Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment-related cardiotoxicity in survivors of childhood cancer

Key Points

  • Advances in treatment have increased the number of childhood cancer survivors with late-occurring, treatment-related cardiovascular complications

  • Treatment-induced cardiovascular events associated with chemotherapy and radiotherapy include cardiomyopathy, conduction defects, myocardial infarction, hypertension, stroke, pulmonary oedema, dyspnoea, and exercise intolerance

  • The likelihood that subclinical damage will progress to clinically important events emphasizes the importance of reducing or eliminating this early damage

  • Protective strategies that have been partially tested include administering cardioprotective agents, using less-toxic anthracycline derivatives and correcting therapy-related endocrinopathies that affect cardiovascular disease development

  • Traditional cardiovascular risk factors, in addition to factors directly related to cancer treatments, can further increase the risk of cardiovascular complications in survivors

  • Cancer treatment protocols should be refined to minimize cardiovascular and other adverse effects while maintaining acceptable cancer treatment response rates

Abstract

Treatment advances and higher participation rates in clinical trials have rapidly increased the number of survivors of childhood cancer. However, chemotherapy and radiation treatments are cardiotoxic and can cause cardiomyopathy, conduction defects, myocardial infarction, hypertension, stroke, pulmonary oedema, dyspnoea and exercise intolerance later in life. These cardiotoxic effects are often progressive and irreversible, emphasizing a need for effective prevention and treatment to reduce or avoid cardiotoxicity. Medical interventions, such as angiotensin-converting enzyme inhibitors, β-blockers, and growth hormone therapy, might be used to treat cardiotoxicity in childhood cancer survivors. Preventative strategies should include the use of dexrazoxane, which provides cardioprotection without reducing the oncological efficacy of doxorubicin chemotherapy; less-toxic anthracycline derivatives and the use of antioxidant nutritional supplements might also be beneficial. Continuous-infusion doxorubicin provides no benefit over bolus infusion in children. Identifying patient-related (for example, obesity and hypertension) and drug-related (for example, cumulative dose) risk factors for cardiotoxicity could help tailor treatments to individual patients. However, all survivors of childhood cancer are at increased risk of cardiotoxicity, suggesting that survivor screening recommendations for assessment of global risk of premature cardiovascular disease should apply to all survivors. Optimal, evidence-based monitoring strategies and multiagent preventative treatments still need to be identified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progressive cardiac dysfunction after doxorubicin therapy in children treated for acute lymphoblastic leukaemia.
Figure 2: Stages in the course of paediatric ventricular dysfunction.
Figure 3: Potential opportunities for cardioprotection.
Figure 4: Differences in anthracycline cardiotoxic late effects experienced between adults and children attributable to common risk factors.39

Similar content being viewed by others

References

  1. American Cancer Society. Cancer facts & figures 2012. American Cancer Society [online], (2012).

  2. Howlader, N. et al. SEER cancer statistics review, 1975–2010. National Cancer Institute [online], (2013).

  3. Mariotto, A. B. et al. Long-term survivors of childhood cancers in the United States. Cancer Epidemiol. Biomarkers Prev. 18, 1033–1040 (2009).

    Article  PubMed  Google Scholar 

  4. Oeffinger, K. C. et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med. 355, 1572–1582 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Lipshultz, S. E. et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N. Engl. J. Med. 324, 808–815 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Mulrooney, D. A. et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ 339, b4606 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tukenova, M. et al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J. Clin. Oncol. 28, 1308–1315 (2010).

    Article  PubMed  Google Scholar 

  8. Mertens, A. C. et al. Cause-specific late mortality among 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. J. Natl Cancer Inst. 100, 1368–1379 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reulen, R. C. et al. Long-term cause-specific mortality among survivors of childhood cancer. JAMA 304, 172–179 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Moller, T. R. et al. Decreasing late mortality among five-year survivors of cancer in childhood and adolescence: a population-based study in the Nordic countries. J. Clin. Oncol. 19, 3173–3181 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Kalay, N. et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J. Am. Coll. Cardiol. 48, 2258–2262 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Legha, S. S. et al. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann. Intern. Med. 96, 133–139 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Lipshultz, S. E. et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N. Engl. J. Med. 351, 145–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Lipshultz, S. E. et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol. 11, 950–961 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walker, D. M. et al. Dexrazoxane use in pediatric patients with acute lymphoblastic or myeloid leukemia from 1999 and 2009: analysis of a national cohort of patients in the Pediatric Health Information Systems database. Pediatr. Blood Cancer 60, 616–620 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Lipshultz, S. E. & Adams, M. J. Cardiotoxicity after childhood cancer: beginning with the end in mind. J. Clin. Oncol. 28, 1276–1281 (2010).

    Article  PubMed  Google Scholar 

  17. Moghrabi, A. et al. Results of the Dana–Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. Blood 109, 896–904 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kremer, L. C., van Dalen, E. C., Offringa, M., Ottenkamp, J. & Voûte, P. A. Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study. J. Clin. Oncol. 19, 191–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Lipshultz, S. E. et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J. Clin. Oncol. 23, 2629–2636 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Bagnes, C., Panchuk, P. N. & Recondo, G. Antineoplastic chemotherapy induced QTc prolongation. Curr. Drug Saf. 5, 93–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Kilickap, S., Akgul, E., Aksoy, S., Aytemir, K. & Barista, I. Doxorubicin-induced second degree and complete atrioventricular block. Europace 7, 227–230 (2005).

    Article  PubMed  Google Scholar 

  22. Nakamae, H. et al. QT dispersion correlates with systolic rather than diastolic parameters in patients receiving anthracycline treatment. Intern. Med. 43, 379–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Zhai, L. et al. Long-term results of pirarubicin versus doxorubicin in combination chemotherapy for aggressive non-Hodgkin's lymphoma: single center, 15-year experience. Int. J. Hematol. 91, 78–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Krause, D. S. et al. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 353, 172–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Farolfi, A. et al. Trastuzumab-induced cardiotoxicity in early breast cancer patients: a retrospective study of possible risk and protective factors. Heart 99, 634–639 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Pansy, J. et al. Add-on-therapy with bevacizumab in children and adolescents with poor prognosis non-CNS solid tumors. Anticancer Drugs 24, 198–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Force, T., Krause, D. S. & Van Etten, R. A. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibitors. Nat. Rev. Cancer 7, 332–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Ewer, M. S. et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J. Clin. Oncol. 23, 7820–7826 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Barry, E., Alvarez, J. A., Scully, R. E., Miller, T. L. & Lipshultz, S. E. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin. Pharmacother. 8, 1039–1058 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Ebb, D. et al. Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the Children's Oncology Group. J. Clin. Oncol. 30, 2545–2551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adams, M. J., Hardenbergh, P. H., Constine, L. S. & Lipshultz, S. E. Radiation-associated cardiovascular disease. Crit. Rev. Oncol. Hematol. 45, 55–75 (2003).

    Article  PubMed  Google Scholar 

  32. Adams, M. J. et al. Radiation-associated cardiovascular disease: manifestations and management. Semin. Radiat. Oncol. 13, 346–356 (2003).

    Article  PubMed  Google Scholar 

  33. Albini, A. et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J. Natl Cancer Inst. 102, 14–25 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bensky, A. S., Kothadia, J. M. & Covitz, W. Cardiac effects of dexamethasone in very low birth weight infants. Pediatrics 97, 818–821 (1996).

    CAS  PubMed  Google Scholar 

  35. Adams, M. J. & Lipshultz, S. E. Pathophysiology of anthracycline- and radiation-associated cardiomyopathies: implications for screening and prevention. Pediatr. Blood Cancer 44, 600–606 (2005).

    Article  PubMed  Google Scholar 

  36. Simbre, V. C., Duffy, S. A., Dadlani, G. H., Miller, T. L. & Lipshultz, S. E. Cardiotoxicity of cancer chemotherapy: implications for children. Paediatr. Drugs 7, 187–202 (2005).

    Article  PubMed  Google Scholar 

  37. Giantris, A., Abdurrahman, L., Hinkle, A., Asselin, B. & Lipshultz, S. E. Anthracycline-induced cardiotoxicity in children and young adults. Crit. Rev. Oncol. Hematol. 27, 53–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Von Hoff, D. D. et al. Risk factors for doxorubicin-induced congestive heart failure. Ann. Intern. Med. 91, 710–717 (1979).

    Article  CAS  PubMed  Google Scholar 

  39. Lipshultz, S. E. et al. Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N. Engl. J. Med. 332, 1738–1743 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Orgel, E. et al. Early cardiac outcomes following contemporary treatment for childhood acute myeloid leukemia: a North American perspective. Pediatr. Blood Cancer 60, 1528–1533 (2013).

    Article  PubMed  Google Scholar 

  41. Hudson, M. M. et al. Noninvasive evaluation of late anthracycline cardiac toxicity in childhood cancer survivors. J. Clin. Oncol. 25, 3635–3643 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Trachtenberg, B. H. et al. Anthracycline-associated cardiotoxicity in survivors of childhood cancer. Pediatr. Cardiol. 32, 342–353 (2011).

    Article  PubMed  Google Scholar 

  43. Lipshultz, S. E. et al. Continuous versus bolus infusion of doxorubicin in children with ALL: long-term cardiac outcomes. Pediatrics 130, 1003–1011 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang, J. et al. Sex-related differences in mast cell activity and doxorubicin toxicity: a study in spontaneously hypertensive rats. Toxicol. Pathol. http://dx.doi.org/10.1177/0192623313482778.

  45. Rodvold, K. A., Rushing, D. A. & Tewksbury, D. A. Doxorubicin clearance in the obese. J. Clin. Oncol. 6, 1321–1327 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. Heidenreich, P. A. et al. Screening for coronary artery disease after mediastinal irradiation for Hodgkin's disease. J. Clin. Oncol. 25, 43–49 (2007).

    Article  PubMed  Google Scholar 

  47. van der Pal, H. et al. High risk of symptomatic cardiac events in childhood cancer survivors. J. Clin. Oncol. 30, 1429–1437 (2012).

    Article  PubMed  Google Scholar 

  48. Landy, D. C. et al. Cranial irradiation as an additional risk factor for anthracycline cardiotoxicity in childhood cancer survivors: an analysis from the cardiac risk factors in childhood cancer survivors study. Pediatr. Cardiol. 34, 826–834 (2013).

    Article  PubMed  Google Scholar 

  49. Lipshultz, S. E. et al. Cardiovascular status of childhood cancer survivors exposed and unexposed to cardiotoxic therapy. J. Clin. Oncol. 30, 1050–1057 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Blanco, J. G. et al. Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer 112, 2789–2795 (2008).

    Article  PubMed  Google Scholar 

  51. Lipshultz, S. E. et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer 119, 3555–3562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Visscher, H. et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J. Clin. Oncol. 30, 1422–1428 (2012).

    Article  PubMed  Google Scholar 

  53. Visscher, H. et al. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr. Blood Cancer 60, 1375–1381 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Blanco, J. G. et al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes—a report from the Children's Oncology Group. J. Clin. Oncol. 30, 1415–1421 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Miranda, C. J. et al. Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin. Blood 102, 2574–2580 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Krischer, J. P. et al. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J. Clin. Oncol. 15, 1544–1552 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Lipshultz, S. E. et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J. Clin. Oncol. 30, 1042–1049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Centers for Disease Control and Prevention. How much physical activity do children need? Centers for Disease Control and Prevention [online], (2011).

  59. Ness, K. K. et al. Predictors of inactive lifestyle among adult survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Cancer 115, 1984–1994 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Miller, T. L. et al. Characteristics and determinants of adiposity in pediatric cancer survivors. Cancer Epidemiol. Biomarkers Prev. 19, 2013–2022 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Landy, D. C. et al. Aggregating traditional cardiovascular disease risk factors to assess the cardiometabolic health of childhood cancer survivors: an analysis from the Cardiac Risk Factors in Childhood Cancer Survivors Study. Am. Heart J. 163, 295–301 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Miller, A. M. et al. Exercise capacity in long-term survivors of pediatric cancer: an analysis from the Cardiac Risk Factors in Childhood Cancer Survivors Study. Pediatr. Blood Cancer 60, 663–668 (2013).

    Article  PubMed  Google Scholar 

  63. Whitaker, R. C., Wright, J. A., Pepe, M. S., Seidel, K. D. & Dietz, W. H. Predicting obesity in young adulthood from childhood and parental obesity. N. Engl. J. Med. 337, 869–873 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Meacham, L. R. et al. Cardiovascular risk factors in adult survivors of pediatric cancer—a report from the childhood cancer survivor study. Cancer Epidemiol. Biomarkers Prev. 19, 170–181 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Messiah, S. E., Arheart, K. L., Lopez-Mitnik, G., Lipshultz, S. E. & Miller, T. L. Ethnic group differences in cardiometabolic disease risk factors independent of body mass index among American youth. Obesity (Silver Spring) 21, 424–428 (2013).

    Article  CAS  Google Scholar 

  66. Meacham, L. R. et al. Body mass index in long-term adult survivors of childhood cancer: a report of the Childhood Cancer Survivor Study. Cancer 103, 1730–1739 (2005).

    Article  PubMed  Google Scholar 

  67. Nathan, P. C. et al. The prevalence of overweight and obesity in pediatric survivors of cancer. J. Pediatr. 149, 518–525 (2006).

    Article  PubMed  Google Scholar 

  68. Razzouk, B. I. et al. Obesity in survivors of childhood acute lymphoblastic leukemia and lymphoma. J. Clin. Oncol. 25, 1183–1189 (2007).

    Article  PubMed  Google Scholar 

  69. Landy, D. C. et al. Dietary quality, caloric intake, and adiposity of childhood cancer survivors and their siblings: an analysis from the cardiac risk factors in childhood cancer survivors study. Nutr. Cancer 65, 547–555 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Meacham, L. R. et al. Diabetes mellitus in long-term survivors of childhood cancer. Increased risk associated with radiation therapy: a report for the childhood cancer survivor study. Arch. Intern. Med. 169, 1381–1388 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Neville, K. A., Cohn, R. J., Steinbeck, K. S., Johnston, K. & Walker, J. L. Hyperinsulinemia, impaired glucose tolerance, and diabetes mellitus in survivors of childhood cancer: prevalence and risk factors. J. Clin. Endocrinol. Metab. 91, 4401–4407 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Armenian, S. H. et al. Cardiovascular risk factors in hematopoietic cell transplantation survivors: role in development of subsequent cardiovascular disease. Blood 120, 4505–4512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wasilewski-Masker, K. et al. Bone mineral density deficits in survivors of childhood cancer: long-term follow-up guidelines and review of the literature. Pediatrics 121, e705–e713 (2008).

    Article  PubMed  Google Scholar 

  74. de Moor, J. S., Puleo, E., Butterfield, R. M., Li, F. P. & Emmons, K. M. Availability of smoking prevention and cessation services for childhood cancer survivors. Cancer Causes Control 18, 423–430 (2007).

    Article  PubMed  Google Scholar 

  75. Emmons, K. et al. Predictors of smoking initiation and cessation among childhood cancer survivors: a report from the childhood cancer survivor study. J. Clin. Oncol. 20, 1608–1616 (2002).

    Article  PubMed  Google Scholar 

  76. Cigarette smoking among adults and trends in smoking cessation—United States, 2008. MMWR Morb. Mortal. Wkly Rep. 58, 1227–1232 (2009).

  77. Clarke, S. A. & Eiser, C. Health behaviours in childhood cancer survivors: a systematic review. Eur. J. Cancer 43, 1373–1384 (2007).

    Article  PubMed  Google Scholar 

  78. Emmons, K. M. et al. Long-term smoking cessation outcomes among childhood cancer survivors in the Partnership for Health Study. J. Clin. Oncol. 27, 52–60 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cheitlin, M. D. et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (ACC/AHA/ASE committee to update the 1997 guidelines for the clinical application of echocardiography). J. Am. Soc. Echocardiogr. 16, 1091–1110 (2003).

    PubMed  Google Scholar 

  80. Steinherz, L. J. et al. Guidelines for cardiac monitoring of children during and after anthracycline therapy: report of the Cardiology Committee of the Children's Cancer Study Group. Pediatrics 89, 942–949 (1992).

    CAS  PubMed  Google Scholar 

  81. Lipshultz, S. E. et al. Monitoring for anthracycline cardiotoxicity. Pediatrics 93, 433–437 (1994).

    CAS  PubMed  Google Scholar 

  82. Children's Oncology Group. Long-term follow-up guidelines for survivors of childhood, adolescent and young adult cancers. Children's Oncology Group [online], (2008).

  83. Lipshultz, S. E. et al. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation 96, 2641–2648 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Cardinale, D. et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J. Am. Coll. Cardiol. 36, 517–522 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Grewal, J. et al. Usefulness of N–terminal pro–brain natriuretic peptide and brain natriuretic peptide to predict cardiovascular outcomes in patients with heart failure and preserved left ventricular ejection fraction. Am. J. Cardiol. 102, 733–737 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Lipshultz, S. E. & Colan, S. D. Cardiovascular trials in long-term survivors of childhood cancer. J. Clin. Oncol. 22, 769–773 (2004).

    Article  PubMed  Google Scholar 

  87. Landy, D. C., Miller, T. L., Wilkinson, J. D. & Lipshultz, S. E. in Cancer and the Heart (eds Ewer, M. S. & Yeh, E. T. H.) 132–156 (Peoples Medical Publishing House-USA, 2013).

    Google Scholar 

  88. Grenier, M. A. et al. Angiotensin-converting enzyme inhibitor therapy for ventricular dysfunction in infants, children and adolescents: a review. Prog. Pediatr. Cardiol. 12, 91–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. [No authors listed] Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. N. Engl. J. Med. 316, 1429–1435 (1987).

  90. Lipshultz, S. E. et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J. Clin. Oncol. 20, 4517–4522 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Sieswerda, E. et al. Medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer. Cochrane Database of Systematic Reviews, Issue 9. Art. No.: CD008011. http://dx.doi.org/10.1002/14651858.CD008011.pub2.

  92. Harmon, W., Rusconi, P., Miller, T. L. & Lipshultz, S. E. in American Academy of Pediatrics Textbook of Pediatric Care, 2nd edn Ch. 351 (eds McInerny, T. K., Adam, H. M., Campbell, D. E., Kamat, D. M. & Kelleher, K. J.) American Academy of Pediatrics (in press).

  93. Noori, A. et al. Beta-blockade in adriamycin-induced cardiomyopathy. J. Card. Fail. 6, 115–119 (2000).

    CAS  PubMed  Google Scholar 

  94. El-Shitany, N. A., Tolba, O. A., El-Shanshory, M. R. & El-Hawary, E. E. Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J. Card. Fail. 18, 607–613 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Gupta, M., Steinherz, P. G., Cheung, N. K. & Steinherz, L. Late cardiotoxicity after bolus versus infusion anthracycline therapy for childhood cancers. Med. Pediatr. Oncol. 40, 343–347 (2003).

    Article  PubMed  Google Scholar 

  96. Levitt, G. A., Dorup, I., Sorensen, K. & Sullivan, I. Does anthracycline administration by infusion in children affect late cardiotoxicity? Br. J. Haematol. 124, 463–468 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Lyu, Y. L. et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 67, 8839–8846 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. van Dalen, E. C., Caron, H. N., Dickinson, H. O. & Kremer, L. C. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database of Systematic Reviews, Issue 6, Art. No.: CD003917. http://dx.doi.org/10.1002/14651858.CD003917.pub4.

  99. Wouters, K. A., Kremer, L. C., Miller, T. L., Herman, E. H. & Lipshultz, S. E. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br. J. Haematol. 131, 561–578 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Sallan, S. E. & Lipshultz, S. E. Wise up: do not do it without protection! Pediatr. Blood Cancer 45, 872–873 (2005).

    Article  PubMed  Google Scholar 

  101. Choi, H. S. et al. Dexrazoxane for preventing anthracycline cardiotoxicity in children with solid tumors. J. Korean Med. Sci. 25, 1336–1342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Herman, E. K., Zhang, J., Hiraragi, H. & Lipshultz, S. E. Gender is a factor that can impact the severity of doxorubicin (DXR) toxicity in spontaneously hypertensive rats (SHR) [abstract]. FASEB J. 22 (Suppl.), a719.6 (2008).

    Google Scholar 

  103. Thompson, P. A. et al. Impact of body composition on pharmacokinetics of doxorubicin in children: a Glaser Pediatric Research Network study. Cancer Chemother. Pharmacol. 64, 243–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Lipshultz, S. E., Lipsitz, S. R. & Orav, E. J. Dexrazoxane-associated risk for secondary malignancies in pediatric Hodgkin's disease: a claim without compelling evidence. J. Clin. Oncol. 25, 3179 (2007).

    Article  PubMed  Google Scholar 

  105. Hellmann, K. Dexrazoxane-associated risk for secondary malignancies in pediatric Hodgkin's disease: a claim without evidence. J. Clin. Oncol. 25, 4689–4690 (2007).

    Article  PubMed  Google Scholar 

  106. Tebbi, C. K. et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin's disease. J. Clin. Oncol. 25, 493–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Barry, E. V. et al. Absence of secondary malignant neoplasms in children with high-risk acute lymphoblastic leukemia treated with dexrazoxane. J. Clin. Oncol. 26, 1106–1111 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Vrooman, L. M. et al. The low incidence of secondary acute myelogenous leukaemia in children and adolescents treated with dexrazoxane for acute lymphoblastic leukaemia: a report from the Dana-Farber Cancer Institute ALL Consortium. Eur. J. Cancer 47, 1373–1379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kishi, T. & Folkers, K. Letter: prevention by coenzyme Q10 (NSC-140865) of the inhibition by adriamycin (NSC-123127) of coenzyme Q10 enzymes. Cancer Treat. Rep. 60, 223–224 (1976).

    CAS  PubMed  Google Scholar 

  110. Folkers, K., Brown, R., Judy, W. V. & Morita, M. Survival of cancer patients on therapy with coenzyme Q10. Biochem. Biophys. Res. Commun. 192, 241–245 (1993).

    Article  CAS  PubMed  Google Scholar 

  111. Cortes, E. P., Gupta, M., Chou, C., Amin, V. C. & Folkers, K. Adriamycin cardiotoxicity: early detection by systolic time interval and possible prevention by coenzyme Q10. Cancer Treat. Rep. 62, 887–891 (1978).

    CAS  PubMed  Google Scholar 

  112. Iarussi, D. et al. Protective effect of coenzyme Q10 on anthracyclines cardiotoxicity: control study in children with acute lymphoblastic leukemia and non-Hodgkin lymphoma. Mol. Aspects Med. 15 (Suppl.), s207–s212 (1994).

    Article  PubMed  Google Scholar 

  113. Hauser, M., Gibson, B. S. & Wilson, N. Diagnosis of anthracycline-induced late cardiomyopathy by exercise-spiroergometry and stress-echocardiography. Eur. J. Pediatr. 160, 607–610 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Ginsberg, J. P. & Womer, R. B. Preventing organ-specific chemotherapy toxicity. Eur. J. Cancer 41, 2690–2700 (2005).

    Article  PubMed  Google Scholar 

  115. Ciaccio, M. et al. Vitamin A preserves the cytotoxic activity of adriamycin while counteracting its peroxidative effects in human leukemic cells in vitro. Biochem. Mol. Biol. Int. 34, 329–335 (1994).

    CAS  PubMed  Google Scholar 

  116. Wang, Y. M. et al. Effect of vitamin E against adriamycin-induced toxicity in rabbits. Cancer Res. 40, 1022–1027 (1980).

    CAS  PubMed  Google Scholar 

  117. Doba, T., Burton, G. W. & Ingold, K. U. Antioxidant and co-antioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochim. Biophys. Acta 835, 298–303 (1985).

    Article  CAS  PubMed  Google Scholar 

  118. Shimpo, K. et al. Ascorbic acid and adriamycin toxicity. Am. J. Clin. Nutr. 54 (Suppl. 6), 1298S–1301S (1991).

    Article  CAS  PubMed  Google Scholar 

  119. Plosker, G. L. & Faulds, D. Epirubicin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in cancer chemotherapy. Drugs 45, 788–856 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Goldin, A., Venditti, J. M. & Geran, R. The effectiveness of the anthracycline analog 4′-epidoxorubicin in the treatment of experimental tumors: a review. Invest. New Drugs 3, 3–21 (1985).

    Article  CAS  PubMed  Google Scholar 

  121. Lahtinen, R. et al. Cardiotoxicity of epirubicin and doxorubicin: a double-blind randomized study. Eur. J. Haematol. 46, 301–305 (1991).

    Article  CAS  PubMed  Google Scholar 

  122. Anderlini, P. et al. Idarubicin cardiotoxicity: a retrospective study in acute myeloid leukemia and myelodysplasia. J. Clin. Oncol. 13, 2827–2834 (1995).

    Article  CAS  PubMed  Google Scholar 

  123. Martoni, A. et al. Comparative phase II study of idarubicin versus doxorubicin in advanced breast cancer. Oncology 47, 427–432 (1990).

    Article  CAS  PubMed  Google Scholar 

  124. Shenkenberg, T. D. & Von Hoff, D. D. Mitoxantrone: a new anticancer drug with significant clinical activity. Ann. Intern. Med. 105, 67–81 (1986).

    Article  CAS  PubMed  Google Scholar 

  125. Pellicori, P., Calicchia, A., Lococo, F., Cimino, G. & Torromeo, C. Subclinical anthracycline cardiotoxicity in patients with acute promyelocytic leukemia in long-term remission after the AIDA protocol. Congest. Heart Fail. 18, 217–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Smith, L. A. et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer 10, 337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Steiner, R. Increasing exercise in long-term survivors of pediatric cancer and their siblings: should treatment be a family affair? Pediatr. Blood Cancer 60, 529–530 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This article was supported in part by grants from the NIH (HL072705, HL078522, HL053392, CA127642, CA068484, HD052104, AI50274, HD052102, HL087708, HL079233, HL004537, HL087000, HL007188, HL094100, HL095127, HD80002), the Children's Cardiomyopathy Foundation, the Women's Cancer Association, the Lance Armstrong Foundation, the STOP Children's Cancer Foundation, the Scott Howard Fund and the Michael Garil Fund.

Author information

Authors and Affiliations

Authors

Contributions

S. E. Lipshultz and T. L. Miller researched data for the article. S. E. Lipshultz, T. R. Cochran, and V. I. Franco made a substantial contribution to discussion of the content and wrote the article, and all authors reviewed or edited the article before submission.

Corresponding author

Correspondence to Steven E. Lipshultz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipshultz, S., Cochran, T., Franco, V. et al. Treatment-related cardiotoxicity in survivors of childhood cancer. Nat Rev Clin Oncol 10, 697–710 (2013). https://doi.org/10.1038/nrclinonc.2013.195

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing