Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Peroxynitrite: biochemistry, pathophysiology and development of therapeutics

Key Points

  • The first goal of the current article is to give an overview of the biochemistry and the pathophysiological actions of peroxynitrite (ONOO), a short-lived oxidant species formed by the diffusion-controlled reaction of nitric oxide (NO) with a superoxide radical (O2•−). The second goal of the article is to outline the therapeutic implications of peroxynitrite, and to give an overview of the various pharmacological classes of peroxynitrite scavengers and peroxynitrite decomposition catalysts.

  • Peroxynitrite induces cell death, and can influence signal-transduction processes, mitochondrial function and signalling of apoptosis. The formation and reactions of peroxynitrite play a significant role in various diseases. Products of peroxynitrite reactions with macromolecules have been detected in several pathophysiological conditions, including vascular diseases, ischaemia–reperfusion injury, circulatory shock, inflammation, pain and neurodegeneration. In these conditions, pharmacological inhibition of the formation or action of peroxynitrite was shown to be of benefit.

  • The biological chemistry of peroxynitrite is highly pH-dependent and is dictated primarily by reactions with thiols, carbon dioxide and transition-metal centres. Reaction of peroxynitrite and/or peroxynitrite-derived radicals (for example, carbonate and nitrogen dioxide radicals) with targets results in one- and two-electron oxidations and nitration. Diffusion of peroxynitrite through biomembranes can cause oxidative damage at one to two cell diameters from its site of formation.

  • The most advanced pharmacological strategies to attenuate the toxic effects of peroxynitrite involve its fast (k>1 × 106 M−1s−1) catalytic reduction to nitrite (NO2) or its isomerization to nitrate (NO3) by metalloporphyrins. Manganese and iron metalloporphyrinic compounds have been shown to rapidly react with peroxynitrite and promote its decomposition in a catalytic fashion. Such compounds — including manganese (III) meso-tetrakis((N-ethyl) pyridynium-2-yl) l porphyrin (MnTE-2-PyP), manganese (III) tetrakis(N-N′-diethylimidazolium-2-yl)porphyrin (AEOL-10150) and FeCl tetrakis-2-(triethylene glycol monomethyl ether) pyridyl porphyrin (FP15) — attenuate peroxynitrite-dependent toxicity in vitro and in vivo, and emerge as candidates for drug development for the therapy of cardiovascular, inflammatory and neurodegenerative diseases.

Abstract

Peroxynitrite — the product of the diffusion-controlled reaction of nitric oxide with superoxide radical — is a short-lived oxidant species that is a potent inducer of cell death. Conditions in which the reaction products of peroxynitrite have been detected and in which pharmacological inhibition of its formation or its decomposition have been shown to be of benefit include vascular diseases, ischaemia–reperfusion injury, circulatory shock, inflammation, pain and neurodegeneration. In this Review, we first discuss the biochemistry and pathophysiology of peroxynitrite and then focus on pharmacological strategies to attenuate the toxic effects of peroxynitrite. These include its catalytic reduction to nitrite and its isomerization to nitrate by metalloporphyrins, which have led to potential candidates for drug development for cardiovascular, inflammatory and neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biochemistry of peroxynitrite: reaction targets and fate.
Figure 2: Mechanisms of cell death induced by peroxynitrite.
Figure 3: Structures of metalloporphyrins.
Figure 4: Metalloporphyrins as catalysts of the decomposition of peroxynitrite.

Similar content being viewed by others

References

  1. Beckman, J. S. et al. Apparent hydroxyl radical production by peroxynitrite: implication for endothelial injury from NO and superoxide. Proc. Natl Acad. Sci. USA 87, 1620–1624 (1990). The first report implicating the biological formation and pathophysiological potential of peroxynitrite.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gryglewski, R. J., Palmer, R. M. & Moncada, S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320, 454–456 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Radi, R. et al. Unraveling peroxynitrite formation in biological systems. Free Radic. Biol. Med. 30, 463–488 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Alvarez, M. N., Piacenza, L., Irigoin, F., Peluffo, G. & Radi, R. Macrophage-derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi. Arch. Biochem. Biophys. 432, 222–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Nalwaya, N. & Deen, W. M. NO, oxygen, and superoxide formation and consumption in macrophage cultures. Chem. Res. Toxicol. 18, 486–493 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Quijano, C., Romero, N. & Radi, R. Tyrosine nitration by superoxide and NO fluxes in biological systems: modeling the impact of superoxide dismutase and NO diffusion. Free Radic. Biol. Med. 39, 728–741 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Marla, S. S., Lee, J. & Groves, J. T. Peroxynitrite rapidly permeates phospholipid membranes. Proc. Natl Acad. Sci. USA 94, 14243–14248 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Denicola, A., Souza, J. M. & Radi, R. Diffusion of peroxynitrite across erythrocyte membranes. Proc. Natl Acad. Sci. USA 95, 3566–3571 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Radi, R., Beckman, J. S., Bush, K. M. & Freeman, B. A. Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244–4250 (1991). The first demonstration that peroxynitrite can oxidize sulphydryls, and the application of stopped-flow spectrophotometry for rate constant determination.

    Article  CAS  PubMed  Google Scholar 

  10. Bartesaghi, S. et al. Mechanistic studies of peroxynitrite-mediated tyrosine nitration in membranes using the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester. Biochemistry 45, 6813–6825 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Quijano, C., Alvarez, B., Gatti, R., Augusto, O. & Radi, R. Pathways of peroxynitrite oxidation of thiol groups. Biochem. J. 322, 167–173 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carballal, S. et al. Sulfenic acid formation in human serum albumin. Biochemistry 42, 9906–9914 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Lymar, S. V. & Hurst, J. K. Radical nature of peroxynitrite reactivity. Chem. Res. Toxicol. 11, 714–715 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Goldstein, S., Lind, J. & Merenyi, G. Chemistry of peroxynitrites as compared to peroxynitrates. Chem. Rev. 105, 2457–2470 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Romero, N. et al. Reaction of human hemoglobin with peroxynitrite: isomerization to nitrate and secondary formation of protein radicals. J. Biol. Chem. 278, 44049–44057 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Radi, R. NO, oxidants, and protein tyrosine nitration. Proc. Natl Acad. Sci. USA 101, 4003–4008 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bonini, M. G. & Augusto, O. Carbon dioxide stimulates the production of thiyl, sulfinyl, and disulfide radical anion from thiol oxidation by peroxynitrite. J. Biol. Chem. 276, 9749–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Salgo, M. G., Bermudez, E., Squadrito, G. L. & Pryor, W. A. Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes. Arch. Biochem. Biophys. 322, 500–505 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Szabó, C. & Ohshima, H. DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide 1, 373–385 (1997).

    Article  PubMed  Google Scholar 

  20. Burney, S., Niles, J. C., Dedon, P. C. & Tannenbaum, S. R. DNA damage in deoxynucleosides and oligonucleotides treated with peroxynitrite. Chem. Res. Toxicol. 12, 513–520 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Niles, J. C., Wishnok, J. S. & Tannenbaum, S. R. Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide 14, 109–121 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Kennedy, L. J., Moore, K. Jr, Caulfield, J. L., Tannenbaum, S. R. & Dedon, P. C. Quantitation of 8-oxoguanine and strand breaks produced by four oxidizing agents. Chem. Res. Toxicol. 10, 386–392 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Villa, L. M., Salas, E., Darley-Usmar, V. M., Radomski, M. W. & Moncada, S. Peroxynitrite induces both vasodilatation and impaired vascular relaxation in the isolated perfused rat heart. Proc. Natl Acad. Sci. USA 91, 12383–12387 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rubbo, H. et al. NO regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J. Biol. Chem. 269, 26066–26075 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Violi, F., Marino, R., Milite, M. T. & Loffredo, L. NO and its role in lipid peroxidation. Diabetes Metab. Res. Rev. 15, 283–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Moore, K. P., Darley-Usmar, V., Morrow, J. & Roberts, L. J. Formation of F2-isoprostanes during oxidation of human low-density lipoprotein and plasma by peroxynitrite. Circ. Res. 77, 335–341 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Batthyany, C. et al. Reversible post-translational modification of proteins by nitrated fatty acids in vivo. J. Biol. Chem. 281, 20450–20463 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Wright, M. M. et al. Fatty acid transduction of NO signaling: nitrolinoleic acid potently activates endothelial heme oxygenase 1 expression. Proc. Natl Acad. Sci. USA 103, 4299–4304 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Milstien, S. & Katusic, Z. Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem. Biophys. Res. Commun. 263, 681–684 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Kuzkaya, N., Weissmann, N., Harrison, D. G. & Dikalov, S. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J. Biol. Chem. 278, 22546–22554 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Forstermann, U. & Munzel, T. Endothelial NO synthase in vascular disease: from marvel to menace. Circulation 113, 1708–1714 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. Kirsch, M. & de Groot, H. Reaction of peroxynitrite with reduced nicotinamide nucleotides, the formation of hydrogen peroxide. J. Biol. Chem. 274, 24664–24670 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Goldstein, S. & Czapski, G. Reactivity of peroxynitrite versus simultaneous generation of (*)NO and O(2)(*)(−) toward NADH. Chem. Res. Toxicol. 13, 736–741 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Ischiropoulos, H. et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298, 431–437 (1992). The first article on peroxynitrite-induced tyrosine nitration.

    Article  CAS  PubMed  Google Scholar 

  35. MacMillan-Crow, L. A., Crow, J. P. & Thompson, J. A. Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37, 1613–1622 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Alvarez, B. et al. Inactivation of human Cu, Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical. Free Radic. Biol. Med. 37, 813–822 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Beckman, J. S., Estevez, A. G., Crow, J. P. & Barbeito, L. Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci. 24 (Suppl. 11), 15–20 (2001).

    Article  Google Scholar 

  38. Savvides, S. N. et al. Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite. J. Biol. Chem. 277, 2779–2784 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Aykac-Toker, G., Bulgurcuoglu, S. & Kocak-Toker, N. Effect of peroxynitrite on glutaredoxin. Hum. Exp. Toxicol. 20, 373–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Hogg, N., Darley-Usmar, V. M., Wilson, M. T. & Moncada, S. The oxidation of α-tocopherol in human low-density lipoprotein by the simultaneous generation of superoxide and NO. FEBS Lett. 326, 199–203 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Van der Vliet, A. et al. Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem. J. 303, 295–301 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vatassery, G. T., Lai, J. C., DeMaster, E. G., Smith, W. E. & Quach, H. T. Oxidation of vitamin E and vitamin C and inhibition of brain mitochondrial oxidative phosphorylation by peroxynitrite. J. Neurosci. Res. 75, 845–853 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Hausladen, A. & Fridovich, I. Superoxide and peroxynitrite inactivate aconitases, but NO does not. J. Biol. Chem. 269, 29405–29408 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Crow, J. P., Beckman, J. S. & McCord, J. M. Sensitivity of the essential zinc-thiolate moiety of yeast alcohol dehydrogenase to hypochlorite and peroxynitrite. Biochemistry 34, 3544–3552 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Mohr, S, Stamler, J. S. & Brune, B. Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by NO, peroxynitrite and related nitrosating agents. FEBS Lett. 348, 223–227 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Konorev, E. A., Hogg, N. & Kalyanaraman, B. Rapid and irreversible inhibition of creatine kinase by peroxynitrite. FEBS Lett. 427, 171–174 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Mihm, M. J. et al. Peroxynitrite induced nitration and inactivation of myofibrillar creatine kinase in experimental heart failure. Cardiovasc. Res. 49, 798–807 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Blanchard-Fillion, B. et al. Nitration and inactivation of tyrosine hydroxylase by peroxynitrite. J. Biol. Chem. 276, 46017–46023 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Paxinou, E. et al. Induction of α-synuclein aggregation by intracellular nitrative insult. J. Neurosci. 21, 8053–8061 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reynolds, M. R., Lukas, T. J., Berry, R. W. & Binder, L. I. Peroxynitrite-mediated tau modifications stabilize preformed filaments and destabilize microtubules through distinct mechanisms. Biochemistry 45, 4314–4326 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Okamoto, T. et al. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J. Biol. Chem. 276, 29596–29602 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Migita, K. et al. Peroxynitrite-mediated matrix metalloproteinase-2 activation in human hepatic stellate cells. FEBS Lett. 579, 3119–3125 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Ji, Y., Neverova, I., Van Eyk, J. E. & Bennett, B. M. Nitration of tyrosine 92 mediates the activation of rat microsomal glutathione S-transferase by peroxynitrite. J. Biol. Chem. 281, 986–991 (2006).

    Google Scholar 

  54. Xie, Z. et al. Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J. Biol. Chem. 281, 6366–6375 (2005).

    Article  CAS  Google Scholar 

  55. Jang, B. & Han, S. Biochemical properties of cytochrome c nitrated by peroxynitrite. Biochimie 88, 53–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Bauer, M. L., Beckman, J. S., Bridges, R. J., Fuller, C. M. & Matalon, S. Peroxynitrite inhibits sodium uptake in rat colonic membrane vesicles. Biochim. Biophys. Acta 1104, 87–94 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Hu, P., Ischiropoulos, H., Beckman, J. S. & Matalon, S. Peroxynitrite inhibition of oxygen consumption and sodium transport in alveolar type II cells. Am. J. Physiol. 266, L628–L634 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Klebl, B. M., Ayoub, A. T. & Pette, D. Protein oxidation, tyrosine nitration, and inactivation of sarcoplasmic reticulum Ca2+-ATPase in low-frequency stimulated rabbit muscle. FEBS Lett. 422, 381–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Viner, R. I., Williams, T. D., Schoneich, C. NO-dependent modification of the sarcoplasmic reticulum Ca-ATPase: localization of cysteine target sites. Free Radic. Biol. Med. 29, 489–496 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Grover, A. K., Kwan, C. Y. & Samson, S. E. Effects of peroxynitrite on sarco/endoplasmic reticulum Ca2+ pump isoforms SERCA2b and SERCA3a. Am. J. Physiol. Cell Physiol. 285, C1537–C1543 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Chakraborti, S., Mandal, A., Das, S. & Chakraborti, T. Inhibition of Na+/Ca2+ exchanger by peroxynitrite in microsomes of pulmonary smooth muscle: role of matrix metalloproteinase-2. Biochim. Biophys. Acta 1671, 70–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Gutierrez-Martin, Y. et al. Alteration of cytosolic free calcium homeostasis by SIN-1: high sensitivity of L-type Ca2+ channels to extracellular oxidative/nitrosative stress in cerebellar granule cells. J. Neurochem. 92, 973–989 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Zou, M., Yesilkaya, A. & Ullrich, V. Peroxynitrite inactivates prostacyclin synthase by heme-thiolate-catalyzed tyrosine nitration. Drug Metab. Rev. 31, 343–349 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Bagnasco, P. et al. Peroxynitrite modulates acidic fibroblast growth factor (FGF-1) activity. Arch. Biochem. Biophys. 419, 178–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Freels, J. L. et al. Enhanced activity of human IL-10 after nitration in reducing human IL-1 production by stimulated peripheral blood mononuclear cells. J. Immunol. 169, 4568–4571 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. van der Vliet, A, Hristova, M., Cross, C. E., Eiserich, J. P. & Goldkorn, T. Peroxynitrite induces covalent dimerization of epidermal growth factor receptors in A431 epidermoid carcinoma cells. J. Biol. Chem. 273, 31860–31866 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Lewis, S. J., Hoque, A., Walton, T. M. & Kooy, N. W. Potential role of nitration and oxidation reactions in the effects of peroxynitrite on the function of β-adrenoceptor sub-types in the rat. Eur. J. Pharmacol. 518, 187–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Shibuya, A. et al. Nitration of PPARγ inhibits ligand-dependent translocation into the nucleus in a macrophage-like cell line, RAW 264. FEBS Lett. 525, 43–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Giuntini, J., Giusti, L., Lucacchini, A. & Mazzoni, M. R. Modulation of A1 adenosine receptor signaling by peroxynitrite. Biochem. Pharmacol. 67, 375–383 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Nomiyama, T. et al. Reduction of insulin-stimulated glucose uptake by peroxynitrite is concurrent with tyrosine nitration of insulin receptor substrate-1. Biochem. Biophys. Res. Commun. 320, 639–647 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Clavreul, N. et al. S-glutathiolation by peroxynitrite of p21ras at cysteine-118 mediates its direct activation and downstream signaling in endothelial cells. FASEB J. 20, 518–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Newman, D. K. et al. Nitration of PECAM-1 ITIM tyrosines abrogates phosphorylation and SHP-2 binding. Biochem. Biophys. Res. Commun. 296, 1171–1179 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Bar-Shai, M. & Reznick, A. Z. Peroxynitrite induces an alternative NF-κB activation pathway in l8 rat myoblasts. Antioxid. Redox Signal. 8, 639–652 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Zouki, C., Jozsef, L., Ouellet, S., Paquette, Y. & Filep, J. G. Peroxynitrite mediates cytokine-induced IL-8 gene expression and production by human leukocytes. J. Leukoc. Biol. 69, 815–824 (2001).

    CAS  PubMed  Google Scholar 

  75. Matata, B. M. & Galinanes, M. Peroxynitrite is an essential component of cytokine production mechanism in human monocytes through modulation of NFκB DNA-binding activity. J. Biol. Chem. 277, 2330–2335 (2001).

    Article  PubMed  CAS  Google Scholar 

  76. Levrand, S. et al. Peroxynitrite is a potent inhibitor of NFκB activation triggered by inflammatory stimuli in cardiac and endothelial cell lines. J. Biol. Chem. 280, 4878–4887 (2005).

    Article  CAS  Google Scholar 

  77. Knapp, L. T., Kanterewicz, B. I., Hayes, E. L. & Klann, E. Peroxynitrite-induced tyrosine nitration and inhibition of protein kinase C. Biochem. Biophys. Res. Commun. 286, 764–770 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Bapat, S., Verkleij, A. & Post, J. A. Peroxynitrite activates mitogen-activated protein kinase (MAPK) via a MEK-independent pathway: a role for protein kinase C. FEBS Lett. 499, 21–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Mallozzi, C., Di Stasi, A. M. & Minetti, M. Nitrotyrosine mimics phosphotyrosine binding to the SH2 domain of the src family tyrosine kinase lyn. FEBS Lett. 503, 189–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Mallozzi, C., Di Stasi, M. A & Minetti, M. Peroxynitrite-dependent activation of src tyrosine kinases lyn and hck in erythrocytes is under mechanistically different pathways of redox control. Free Radic. Biol. Med. 30, 1108–1117 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Yuen, E. C., Gunther, E. C. & Bothwell, M. NO activation of TrkB through peroxynitrite. Neuroreport 11, 3593–3597 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Platt, D. H. et al. Peroxynitrite increases VEGF expression in vascular endothelial cells via STAT3. Free Radic. Biol. Med. 39, 1353–1361 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Klotz, L. O., Schieke, S. M., Sies, H. & Holbrook, N. J. Peroxynitrite activates the phosphoinositide 3-kinase/Akt pathway in human skin primary fibroblasts. Biochem. J. 352, 219–225 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shacka, J. J. et al. Two distinct signaling pathways regulate peroxynitrite-induced apoptosis in PC12 cells. Cell Death Differ. 13, 1506–1514 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Zingarelli, B., Salzman, A. L. & Szabó, C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ. Res. 83, 85–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Haddad, I. Y. et al. Concurrent generation of NO and superoxide damages surfactant protein Am. J. Physiol. 267, L242–L249 (1994).

    CAS  PubMed  Google Scholar 

  87. Radi, R., Beckman, J. S., Bush, K. M. & Freeman, B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and NO. Arch. Biochem. Biophys. 288, 481–487 (1991). This is the first paper supporting the reactions of peroxynitrite-derived radicals in hydrophobic compartments.

    Article  CAS  PubMed  Google Scholar 

  88. Botti, H., Trostchansky, A., Batthyany, C. & Rubbo, H. Reactivity of peroxynitrite and NO with LDL. IUBMB Life 57, 407–412 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Szabó, C., Zingarelli, B., O'Connor, M. & Salzman, A. L. DNA strand breakage, activation of poly-ADP ribosyl synthetase, and cellular energy depletion are involved in the cytotoxicity in macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl Acad. Sci. USA 93, 1753–1758 (1996). The first report linking peroxynitrite to the activation of the nuclear enzyme PARP and subsequent cell death.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Brown, G. C. & Borutaite, V. Inhibition of mitochondrial respiratory complex I by NO, peroxynitrite and S-nitrosothiols. Biochim. Biophys. Acta 1658, 44–49 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Shiva, S. et al. Nitroxia: the pathological consequence of dysfunction in the NO-cytochrome c oxidase signaling pathway. Free Radic. Biol. Med. 38, 297–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Szabó C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol. Lett. 140141, 105–112 (2003).

    Article  PubMed  CAS  Google Scholar 

  93. Radi, R., Cassina, A., Hodara, R., Quijano, C. & Castro, L. Peroxynitrite reactions and formation in mitochondria. Free Radic. Biol. Med. 33, 1451–1464 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Quijano, C., Cassina, A., Castro, L., Rodriguez, M. & Radi, R. in Nitric Oxide, Cell Signaling and Gene Expression (eds Lamas, S. & Cadenas, E.) (CRC, Boca Raton, 2005).

    Google Scholar 

  95. Ghafourifar, P. & Cadenas, E. Mitochondrial NO synthase. Trends Pharmacol. Sci. 26, 190–195 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Lacza, Z. et al. Mitochondrial NO and reactive nitrogen species production: does mtNOS exist? Nitric Oxide 14, 162–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Lacza, Z. et al. Mitochondria produce reactive nitrogen species via an arginine-independent pathway. Free Radic. Res. 40, 369–378 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Radi, R., Rodriguez, M., Castro, L. & Telleri, R. Inhibition of mitochondrial electron transport by peroxynitrite. Arch. Biochem. Biophys. 308, 89–95 (1994). An early report demonstrating the ability of peroxynitrite to promote mitochondrial dysfunction.

    Article  CAS  PubMed  Google Scholar 

  99. Riobo, N. A. et al. NO inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochem. J. 359, 139–145 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Boczkowski, J. et al. Peroxynitrite-mediated mitochondrial dysfunction. Biol. Signals Recept. 10, 66–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Cassina, A. M. et al. Cytochrome c nitration by peroxynitrite. J. Biol. Chem. 275, 21409–21415 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Batthyany, C. et al. Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite. Biochemistry 44, 8038–8046 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Giulivi, C., Poderoso, J. J. & Boveris, A. Production of nitric oxide by mitochondria. J. Biol. Chem. 273, 11038–11043 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. MacMillan-Crow, L. A. et al. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc. Natl Acad. Sci. USA 93, 11853–11858 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yamakura, F., Taka, H., Fujimura, T. & Murayama, K. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J. Biol. Chem. 273, 14085–14089 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Quijano, C. et al. Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration. J. Biol. Chem. 276, 11631–11638 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Virag, L. & Szabó, C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375–429 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Jagtap, P. & Szabó, C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nature Rev. Drug Discov. 4, 421–440 (2005).

    Article  CAS  Google Scholar 

  109. Bolanos, J. P., Heales, S. J., Land, J. M. & Clark, J. B. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J. Neurochem. 64, 1965–1972 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Szabó, C. & Salzman, A. L. Endogenous peroxynitrite is involved in the inhibition of cellular respiration in immuno-stimulated J774.2 macrophages. Biochem. Biophys. Res. Comm. 209, 739–743 (1995). An early report implying the role of endogenously produced peroxynitrite in inflammatory- and immune-mediated cell injury.

    Article  PubMed  Google Scholar 

  111. Szabó, C., Zingarelli, B. & Salzman, A. L. Role of poly-ADP ribosyltransferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous NO and peroxynitrite. Circ. Res. 78, 1051–1063 (1996).

    Article  PubMed  Google Scholar 

  112. Suzuki, Y. et al. Na+, K+-ATPase activity is inhibited in cultured intestinal epithelial cells by endotoxin or NO. Int. J. Mol. Med. 15, 871–877 (2005).

    CAS  PubMed  Google Scholar 

  113. Sacksteder C. A. et al. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease. Biochemistry 45, 8009–8022 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Nin, N. et al. Septic diaphragmatic dysfunction is prevented by Mn(III)porphyrin therapy and inducible NO synthase inhibition. Int. Care Med. 30, 2271–2278 (2004).

    Article  Google Scholar 

  115. Pacher, P., Beckman, J. S. & Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Balafanova, Z. et al. Nitric oxide (NO) induces nitration of protein kinase C epsilon (PKCε), facilitating PKCε translocation via enhanced PKCε-RACK2 interactions: a novel mechanism of no-triggered activation of PKCε. J Biol. Chem. 277, 15021–15027 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Pehar, M. et al. Peroxynitrite transforms nerve growth factor into an apoptotic factor for motor neurons. Free Radic. Biol. Med. 41, 1632–1644 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Lanone, S. et al. Inducible NO synthase (NOS2) expressed in septic patients is nitrated on selected tyrosine residues: implications for enzymic activity. Biochem. J. 366, 399–404 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zouki, C., Zhang, S. L., Chan, J. S. & Filep, J. G. Peroxynitrite induces integrin-dependent adhesion of human neutrophils to endothelial cells via activation of the Raf-1/MEK/Erk pathway. FASEB J. 15, 25–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Landino, L. M., Crews, B. C., Timmons, M. D., Morrow, J. D. & Marnett, L. J. Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proc. Natl Acad. Sci. USA 93, 15069–15074 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Trostchansky, A. et al. Interactions between nitric oxide and peroxynitrite during prostaglandin endoperoxide H synthase-1 catalysis: a free radical mechanism of inactivation. Free Radic. Biol. Med. 42, 1029–1038 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Ito, K., Hanazawa, T., Tomita, K., Barnes, P. J. & Adcock, I. M. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem. Biophys. Res. Commun. 315, 240–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Levonen, A. L. et al. Mechanisms of cell signaling by NO and peroxynitrite: from mitochondria to MAP kinases. Antioxid. Redox Signal. 3, 215–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Sohn, H. Y. et al. Crucial role of local peroxynitrite formation in neutrophil-induced endothelial cell activation. Cardiovasc. Res. 57, 804–815 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Kerry, N. & Rice-Evans, C. Peroxynitrite oxidises catechols to o-quinones. FEBS Lett. 437, 167–171 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Macarthur, H., Westfall, T. C., Riley, D. P., Misko, T. P. & Salvemini, D. Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock. Proc. Natl Acad. Sci. USA 97, 9753–9758 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Heijnen, H. F. G. et al. Subcellular localization of tyrosine-nitrated proteins is dictated by reactive oxygen species generating enzymes and by proximity to nitric oxide synthase. Free Radic. Biol. Med. 40, 1903–1913 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Fries, D. M. et al. Expression of inducible nitric oxide synthase and intracellular protein tyrosine nitration in vascular smooth muscle cells: role of reactive oxygen species. J. Biol. Chem. 278, 22901–22907 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Giasson, B. I. et al., Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290, 985–989 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Birnboim, H. C., Lemay, A. M., Lam, D. K., Goldstein, R. & Webb, J. R. MHC class II-restricted peptides containing the inflammation-associated marker 3-nitrotyrosine evade central tolerance and elicit a robust cell-mediated immune response. J. Immunol. 171, 528–532 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Herzog, J., Maekawa, Y., Cirrito, T. P., Illian, B. S. & Unanue, E. R. Activated antigen-presenting cells select and present chemically modified peptides recognized by unique CD4 T cells. Proc. Natl Acad. Sci. USA 102, 7928–7933 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Salvemini, D., Doyle, T. M. & Cuzzocrea, S. Superoxide, peroxynitrite and oxidative/nitrative stress in inflammation. Biochem. Soc. Trans. 34, 965–970 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Altug, S. et al. Biological time-dependent difference in effect of peroxynitrite demonstrated by the mouse hot plate pain model. Chronobiol. Int. 23, 583–591 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Khattab, M. M. Tempol, a membrane-permeable radical scavenger, attenuates peroxynitrite- and superoxide anion-enhanced carrageenan-induced paw edema and hyperalgesia: a key role for superoxide anion. Eur. J. Pharmacol. 548, 167–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Bezerra, M. M. et al. Neutrophils-derived peroxynitrite contributes to acute hyperalgesia and cell influx in zymosan arthritis. Naunyn Schmiedebergs Arch. Pharmacol. 374, 265–273 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, Z. Q. et al. A newly identified role for superoxide in inflammatory pain. J. Pharmacol. Exp. Ther. 309, 869–878 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Hooper, D. C. et al. The central nervous system inflammatory response to neurotropic virus infection is peroxynitrite dependent. J. Immunol. 167, 3470–3477 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Padalko, E. Peroxynitrite inhibition of Coxsackievirus infection by prevention of viral RNA entry. Proc. Natl Acad. Sci. USA 101, 11731–11736 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Virag, L., Szabó, E., Gergely, P. & Szabó, C. Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol. Lett. 140141, 113–124 (2003).

    Article  PubMed  CAS  Google Scholar 

  140. Virag, L., Marmer, D. J. & Szabó, C. Crucial role of apopain in the peroxynitrite-induced apoptotic DNA fragmentation. Free Radic. Biol. Med. 25, 1075–1082 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Zhuang, S. & Simon, G. Peroxynitrite-induced apoptosis involves activation of multiple caspases in HL-60 cells. Am. J. Physiol. Cell Physiol. 279, C341–C351 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Vicente, S. et al. NO and peroxynitrite induce cellular death in bovine chromaffin cells: evidence for a mixed necrotic and apoptotic mechanism with caspases activation. J. Neurosci. Res. 84, 78–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Borutaite, V., Morkuniene, R. & Brown, G. C. Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca(2+)-induced inhibition of substrate oxidation. Biochim. Biophys. Acta 1453, 41–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Richter, C., Schweizer, M. & Ghafourifar P. Mitochondria, NO, and peroxynitrite. Methods Enzymol. 301, 381–393 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Estevez, E. et al. Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J. Neurosci. 18, 923–931 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Virag, L. et al. Requirement of intracellular calcium mobilization for peroxynitrite-induced poly(ADP-ribose) synthetase activation and cytotoxicity. Mol. Pharmacol. 56, 824–833 (1999).

    CAS  PubMed  Google Scholar 

  147. Dickhout, J. G. et al. Peroxynitrite causes endoplasmic reticulum stress and apoptosis in human vascular endothelium: implications in atherogenesis. Arterioscler. Thromb. Vasc. Biol. 25, 2623–2629 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Redondo, P. C. et al. Hydrogen peroxide and peroxynitrite enhance Ca2+ mobilization and aggregation in platelets from type 2 diabetic patients. Biochem. Biophys. Res. Commun. 333, 794–802 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Whiteman, M. et al. Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains. FASEB J. 18, 1395–1397 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Cantoni, O. et al. Survival pathways triggered by peroxynitrite in cells belonging to the monocyte/macrophage lineage. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 14, 118–123 (2005).

    Article  CAS  Google Scholar 

  151. Zhang, X. et al. Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J. Neurochem. 82, 181–191 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Dawson, V. L. & Dawson, T. M. Deadly conversations: nuclear-mitochondrial cross-talk. J. Bioenerg. Biomembr. 36, 287–294 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Beller, C. J. et al. Activation of the peroxynitrite-poly(adenosine diphosphate-ribose) polymerase pathway during neointima proliferation: a new target to prevent restenosis after endarterectomy. J. Vasc. Surg. 43, 824–830 (2006).

    Article  PubMed  Google Scholar 

  154. Tao, L. et al. Nitrative inactivation of thioredoxin-1 and its role in postischemic myocardial apoptosis. Circulation 114, 1395–1402 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Sappington, P. L. et al. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology 123, 790–802 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Ulloa, L. & Messmer, D. High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev. 17, 189–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Dixit, K. & Moinuddin, A. A. Immunological studies on peroxynitrite modified human DNA. Life Sci. 77, 2626–2642 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Ohmori, H. & Kanayama, N. Immunogenicity of an inflammation-associated product, tyrosine nitrated self-proteins. Autoimmun. Rev. 4, 224–229 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Radi, R., Denicola, A., Alvarez, B., Ferrer-Sueta, G. & Rubbo, H. in Nitric Oxide: Biology and Pathobiology Ch.4 (ed. Ignarro, L. J.) 57–82 (Academic Press, San Diego, 2000).

    Book  Google Scholar 

  160. Bryk, R., Griffin, P. & Nathan, C. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407, 211–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Trujillo, M. et al. Trypanosoma brucei and Trypanosoma cruzi tryparedoxin peroxidases catalytically detoxify peroxynitrite via oxidation of fast reacting thiols. J. Biol. Chem. 279, 34175–34182 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Dubuisson, M. et al. Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Lett. 571, 161–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Rhee, S. G., Chae, H. Z. & Kim, K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38, 1543–1552 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Kooy, N. W., Royall, J. A., Ischiropoulos, H. & Beckman, J. S. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 16, 149–156 (1994). The first article describing the ability of urate to attenuate peroxynitrite-induced oxidative reactions in vitro.

    Article  CAS  PubMed  Google Scholar 

  165. Whiteman, M., Ketsawatsakul, U. & Halliwell, B. A reassessment of the peroxynitrite scavenging activity of uric acid. Ann. N. Y. Acad. Sci. 962, 242–259 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Scott, G. S. et al. Therapeutic intervention in experimental allergic encephalomyelitis by administration of uric acid precursors. Proc. Natl Acad. Sci. USA. 99 16303–16308 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Robinson, K. M., Morre, J. T. & Beckman, J. S. Triuret: a novel product of peroxynitrite-mediated oxidation of urate. Arch. Biochem. Biophys. 423, 213–217 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Scott, G. S. et al. Uric acid protects against secondary damage after spinal cord injury. Proc. Natl Acad. Sci. USA 102, 3483–3488 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Szabó, C. et al. Mercaptoethylguanidine and guanidine inhibitors of nitric-oxide synthase react with peroxynitrite and protect against peroxynitrite-induced oxidative damage. J. Biol. Chem. 272, 9030–9036 (1997). The characterization of mercaptoalkylguanidines as compounds of mixed pharmacological action: iNOS inhibition and peroxynitrite scavenging.

    Article  PubMed  Google Scholar 

  170. Zingarelli, B., Ischiropoulos, H., Salzman, A. L. & Szabó, C. Amelioration by mercaptoethylguanidine of the vascular and energetic failure in haemorrhagic shock in the anesthetised rat. Eur. J. Pharmacol. 338, 55–65 (1997).

    Article  CAS  PubMed  Google Scholar 

  171. Moochhala, S. M. et al. Mercaptoethylguanidine inhibition of inducible NO synthase and cyclooxygenase-2 expressions induced in rats after fluid-percussion brain injury. J. Trauma 59, 450–457 (2005).

    PubMed  Google Scholar 

  172. Ploner, F. et al. Effects of combined selective iNOS inhibition and peroxynitrite blockade during endotoxemia in pigs. Shock 16, 130–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  173. Lancel, S. et al. Peroxynitrite decomposition catalysts prevent myocardial dysfunction and inflammation in endotoxemic rats. J. Am. Coll. Cardiol. 43, 2348–2358 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Klotz, L. O. & Sies, H. Defenses against peroxynitrite: selenocompounds and flavonoids. Toxicol. Lett. 140141, 125–132 (2003).

    Article  PubMed  CAS  Google Scholar 

  175. Sugiura, H. et al. Role of peroxynitrite in airway microvascular hyperpermeability during late allergic phase in guinea pigs. Am. J. Respir. Crit. Care Med. 160, 663–671 (1999).

    Article  CAS  PubMed  Google Scholar 

  176. Daiber, A., Zou, M. H., Bachschmid, M. & Ullrich, V. Ebselen as a peroxynitrite scavenger in vitro and ex vivo. Biochem. Pharmacol. 59, 153–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Noiri, E. et al. Oxidative and nitrosative stress in acute renal ischemia. Am. J. Physiol. Renal Physiol. 281, F948–F957 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Gealekman, O. et al. Endothelial dysfunction as a modifier of angiogenic response in Zucker diabetic fat rat: amelioration with ebselen. Kidney Int. 66, 2337–2347 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Arteel, G. E., Briviba, K. & Sies, H. Protection against peroxynitrite. FEBS Lett. 445, 226–230 (1999).

    Article  CAS  PubMed  Google Scholar 

  180. Parnham, M. & Sies, H. Ebselen: prospective therapy for cerebral ischaemia. Expert Opin. Investig. Drugs. 9, 607–619 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Sies, H., Sharov, V. S., Klotz, L. O. & Briviba, K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J. Biol. Chem. 272, 27812–24817 (1997).

    Article  CAS  PubMed  Google Scholar 

  182. Arteel, G. E., Mostert, V., Oubrahim, H., Briviba, K., Abel, J. & Sies, H. Protection by selenoprotein P in human plasma against peroxynitrite-mediated oxidation and nitration. Biol. Chem. 379, 1201–1205 (1998).

    CAS  PubMed  Google Scholar 

  183. Briviba, K., Roussyn, I., Sharov, V. S. & Sies, H. Attenuation of oxidation and nitration reactions of peroxynitrite by selenomethionine, selenocystine and ebselen. Biochem. J. 319, 13–15 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Jacob, C., Arteel, G. E., Kanda, T., Engman, L. & Sies, H. Sulfur, selenium, tellurium: protection by organotellurium compounds against peroxynitrite-mediated oxidation and nitration reactions. Biochem. Pharmacol. 55, 817–823 (1998).

    Article  Google Scholar 

  185. Fernandes, D. C., Medinas, D. B., Alves, M. J. & Augusto, O. Tempol diverts peroxynitrite/carbon dioxide reactivity toward albumin and cells from protein-tyrosine nitration to protein-cysteine nitrosation. Free Radic. Biol. Med. 38, 189–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Bonini, M. G., Mason, R. P. & Augusto, O. The mechanism by which 4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (tempol) diverts peroxynitrite decomposition from nitrating to nitrosating species. Chem. Res. Toxicol. 15, 506–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  187. Thiemermann, C., McDonald, M. C. & Cuzzocrea, S. The stable nitroxide, tempol, attenuates the effects of peroxynitrite and oxygen-derived free radicals. Crit. Care Med. 29, 223–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  188. Cuzzocrea, S. et al. Effects of tempol, a membrane-permeable radical scavenger, in a gerbil model of brain injury. Brain Res. 875, 96–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Sepodes, B. et al. Tempol, an intracelullar free radical scavenger, reduces liver injury in hepatic ischemia-reperfusion in the rat. Transplant Proc. 36, 849–853 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Isobe, C. et al. Cabergoline scavenges peroxynitrite enhanced by L-DOPA therapy in patients with Parkinson's disease. Eur. J. Neurol. 13, 346–350 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Rork, T. H., Hadzimichalis, N. M., Kappil, M. A. & Merrill, G. F. Acetaminophen attenuates peroxynitrite-activated matrix metalloproteinase-2-mediated troponin I cleavage in the isolated guinea pig myocardium. J. Mol. Cell. Cardiol. 40, 553–561 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Mason, R. P., Kalinowski, L., Jacob, R. F., Jacoby, A. M. & Malinski, T. Nebivolol reduces nitroxidative stress and restores NO bioavailability in endothelium of black Americans. Circulation 112, 3795–3801 (2005).

    Article  CAS  PubMed  Google Scholar 

  193. Daiber, A. et al. Hydralazine is a powerful inhibitor of peroxynitrite formation as a possible explanation for its beneficial effects on prognosis in patients with congestive heart failure. Biochem. Biophys. Res. Commun. 338, 1865–1874 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. Fernandes, E., Gomes, A., Costa, D. & Lima, J. L. Pindolol is a potent scavenger of reactive nitrogen species. Life Sci. 77, 1983–1992 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Coffey, M. J., Phare, S. M. & Peters-Golden, M. Peroxynitrite-induced nitrotyrosination of proteins is blocked by direct 5-lipoxygenase inhibitor zileuton. J. Pharmacol. Exp. Ther. 299, 198–203 (2001).

    CAS  PubMed  Google Scholar 

  196. Cabassi, A. et al. Effects of chronic N-acetylcysteine treatment on the actions of peroxynitrite on aortic vascular reactivity in hypertensive rats. J. Hypertens. 19, 1233–1244 (2001).

    Article  CAS  PubMed  Google Scholar 

  197. Althaus, J. S. et al. Structure activity relationships of peroxynitrite scavengers an approach to NO neurotoxicity. Res. Commun. Chem. Pathol. Pharmacol. 83, 243–254 (1994).

    CAS  PubMed  Google Scholar 

  198. Selley, M. L. Simvastatin prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced striatal dopamine depletion and protein tyrosine nitration in mice. Brain Res. 1037, 1–6 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Banno, M. et al. The radical scavenger edaravone prevents oxidative neurotoxicity induced by peroxynitrite and activated microglia. Neuropharmacology 48, 283–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  200. Acquaviva, R. et al. Propofol attenuates peroxynitrite-mediated DNA damage and apoptosis in cultured astrocytes: an alternative protective mechanism. Anesthesiology 101, 1363–1371 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Trujillo, M. et al. Peroxynitrite-derived carbonate and nitrogen dioxide radicals readily react with lipoic and dihydrolipoic acid. Free Radic. Biol. Med. 39, 279–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  202. Lee, C. S. et al. Effect of R-(-)-deprenyl and harmaline on dopamine- and peroxynitrite-induced membrane permeability transition in brain mitochondria. Neurochem. Res. 27, 215–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  203. Maruyama, W., Takahashi, T., Youdim, M. & Naoi, M. The anti-Parkinson drug, rasagiline, prevents apoptotic DNA damage induced by peroxynitrite in human dopaminergic neuroblastoma SH-SY5Y cells. J. Neural Transm. 109, 467–481 (2002).

    Article  CAS  PubMed  Google Scholar 

  204. Lopez-Alarcon, C. et al. Reactivity of 1,4-dihydropyridines toward SIN-1-derived peroxynitrite. Pharm. Res. 21, 1750–1757 (2004).

    Article  CAS  PubMed  Google Scholar 

  205. Bartesaghi, S. et al. Reactions of desferrioxamine with peroxynitrite-derived carbonate and nitrogen dioxide radicals. Free Radic. Biol. Med. 36, 471–483 (2004).

    Article  CAS  PubMed  Google Scholar 

  206. Oury, T. D. et al., Cold-induced brain edema in mice. Involvement of extracellular superoxide dismutase and NO. J. Biol. Chem. 268, 15394–15398 (1993).

    Article  CAS  PubMed  Google Scholar 

  207. Ye, Y. et al. Prevention of peroxynitrite-induced apoptosis of motor neurons and pc12 cells by tyrosine-containing peptides. J. Biol. Chem. 282, 6324–6337 (2007).

    Article  CAS  PubMed  Google Scholar 

  208. Panasenko, O. M., Sharov, V. S., Briviba, K. & Sies, H. Interaction of peroxynitrite with carotenoids in human low density lipoproteins. Arch. Biochem. Biophys. 373, 302–305 (2000).

    Article  CAS  PubMed  Google Scholar 

  209. Arteel, G. E. & Sies, H. Protection against peroxynitrite by cocoa polyphenol oligomers. FEBS Lett. 462, 167–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  210. Schroeder, P., Klotz, L. O. & Sies, H. Amphiphilic properties of (-)-epicatechin and their significance for protection of cells against peroxynitrite. Biochem. Biophys. Res. Commun. 307, 69–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  211. Ferrer-Sueta, G., Quijano, C., Alvarez, B. & Radi, R. Reactions of manganese porphyrins and manganese-superoxide dismutase with peroxynitrite. Methods Enzymol. 349, 23–37 (2002).

    Article  CAS  PubMed  Google Scholar 

  212. Stern, M. K., Jensen, M. P. & Kramer, K. Peroxynitrite decomposition catalysts. J. Am. Chem. Soc. 118, 8735–8736 (1996). The first paper on the synthesis and initial characterization of a peroxynitrite decomposition catalyst ferro-porphyrinic compound.

    Article  CAS  Google Scholar 

  213. Jensen, M. P. & Riley, D. P. Peroxynitrite decomposition activity of iron porphyrin complexes. Inorg. Chem. 41, 4788–4797 (2002).

    Article  CAS  PubMed  Google Scholar 

  214. Shimanovich, R. & Groves, J. T. Mechanisms of peroxynitrite decomposition catalyzed by FeTMPS, a bioactive sulfonated iron porphyrin. Arch. Biochem. Biophys. 387, 307–317 (2001).

    Article  CAS  PubMed  Google Scholar 

  215. Salvemini, D. et al. Evidence of peroxynitrite involvement in the carrageenan-induced rat paw edema. Eur. J. Pharmacol. 303, 217–220 (1996).

    Article  CAS  PubMed  Google Scholar 

  216. Salvemini, D., Wang, Z. Q., Stern, M. K., Currie, M. G. & Misko, T. P. Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proc. Natl Acad. Sci. USA 95, 2659–2663 (1998). An initial characterization of the pharmacological effect of molecules designed to catalytically neutralize peroxynitrite.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Cross, A. H. et al. A catalyst of peroxynitrite decomposition inhibits murine experimental autoimmune encephalomyelitis. J. Neuroimmunol. 107, 21–28 (2001).

    Article  Google Scholar 

  218. Muscoli, C. et al. Peroxynitrite decomposition catalyst prevents apoptotic cell death in a human astrocytoma cell line incubated with supernatants of HIV-infected macrophages. BMC Neurosci. 3, 13 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Cuzzocrea, S. et al. Beneficial effects of peroxynitrite decomposition catalyst in a rat model of splanchnic artery occlusion and reperfusion. FASEB J. 14, 1061–1072 (2000).

    Article  CAS  PubMed  Google Scholar 

  220. Thiyagarajan, M., Kaul, C. L. & Sharma, S. S. Neuroprotective efficacy and therapeutic time window of peroxynitrite decomposition catalysts in focal cerebral ischemia in rats. Br. J. Pharmacol. 142, 899–911 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Sharma, S. S., Munusamy, S., Thiyagarajan, M. & Kaul, C. L. Neuroprotective effect of peroxynitrite decomposition catalyst and poly(adenosine diphosphate-ribose) polymerase inhibitor alone and in combination in rats with focal cerebral ischemia. J. Neurosurg. 101, 669–675 (2004).

    Article  CAS  PubMed  Google Scholar 

  222. Xie, Z. et al. Peroxynitrite mediates neurotoxicity of amyloid β-peptide1–42- and lipopolysaccharide-activated microglia. J. Neurosci. 22, 3484–3492 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Mander, P. & Brown, G. C. Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J. Neuroinflammation 22, 20 (2005).

    Article  CAS  Google Scholar 

  224. Tan, K. H., Harrington, S., Purcell, W. M. & Hurst, R. D. Peroxynitrite mediates NO-induced blood–brain barrier damage. Neurochem. Res. 29, 579–587 (2004).

    Article  CAS  PubMed  Google Scholar 

  225. Ferdinandy, P., Danial, H. Ambrus, I., Rothery, R. A. & Schulz, R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ. Res. 87, 241–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  226. Kim, J. Y., Lee, K. H., Lee, B. K. & Ro, J. Y. Peroxynitrite modulates release of inflammatory mediators from guinea pig lung mast cells activated by antigen–antibody reaction. Int. Arch. Allergy Immunol. 137, 104–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  227. Beauchamp, M. H. et al. Redox-dependent effects of NO on microvascular integrity in oxygen-induced retinopathy. Free Radic. Biol. Med. 37, 1885–1894 (2004).

    Article  CAS  PubMed  Google Scholar 

  228. Chirino, Y. I., Hernandez-Pando, R. & Pedraza-Chaverri, J. Peroxynitrite decomposition catalyst ameliorates renal damage and protein nitration in cisplatin-induced nephrotoxicity in rats. BMC Pharmacol. 4, 20 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Nangle, M. R., Cotter, M. A. & Cameron, N. E. Effects of the peroxynitrite decomposition catalyst, FeTMPyP, on function of corpus cavernosum from diabetic mice. Eur. J. Pharmacol. 502, 143–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  230. Cuzzocrea, S. et al. A role for NO-mediated peroxynitrite formation in a model of endotoxin induced shock. J. Pharmacol. Exp. Ther. 319, 73–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  231. Szabó, C. et al. Pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol. Med. 8, 571–580 (2002). A description of an iron-porphyrinic peroxynitrite decomposition calalyst: anti-inflammatory effects in vivo.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Tauskela, J. S. et al. Competing approaches to excitotoxic neuroprotection by inert and catalytic antioxidant porphyrins. Neurosci. Lett. 401, 236–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  233. Obrosova, I. G. et al. Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst. FASEB J. 19, 401–403 (2005).

    Article  CAS  PubMed  Google Scholar 

  234. Sugawara, R. et al. Peroxynitrite decomposition catalyst, FP15, and poly(ADP-ribose) polymerase inhibitor, PJ34, inhibit leukocyte entrapment in the retinal microcirculation of diabetic rats. Curr. Eye Res. 29, 11–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  235. Bianchi, C. et al. A novel peroxynitrite decomposer catalyst (FP-15) reduces myocardial infarct size in an in vivo peroxynitrite decomposer and acute ischemia-reperfusion in pigs. Ann. Thorac. Surg. 74, 1201–1207 (2002).

    Article  PubMed  Google Scholar 

  236. Pacher, P. et al. Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation 107, 896–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  237. Naidu, B. V. et al. Enhanced peroxynitrite decomposition protects against experimental obliterative bronchiolitis. Exp. Mol. Pathol. 75, 12–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  238. Lacza, Z. et al. PARP inhibition improves the effectiveness of neural stem cell transplantation in experimental brain trauma. Int. J. Mol. Med. 12, 153–159 (2003).

    CAS  PubMed  Google Scholar 

  239. Naidu, B. V. et al. Critical role of reactive nitrogen species in lung ischemia-reperfusion injury. J. Heart Lung Transplant. 22, 784–793 (2003).

    Article  PubMed  Google Scholar 

  240. Mabley, J. G. et al. Suppression of intestinal polyposis in Apcmin/+ mice by targeting the NO or poly(ADP-ribose) pathways. Mutat. Res. 548, 107–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  241. Mabley, J. G. et al. Beneficial effects of the peroxynitrite decomposition catalyst FP15 in murine models of arthritis and colitis. Mol. Med. 8, 581–590 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Pieper, G. M. et al. Protective mechanisms of a metalloporphyrinic peroxynitrite decomposition catalyst, WW85, in rat cardiac transplants. J. Pharmacol. Exp. Ther. 314, 53–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  243. Mangino, M. J. et al. Role of peroxynitrite anion in renal hypothermic preservation injury. Transplantation 80, 1455–1460 (2005).

    Article  PubMed  Google Scholar 

  244. Szabó, C., Day, B. J. & Salzman, A. L. Evaluation of the relative contribution of NO and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages using a manganese mesoporphyrin superoxide dismutase mimetic and peroxynitrite scavenger. FEBS Lett. 381, 82–86 (1996).

    Article  PubMed  Google Scholar 

  245. Zingarelli, B., Day, B. J., Crapo, J. D., Salzman, A. L. & Szabó, C. The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock. Br. J. Pharmacol. 120, 259–267 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Cuzzocrea, S., Zingarelli, B., Costantino, G. & Caputi, A. P. Beneficial effects of Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), a superoxide dismutase mimetic, in carrageenan-induced pleurisy. Free Radic. Biol. Med. 26, 25–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  247. Kastenbauer, S., Koedel, U., Becker, B. F. & Pfister, H. W. Pneumococcal meningitis in the rat: evaluation of peroxynitrite scavengers for adjunctive therapy. Eur. J. Pharmacol. 449, 177–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  248. Liu, D., Bao, F., Prough, D. S. & Dewitt, D. S. Peroxynitrite generated at the level produced by spinal cord injury induces peroxidation of membrane phospholipids in normal rat cord: reduction by a metalloporphyrin. J. Neurotrauma. 22, 1123–1133 (2005).

    Article  CAS  PubMed  Google Scholar 

  249. Ferrer-Sueta, G. et al. Reactions of manganese porphyrins with peroxynitrite and carbonate radical anion. J. Biol. Chem. 278, 27432–27438 (2003). A detailed biochemical characterization of the peroxynitrite/manganese porphyrin interactions.

    Article  CAS  PubMed  Google Scholar 

  250. Trostchansky, A. et al. Peroxynitrite flux-mediated LDL oxidation is inhibited by manganese porphyrins in the presence of uric acid. Free Radic. Biol. Med. 35, 1293–1300 (2003).

    Article  CAS  PubMed  Google Scholar 

  251. Crow, J. P. Peroxynitrite scavenging by metalloporphyrins and thiolates. Free Radic. Biol. Med. 28, 1487–1494 (2000).

    Article  CAS  PubMed  Google Scholar 

  252. Ferrer-Sueta, G., Hannibal, L., Batinic-Haberle, I. & Radi, R. Reduction of manganese porphyrins by flavoenzymes and submitochondrial particles: a catalytic cycle for the reduction of peroxynitrite. Free Radic. Biol. Med. 41, 503–512 (2006).

    Article  CAS  PubMed  Google Scholar 

  253. Faulkner, K. M., Liochev, S. I. & Fridovich, I. Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J. Biol. Chem. 269, 23471–23476 (1994).

    Article  CAS  PubMed  Google Scholar 

  254. Spasojevic, I. et al. Mn porphyrin-based SOD mimic, Mnte-2-Pyp5+, targets mouse heart mitochondria. Free Radic. Biol. Med. 42, 1193–1200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Batinic-Haberle, I., Benov, L., Spasojevic, I. & Fridovich, I. The ortho effect makes manganese(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin a powerful and potentially useful superoxide dismutase mimic. J. Biol. Chem. 273, 24521–24528 (1998).

    Article  CAS  PubMed  Google Scholar 

  256. Mackensen, G. B. et al. Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant. J. Neurosci. 21, 4582–4592 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Vujaskovic, Z. et al. A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic. Biol. Med. 33, 857–863 (2002).

    Article  CAS  PubMed  Google Scholar 

  258. Moeller, B. J. et al. A manganese porphyrin superoxide dismutase mimetic enhances tumor radioresponsiveness. Int. J. Radiat. Oncol. Biol. Phys. 63, 545–552 (2005).

    Article  CAS  PubMed  Google Scholar 

  259. Orrell, R. W. AEOL-10150 (Aeolus). Curr. Opin. Investig. Drugs 7, 70–80 (2006). An overview of AEOL-10150, a manganese porphyrinic antioxidant with neuroprotective actions, entering a Phase I clinical trial.

    CAS  PubMed  Google Scholar 

  260. Sheng, H. et al. Effects of metalloporphyrin catalytic antioxidants in experimental brain ischemia. Free Radic. Biol. Med. 33, 947–961 (2002).

    Article  CAS  PubMed  Google Scholar 

  261. Sheng, H., Spasojevic, I., Warner, D. S. & Batinic-Haberle, I. Mouse spinal cord compression injury is ameliorated by intrathecal cationic manganese(III) porphyrin catalytic antioxidant therapy. Neurosci. Lett. 366, 220–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  262. Crow, J. P., Calingasan, N. Y., Chen, J., Hill, J. L. & Beal, M. F. Manganese porphyrin given at symptom onset markedly extends survival of ALS mice. Ann. Neurol. 58, 258–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  263. Shimanovich, R. et al. Mn(II)-texaphyrin as a catalyst for the decomposition of peroxynitrite. J. Am. Chem. Soc. 123, 3613–3614 (2001).

    Article  CAS  PubMed  Google Scholar 

  264. Sharpe, M. A., Ollosson, R., Stewart, V. C. & Clark, J. B. Oxidation of nitric oxide by oxomanganese-salen complexes: a new mechanism for cellular protection by superoxide dismutase/catalase mimetics. Biochem. J. 366, 97–107 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Schepetkin, I. et al. Decomposition of reactive oxygen species by copper(II) bis(1-pyrazolyl)methane complexes. J. Biol. Inorg. Chem. 11, 499–513 (2006).

    Article  CAS  PubMed  Google Scholar 

  266. Asayama, S., Kawamura, E., Nagaoka, S. & Kawakami, H. Design of manganese porphyrin modified with mitochondrial signal peptide for a new antioxidant. Mol. Pharm. 3, 468–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  267. Szabó, C., Salzman, A. L. & Ischiropoulos, H. Endotoxin triggers the expression of an inducible isoform of NO synthase and the formation of peroxynitrite in the rat aorta in vivo. FEBS Lett. 363, 235–238 (1995).

    Article  PubMed  Google Scholar 

  268. Szabó, C., Salzman, A. L. & Ischiropoulos, H. Peroxynitrite-mediated oxidation of dihydrorhodamine 123 occurs in early stages of endotoxic and hemorrhagic shock and ischemia-reperfusion injury. FEBS Lett. 372, 229–232 (1995).

    Article  PubMed  Google Scholar 

  269. Fukuyama, N. et al. Clinical evidence of peroxynitrite formation in chronic renal failure patients with septic shock. Free Radic. Biol. Med. 22, 771–774 (1997).

    Article  CAS  PubMed  Google Scholar 

  270. Takakura, K., Xiaohong, W., Takeuchi, K., Yasuda, Y. & Fukuda, S. Deactivation of norepinephrine by peroxynitrite as a new pathogenesis in the hypotension of septic shock. Anesthesiology 98, 928–934 (2003).

    Article  CAS  PubMed  Google Scholar 

  271. Delaney, C. A. et al. Sensitivity of human pancreatic islets to peroxynitrite-induced cell dysfunction and death. FEBS Lett. 394, 300–306 (1996).

    Article  CAS  PubMed  Google Scholar 

  272. Suarez-Pinzon, W. L., Szabó, C. & Rabinovitch, A. Development of autoimmune diabetes in NOD mice is associated with the formation of peroxynitrite in pancreatic islet β-cells. Diabetes 46, 907–911 (1997).

    Article  CAS  PubMed  Google Scholar 

  273. Suarez-Pinzon, W. L. et al. An inhibitor of inducible NO synthase and scavenger of peroxynitrite prevents diabetes development in NOD mice. J. Autoimmun. 16, 449–455 (2001).

    Article  CAS  PubMed  Google Scholar 

  274. Bottino, R. et al. Preservation of human islet cell functional mass by anti-oxidative action of a novel SOD mimic compound. Diabetes 51, 2561–2567 (2002).

    Article  CAS  PubMed  Google Scholar 

  275. Piganelli, J. D. et al. A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone. Diabetes 51, 347–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  276. Olcott, A. P. et al. A salen-manganese catalytic free radical scavenger inhibits type 1 diabetes and islet allograft rejection. Diabetes 53, 2574–2580 (2004).

    Article  CAS  PubMed  Google Scholar 

  277. Del Guerra, S. et al. Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes 54, 727–735 (2005).

    Article  CAS  PubMed  Google Scholar 

  278. Thuraisingham, R. C., Nott, C. A., Dodd, S. M. & Yaqoob, M. M. Increased nitrotyrosine staining in kidneys from patients with diabetic nephropathy. Kidney Int. 57, 1968–1972 (2000).

    Article  CAS  PubMed  Google Scholar 

  279. Szabó, C. et al. Poly(ADP-Ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation 106, 2680–2686 (2002).

    Article  PubMed  CAS  Google Scholar 

  280. Garcia Soriano, F. et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nature Med. 7, 108–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  281. Devaraj, S. et al. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 55, 774–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  282. Pacher, P., Schulz, R., Liaudet, L. & Szabó, C. Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol. Sci. 26, 302–310 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Flesch, M. et al. Effects of endotoxin on human myocardial contractility involvement of NO and peroxynitrite. J. Am. Coll. Cardiol. 33, 1062–1070 (1996).

    Article  Google Scholar 

  284. Lokuta, A. J. et al. Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation 111, 988–995 (2005).

    Article  CAS  PubMed  Google Scholar 

  285. Linke, A. et al. Antioxidative effects of exercise training in patients with chronic heart failure: increase in radical scavenger enzyme activity in skeletal muscle. Circulation 111, 1763–1770 (2005).

    Article  CAS  PubMed  Google Scholar 

  286. Hunt, M. J. et al. Induction of oxidative stress and disintegrin metalloproteinase in human heart end-stage failure. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L239–L245 (2002).

    Article  CAS  PubMed  Google Scholar 

  287. Stewart, V. C. & Heales, S. J. NO-induced mitochondrial dysfunction: implications for neurodegeneration. Free Radic. Biol. Med. 34, 287–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  288. Schulz, J. B., Matthews, R. T., Klockgether, T., Dichgans, J. & Beal, M. F. The role of mitochondrial dysfunction and neuronal NO in animal models of neurodegenerative diseases. Mol. Cell. Biochem. 174, 193–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  289. Torreilles, F., Salman-Tabcheh, S., Guerin, M. & Torreilles, J. Neurodegenerative disorders: the role of peroxynitrite. Brain Res. Brain Res. Rev. 30, 153–163 (1999).

    Article  CAS  PubMed  Google Scholar 

  290. Liu, J. S., Zhao, M. L., Brosnan, C. F. & Lee, S. C. Expression of inducible NO synthase and nitrotyrosine in multiple sclerosis lesions. Am. J. Pathol. 158, 2057–2066 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Mapp, P. I. et al. Localization of 3-nitrotyrosine to rheumatoid and normal synovium. Arthritis Rheum. 44, 1534–1539 (2001).

    Article  CAS  PubMed  Google Scholar 

  292. Kimura, H. et al. Increased expression of an inducible isoform of NO synthase and the formation of peroxynitrite in colonic mucosa of patients with active ulcerative colitis. Gut 42, 180–187 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Forster, C., Clark, H. B., Ross, M. E. & Iadecola, C. Inducible NO synthase expression in human cerebral infarcts. Acta Neuropathol. 97, 215–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  294. Baker, C. S. et al. Immunocytochemical evidence for inducible NO synthase and cyclooxygenase-2 expression with nitrotyrosine formation in human hibernating myocardium. Basic Res. Cardiol. 97, 409–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  295. Levrand, S. et al. Peroxynitrite is a major trigger of cardiomyocyte apoptosis in vitro and in vivo. Free Radic. Biol. Med. 41, 886–895 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Greenacre, S. A. & Ischiropoulos, H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic. Res. 34, 541–581 (2001).

    Article  CAS  PubMed  Google Scholar 

  297. Wu, A. S. et al. Iron porphyrin treatment extends survival in a transgenic animal model of amyotrophic lateral sclerosis. J. Neurochem. 85, 142–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  298. Yamaguchi, Y. et al. Peroxynitrite formation during rat hepatic allograft rejection. Hepatology 29, 777–784 (1999).

    Article  CAS  PubMed  Google Scholar 

  299. Sakurai, M. et al. Quantitative analysis of cardiac 3-L-nitrotyrosine during acute allograft rejection in an experimental heart transplantation. Transplantation 68, 1818–1822 (1999).

    Article  CAS  PubMed  Google Scholar 

  300. Van der Loo, B. et al. Enhanced peroxynitrite formation is associated with vascular aging. J. Exp Med. 192, 1731–1744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Xu, S. et al. Detection of sequence-specific tyrosine nitration of manganese SOD and SERCA in cardiovascular disease and aging. Am. J. Physiol. Heart Circ. Physiol. 290, H2220–H2226 (2006).

    Article  CAS  PubMed  Google Scholar 

  302. Seo, A. Y. et al. Hepatic oxidative stress during aging: effects of 8% long-term calorie restriction and lifelong exercise. Antioxid. Redox Signal. 8, 529–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  303. Radovits, T. et al. The peroxynitrite decomposition catalyst FP15 improves ageing-associated cardiac and vascular dysfunction. Mech. Ageing Dev. 128, 173–181 (2007).

    Article  CAS  PubMed  Google Scholar 

  304. Vadseth, C. et al. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J. Biol. Chem. 279, 8820–8826 (2004).

    Article  CAS  PubMed  Google Scholar 

  305. Marcondes, S., Turko, I. V. & Murad, F. Nitration of succinyl-CoA:3-oxoacid CoA-transferase in rats after endotoxin administration. Proc. Natl Acad. Sci. USA 98, 7146–7151 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Turko, I. V., Marcondes, S. & Murad, F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. Am. J. Physiol. Heart Circ. Physiol. 281, H2289–H2294 (2001).

    Article  CAS  PubMed  Google Scholar 

  307. Lees, K. R. et al. Stroke-Acute Ischemic NXY Treatment (SAINT I) Trial Investigators. NXY-059 for acute ischemic stroke. N. Engl. J. Med. 354, 588–600 (2006).

    Article  CAS  PubMed  Google Scholar 

  308. Cable, E. E., Gildemeister, O. S., Pepe, J. A., Lambrecht, R. W. & Bonkovsky, H. L. Mechanism of induction of heme oxygenase by metalloporphyrins in primary chick embryo liver cells: evidence against a stress-mediated response. Mol. Cell. Biochem. 169, 13–20 (1997).

    Article  CAS  PubMed  Google Scholar 

  309. Bowler, R. P. et al. A catalytic antioxidant (AEOL 10150) attenuates expression of inflammatory genes in stroke. Free Radic. Biol. Med. 33, 1141–1152 (2002).

    Article  CAS  PubMed  Google Scholar 

  310. Tumurkhuu, G. et al. MnTBAP, a synthetic metalloporphyrin, inhibits production of tumor necrosis factor-α in lipopolysaccharide-stimulated RAW 264.7 macrophages cells via inhibiting oxidative stress-mediating p38 and SAPK/JNK signaling. FEMS Immunol. Med. Microbiol. 49, 304–311 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Valez and D. Vitturi (Universidad de la República, Uruguay) for their contribution to the artwork. We also thank G. Ferrer-Sueta (Universidad de la República, Uruguay) for useful discussions. This work was supported by the NIH R01 GM060915 grant and the Oscar Asboth Project Grant from the National Office of Research and Technology, Budapest, Hungary to C.S.; HL54926, AG13966, ES013508 NIEHS Center of Excellence in Environmental Toxicology grants to H.I.; and The Howard Hughes Medical Institute and the International Centre of Genetic Engineering and Biotechnology grant to R.R. H.I. is the Gisela and Dennis Alter Chair in Pediatric Neonatology at the Children's Hospital of Philadelphia. R.R. is a Howard Hughes International Research Scholar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Csaba Szabó or Rafael Radi.

Ethics declarations

Competing interests

C.S. is a founder, stockholder and consultant to Inotek Pharmaceuticals Corporation, a pharmaceutical firm that is involved in the development of peroxynitrite decomposition catalysts.

Supplementary information

Supplementary information S1 (box)

Exposure of biological systems to peroxynitrite (PDF 109 kb)

Supplementary information S2 (box)

Practical aspects of working with peroxynitrite (PDF 107 kb)

Supplementary information S3 (box)

Peroxynitrite – a mediator of cell death (PDF 102 kb)

Related links

Related links

DATABASES

OMIM

Amyotrophic lateral sclerosis

Multiple sclerosis

Parkinson's disease

Glossary

Nitric oxide

The product of nitric oxide (NO) synthases, a family of proteins that catalyze the oxidation of the guanidine group of L-arginine to citrulline and NO.

Superoxide

The product of the one-electron reduction of molecular oxygen.

Transition metal centres

Complexes of biomolecules with transition metals such as iron, manganese or copper that can participate in redox chemistry.

Radical–radical termination

A reaction between two free radicals, which leads to a non-free radical adduct as a reaction product and therefore stops radical propagation reactions.

Homolytic fission

Rupture of a covalent bond in a molecule, in which the two resulting products keep one of the bond electrons (for example, A:B → A. + B.).

Tetrahydrobiopterin

A cofactor that carries electrons for redox reactions. It serves as a cofactor for nitric oxide synthase.

Mitochondrial electron-transport chain

A series of redox carrier proteins in the inner mitochondrial membrane that enable the flow of electrons from respiratory substrates to molecular oxygen. The potential energy inherent in the electron gradient is used to drive the synthesis of ATP when protons flow back across the membrane through another enzyme complex, ATP synthase.

Cytochrome c

An evolutionally highly conserved small 12,000 daltons haem protein present in the mitochondrial intermembrane space. It participates in mitochondrial electron transport and can also serve as a pro-apoptotic signal if released into the cytosol.

Mn superoxide dismutase

A key manganese-containing mitochondrial antioxidant enzyme that catalyzes superoxide radical dismutation.

Poly(ADP-ribose) polymerase

(PARP). Several reactive oxygen and nitrogen species can trigger DNA strand breakage, which then activates the nuclear enzyme PARP. Rapid activation of the enzyme depletes the intracellular concentration of its substrate, NAD, thus slowing the rate of glycolysis, electron transport and subsequently ATP formation. PARP plays a physiological role in the cells to facilitate DNA repair and to maintain genomic integrity.

Permeability transition pore

A mitochondrial multiprote in structure that once activated serves for the release of pro-apoptotic factors into the cytosol.

Sepsis

A serious systemic inflammatory disease condition associated with fever, elevated white blood cell count, raised heart rate and increased breathing rate. Severe sepsis can be also associated with multiple organ failure and circulatory collapse.

Porphyrin

A macrocyclic organic molecule consisting of four pyrrole rings that participates in the structure of haem proteins such as haemoglobin and cytochromes. It can tightly bind iron and manganese.

Catecholamines

A group of endogenous amines (adrenaline, noradrenaline and dopamine) derived from catechol that have important physiological effects as neurotransmitters and hormones. Some of their effects include increases in heart rate, blood pressure and blood glucose levels.

Chelator

A molecule that has the capacity of tight metal binding (complexation).

Dismutation

A chemical reaction between two identical molecules to produce two different products (for example, superoxide dismutation to molecular oxygen and hydrogen peroxide).

Cage return reaction

In the course of a chemical reaction, the reaction between two transient products before they diffuse out of the 'solvent cage'.

Atropoisomerism

A type of stereoisomerism that may arise in systems in which free rotation around a single covalent bond is impeded sufficiently so as to allow different stereoisomers to be isolated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabó, C., Ischiropoulos, H. & Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6, 662–680 (2007). https://doi.org/10.1038/nrd2222

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing