in human disease.

Periostin

A ligand for the αVβ3 and αVβ5 integrins that supports epithelial cell migration and adhesion.

Mutein

A mutant form of a protein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holtzman, M., Byers, D., Alexander-Brett, J. et al. The role of airway epithelial cells and innate immune cells in chronic respiratory disease. Nat Rev Immunol 14, 686–698 (2014). https://doi.org/10.1038/nri3739

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing