Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Transcription factors as readers and effectors of DNA methylation

Key Points

  • Epigenetic profiling has been extensively undertaken in different systems, including development and disease. However, functional characterization of the dynamics of epigenomes, which will provide mechanistic insights into the role of epigenetics in diverse biological systems, remains largely unexplored.

  • Proteins with a methyl-CpG binding domain (MBD) are well-studied readers and effectors of DNA methylation. Transcription factors (TFs) are now emerging as a new class of DNA methylation readers and effectors that translate DNA methylation signals into biological actions.

  • Different high-throughput approaches, including tandem mass spectrometry (MS/MS), protein microarray, DNA microarray and chromatin immunoprecipitation followed by bisulfite sequencing (ChIP–BS-seq), have identified almost 100 TFs that interact with methylated DNA in vitro. A few of these have been confirmed to bind methylated DNA in vivo.

  • Two models may explain the relationship between TF binding and DNA methylation. Although some TFs can affect the DNA methylation status at the genomic regions near their binding sites, the interaction of other TFs with DNA is dependent on DNA methylation within their respective binding sites.

  • The interactions between TFs and methylated DNA could impact various processes, including gene expression regulation, splicing regulation, chromatin remodelling and disease.

  • Besides conventional CpG methylation, non-CpG methylation and other methylation derivatives (including 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)), have also been profiled in different cell types. Many proteins found to interact with these modifications were determined to be TFs.

Abstract

Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein–DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor–DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction modes between proteins and DNA.
Figure 2: Methylated-DNA–TF interactions in vivo.
Figure 3: Two action models between TF and methylated DNA interactions.
Figure 4: Possible biological consequences of methylated DNA–TF interactions.

Similar content being viewed by others

References

  1. Bestor, T. H. DNA methylation: evolution of a bacterial immune function into a regulator of gene expression and genome structure in higher eukaryotes. Phil. Trans. R. Soc. Lond. B 326, 179–187 (1990).

    Article  CAS  Google Scholar 

  2. Bird, A. P. & Wolffe, A. P. Methylation-induced repression — belts, braces, and chromatin. Cell 99, 451–454 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Bestor, T. H. The DNA methyltransferases of mammals. Hum. Mol. Genet. 9, 2395–2402 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Hendrich, B. & Tweedie, S. The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 19, 269–277 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Krauss, V. & Reuter, G. DNA methylation in Drosophila — a critical evaluation. Prog. Mol. Biol. Transl. Sci. 101, 177–191 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Lyko, F., Ramsahoye, B. H. & Jaenisch, R. DNA methylation in Drosophila melanogaster. Nature 408, 538–540 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Takayama, S. et al. Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res. 24, 821–830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feng, S. et al. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl Acad. Sci. USA 107, 8689–8694 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Selker, E. U. Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion? Trends Genet. 13, 296–301 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Jeon, J. et al. Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae. Sci. Rep. 5, 8567 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bird, A. The essentials of DNA methylation. Cell 70, 5–8 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Jones, P. A. & Takai, D. The role of DNA methylation in mammalian epigenetics. Science 293, 1068–1070 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Robertson, K. D. DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age. Nat. Genet. 21, 163–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Laird, P. W. The power and the promise of DNA methylation markers. Nat. Rev. Cancer 3, 253–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Li, M. et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat. Biotechnol. 27, 858–863 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gavin, D. P. & Sharma, R. P. Histone modifications, DNA methylation, and schizophrenia. Neurosci. Biobehav. Rev. 34, 882–888 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Jiang, Y. H. et al. A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am. J. Med. Genet. A 131A, 1–10 (2004).

    Article  Google Scholar 

  26. Nagarajan, R. P., Hogart, A. R., Gwye, Y., Martin, M. R. & LaSalle, J. M. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 1, e1–e11 (2006).

    Article  PubMed  Google Scholar 

  27. Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Doi, A. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350–1353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Irizarry, R. A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rakyan, V. K., Down, T. A., Balding, D. J. & Beck, S. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet. 12, 529–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wade, P. A. Methyl CpG binding proteins: coupling chromatin architecture to gene regulation. Oncogene 20, 3166–3173 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Hendrich, B. & Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18, 6538–6547 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, X. Y. et al. Binding sites in mammalian genes and viral gene regulatory regions recognized by methylated DNA-binding protein. Nucleic Acids Res. 18, 6253–6260 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saito, M. & Ishikawa, F. The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2. J. Biol. Chem. 277, 35434–35439 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924–1935 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Springer, N. M. & Kaeppler, S. M. Evolutionary divergence of monocot and dicot methyl-CpG-binding domain proteins. Plant Physiol. 138, 92–104 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Robertson, K. D. & Wolffe, A. P. DNA methylation in health and disease. Nat. Rev. Genet. 1, 11–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Prokhortchouk, A. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 15, 1613–1618 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rishi, V. et al. CpG methylation of half-CRE sequences creates C/EBPα binding sites that activate some tissue-specific genes. Proc. Natl Acad. Sci. USA 107, 20311–20316 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Quenneville, S. et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44, 361–372 (2011). This paper demonstrates that ZFP57 and its cofactor KAP1 affect chromatin by interacting with methylated ICRs in embryonic stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, Y., Toh, H., Sasaki, H., Zhang, X. & Cheng, X. An atomic model of Zfp57 recognition of CpG methylation within a specific DNA sequence. Genes Dev. 26, 2374–2379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karlsson, Q. H., Schelcher, C., Verrall, E., Petosa, C. & Sinclair, A. J. Methylated DNA recognition during the reversal of epigenetic silencing is regulated by cysteine and serine residues in the Epstein-Barr virus lytic switch protein. PLoS Pathog. 4, e1000005 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He, X., Futterer, J. & Hohn, T. Sequence-specific and methylation-dependent and -independent binding of rice nuclear proteins to a rice tungro bacilliform virus vascular bundle expression element. J. Biol. Chem. 276, 2644–2651 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Bahar Halpern, K., Vana, T. & Walker, M. D. Paradoxical role of DNA methylation in activation of FoxA2 gene expression during endoderm development. J. Biol. Chem. 289, 23882–23892 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hantusch, B., Kalt, R., Krieger, S., Puri, C. & Kerjaschki, D. Sp1/Sp3 and DNA-methylation contribute to basal transcriptional activation of human podoplanin in MG63 versus Saos-2 osteoblastic cells. BMC Mol. Biol. 8, 20 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Niesen, M. I. et al. Activation of a methylated promoter mediated by a sequence-specific DNA-binding protein, RFX. J. Biol. Chem. 280, 38914–38922 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Bartke, T. et al. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143, 470–484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Spruijt, C. G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013). This paper describes the identification of proteins that interact with mCpG sites, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) in ES cells and neuronal progenitor cells using a MS/MS-based approach.

    Article  CAS  PubMed  Google Scholar 

  52. Hu, S. et al. Profiling the human protein–DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139, 610–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu, S. et al. DNA methylation presents distinct binding sites for human transcription factors. eLife 2, e00726 (2013). This study identifies the transcription factors that preferentially bind to methylated DNA using a protein microarray-based approach and verified that endogenous KLF4 binds to methylated DNA in human ES cells.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Badis, G. et al. Diversity and complexity in DNA recognition by transcription factors. Science 324, 1720–1723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Berger, M. F. et al. Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 133, 1266–1276 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mann, I. K. et al. CG methylated microarrays identify a novel methylated sequence bound by the CEBPB|ATF4 heterodimer that is active in vivo. Genome Res. 23, 988–997 (2013). This paper describes the use of DNA microarrays to identify proteins that interact with methylated DNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brinkman, A. B. et al. Sequential ChIP–bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Statham, A. L. et al. Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP–seq) directly informs methylation status of histone-modified DNA. Genome Res. 22, 1120–1127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gao, F. et al. Direct ChIP–bisulfite sequencing reveals a role of H3K27me3 mediating aberrant hypermethylation of promoter CpG islands in cancer cells. Genomics 103, 204–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Strogantsev, R. et al. Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression. Genome Biol. 16, 112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yoon, H. G., Chan, D. W., Reynolds, A. B., Qin, J. & Wong, J. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol. Cell 12, 723–734 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Lopes, E. C. et al. Kaiso contributes to DNA methylation-dependent silencing of tumor suppressor genes in colon cancer cell lines. Cancer Res. 68, 7258–7263 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Qin, S. et al. Kaiso mainly locates in the nucleus in vivo and binds to methylated, but not hydroxymethylated DNA. Chin. J. Cancer Res. 27, 148–155 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Blattler, A. et al. ZBTB33 binds unmethylated regions of the genome associated with actively expressed genes. Epigenetics Chromatin 6, 13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, J. J., Jiang, C. R., Brown, J. B., Huang, H. & Bickel, P. J. Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation. Proc. Natl Acad. Sci. USA 108, 19867–19872 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, Y. et al. Structural basis for Klf4 recognition of methylated DNA. Nucleic Acids Res. 42, 4859–4867 (2014). This study determined the crystal structure of the KLF4-methylated DNA complex and provided the structural basis for mCpG–TF interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dantas Machado, A. C. et al. Evolving insights on how cytosine methylation affects protein–DNA binding. Brief. Funct. Genom. 14, 61–73 (2015).

    Article  CAS  Google Scholar 

  70. He, H. H. et al. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nat. Methods 11, 73–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Lazarovici, A. et al. Probing DNA shape and methylation state on a genomic scale with DNase I. Proc. Natl Acad. Sci. USA 110, 6376–6381 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Buck-Koehntop, B. A. et al. Molecular basis for recognition of methylated and specific DNA sequences by the zinc finger protein Kaiso. Proc. Natl Acad. Sci. USA 109, 15229–15234 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tippin, D. B. & Sundaralingam, M. Nine polymorphic crystal structures of d(CCGGGCCCGG), d(CCGGGCCm5CGG), d(Cm5CGGGCCm5CGG) and d(CCGGGCC(Br)5CGG) in three different conformations: effects of spermine binding and methylation on the bending and condensation of A-DNA. J. Mol. Biol. 267, 1171–1185 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, S. et al. Characterization of monoclonal antibody's binding kinetics using oblique-incidence reflectivity difference approach. MAbs. 7, 110–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Baubec, T., Ivanek, R., Lienert, F. & Schubeler, D. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153, 480–492 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Hon, G. C. et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198–1206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011). This paper demonstrates that some proteins, such as CTCF and REST, can reduce DNA methylation levels at the genomic regions near their binding regions.

    Article  CAS  PubMed  Google Scholar 

  79. Charlet, J. et al. Bivalent regions of cytosine methylation and H3K27 acetylation suggest an active role for DNA methylation at enhancers. Mol. Cell 62, 422–431 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ohlsson, R., Renkawitz, R. & Lobanenkov, V. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet. 17, 520–527 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Schoenherr, C. J., Levorse, J. M. & Tilghman, S. M. CTCF maintains differential methylation at the Igf2/H19 locus. Nat. Genet. 33, 66–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Krebs, A. R., Dessus-Babus, S., Burger, L. & Schubeler, D. High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions. eLife 3, e04094 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Han, L., Lin, I. G. & Hsieh, C. L. Protein binding protects sites on stable episomes and in the chromosome from de novo methylation. Mol. Cell. Biol. 21, 3416–3424 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fujiki, K. et al. PPARγ-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine. Nat. Commun. 4, 2262 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Sato, N., Kondo, M. & Arai, K. The orphan nuclear receptor GCNF recruits DNA methyltransferase for Oct-3/4 silencing. Biochem. Biophys. Res. Commun. 344, 845–851 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Tate, P. H. & Bird, A. P. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev. 3, 226–231 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Bednarik, D. P. et al. DNA CpG methylation inhibits binding of NF-kappa B proteins to the HIV-1 long terminal repeat cognate DNA motifs. New Biol. 3, 969–976 (1991).

    CAS  PubMed  Google Scholar 

  89. Comb, M. & Goodman, H. M. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 18, 3975–3982 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ehrlich, K. C., Cary, J. W. & Ehrlich, M. A broad bean cDNA clone encoding a DNA-binding protein resembling mammalian CREB in its sequence specificity and DNA methylation sensitivity. Gene 117, 169–178 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Falzon, M. & Kuff, E. L. Binding of the transcription factor EBP-80 mediates the methylation response of an intracisternal A-particle long terminal repeat promoter. Mol. Cell. Biol. 11, 117–125 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Iguchi-Ariga, S. M. & Schaffner, W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3, 612–619 (1989).

    Article  CAS  PubMed  Google Scholar 

  93. Inamdar, N. M., Ehrlich, K. C. & Ehrlich, M. CpG methylation inhibits binding of several sequence-specific DNA-binding proteins from pea, wheat, soybean and cauliflower. Plant Mol. Biol. 17, 111–123 (1991).

    Article  CAS  PubMed  Google Scholar 

  94. Kovesdi, I., Reichel, R. & Nevins, J. R. Role of an adenovirus E2 promoter binding factor in E1A-mediated coordinate gene control. Proc. Natl Acad. Sci. USA 84, 2180–2184 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Prendergast, G. C., Lawe, D. & Ziff, E. B. Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell 65, 395–407 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Maurano, M. T. et al. Role of DNA methylation in modulating transcription factor occupancy. Cell Rep. 12, 1184–1195 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Domcke, S. et al. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528, 575–579 (2015). This paper shows that the removal of DNA methylation would create novel binding sites for NRF1 and thus affect the NRF1–DNA interactions in vivo , whereas other studies showed that DNA methylation could affect TF–DNA interactions in vitro.

    Article  CAS  PubMed  Google Scholar 

  98. Blattler, A. & Farnham, P. J. Cross-talk between site-specific transcription factors and DNA methylation states. J. Biol. Chem. 288, 34287–34294 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Baylin, S. B. DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol. 2, S4–S11 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Yu, D. H. et al. Developmentally programmed 3′ CpG island methylation confers tissue- and cell-type-specific transcriptional activation. Mol. Cell. Biol. 33, 1845–1858 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wan, J. et al. Characterization of tissue-specific differential DNA methylation suggests distinct modes of positive and negative gene expression regulation. BMC Genomics 16, 49 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    Article  CAS  PubMed  Google Scholar 

  103. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Iwafuchi-Doi, M. & Zaret, K. S. Pioneer transcription factors in cell reprogramming. Genes Dev. 28, 2679–2692 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Soufi, A. et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161, 555–568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bossard, P. & Zaret, K. S. GATA transcription factors as potentiators of gut endoderm differentiation. Development 125, 4909–4917 (1998).

    CAS  PubMed  Google Scholar 

  109. Laverriere, A. C. et al. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J. Biol. Chem. 269, 23177–23184 (1994).

    CAS  PubMed  Google Scholar 

  110. Liu, J. K., DiPersio, C. M. & Zaret, K. S. Extracellular signals that regulate liver transcription factors during hepatic differentiation in vitro. Mol. Cell. Biol. 11, 773–784 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Buganim, Y., Faddah, D. A. & Jaenisch, R. Mechanisms and models of somatic cell reprogramming. Nat. Rev. Genet. 14, 427–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shukla, S. et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Maunakea, A. K., Chepelev, I., Cui, K. & Zhao, K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 23, 1256–1269 (2013). This study demonstrates that MeCP2 affects splicing events through its interaction with methylated DNA in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lyko, F. et al. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol. 8, e1000506 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wan, J. et al. Integrative analysis of tissue-specific methylation and alternative splicing identifies conserved transcription factor binding motifs. Nucleic Acids Res. 41, 8503–8514 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature (2015).

  118. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cairns, R. A. & Mak, T. W. Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov. 3, 730–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Guo, J. U. et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 17, 215–222 (2014). This paper describes genome-wide methylation profiling in adult mammalian brain and the discovery of MeCP2 as a reader of non-CpG methylation.

    Article  CAS  PubMed  Google Scholar 

  125. Schultz, M. D. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gabel, H. W. et al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 522, 89–93 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kinde, B., Gabel, H. W., Gilbert, C. S., Griffith, E. C. & Greenberg, M. E. Reading the unique DNA methylation landscape of the brain: non-CpG methylation, hydroxymethylation, and MeCP2. Proc. Natl Acad. Sci. USA 112, 6800–6806 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pfaffeneder, T. et al. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew. Chem. Int. Ed Engl. 50, 7008–7012 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Maiti, A. & Drohat, A. C. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 286, 35334–35338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sun, Z. et al. A sensitive approach to map genome-wide 5-hydroxymethylcytosine and 5-formylcytosine at single-base resolution. Mol. Cell 57, 750–761 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Shen, L. et al. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153, 692–706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Song, C. X. et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153, 678–691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Booth, M. J. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336, 934–937 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Neri, F. et al. Single-base resolution analysis of 5-formyl and 5-carboxyl cytosine reveals promoter DNA methylation dynamics. Cell Rep. (2015).

  140. Wu, H., Wu, X., Shen, L. & Zhang, Y. Single-base resolution analysis of active DNA demethylation using methylase-assisted bisulfite sequencing. Nat. Biotechnol. 32, 1231–1240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xia, B. et al. Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nat. Methods 12, 1047–1050 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Iurlaro, M. et al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14, R119 (2013). This paper identifies proteins that interact with 5hmC and 5fC using promoter sequences as bait in an MS/MS-based screens. Numerous 5fC interaction partners were discovered, including transcriptional regulators, DNA repair factors and chromatin regulators.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Khrapunov, S. et al. Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity. Biochemistry 53, 3379–3391 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Mellen, M., Ayata, P., Dewell, S., Kriaucionis, S. & Heintz, N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151, 1417–1430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Valinluck, V. et al. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32, 4100–4108 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Wan, Y. Zhao and other laboratory members from the Zhu and Qian groups for their discussions. The authors are supported in part by the NIH (EY024580, EY023188 to J.Q. and GM111514 to H.Z.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heng Zhu or Jiang Qian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (figure)

Methylation levels at TAF1 binding peaks. (PDF 171 kb)

Glossary

DNA methylation

A biological process in which a methyl group is covalently added to a cytosine.

DNA methyltransferases

(DNMTs). Enzymes that catalyse the transfer of a methyl group to DNA.

CpG islands

A segment of DNA with a high frequency of CpG dinucleotides that often overlaps with promoters.

Genomic imprinting

A phenomenon by which some genes are expressed in an allele-specific manner; that is, alleles inherited either from the father or the mother are expressed.

Deep sequencing

A next-generation sequencing approach (for example, RNA sequencing or bisulfite sequencing) with high coverage.

Methylome

The collection of methylation status in an entire genome.

Epigenome

The collection of chemical modifications added to DNA or histones of a given genome, which do not alter the genetic codes but can be inherited and lead to changes in the function of the genome.

Differentially methylated regions

Regions of DNA with significant differences in methylation levels between two physiological conditions (for example, disease versus healthy) different developmental stages or different tissues.

K d

The dissociation constant Kd is defined by the Koff/Kon ratio, which has the unit of concentration.

Oblique incidence reflectivity difference

(OIRD). A form of polarization-modulated imaging ellipsometer for label-free, high-throughput detection of binding events on protein microarrays.

Kon and Koff

In a simple binding event, Kon and Koff refer to the on-rate and off-rate constants, which have units of 1/(concentration time) and 1/time, respectively.

TETs

(Ten-eleven translocation proteins). The TET family of methylcytosine dioxygenases is made of TET1, TET2, TET3 and TET4, which catalyse the conversion of the modified DNA base 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC).

Topologically associated domains

3D spatial organization units of mammalian genomes, within which most enhancer–promoter interactions occur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Wang, G. & Qian, J. Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet 17, 551–565 (2016). https://doi.org/10.1038/nrg.2016.83

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing