Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Radical causes of cancer

Key Points

  • Chronic inflammation deregulates cellular homeostasis and can drive carcinogenesis.

  • Free radicals and aldehydes — produced during chronic inflammation — can induce a number of alterations, including gene mutations and post-translational modifications of key cancer-related proteins. These alterations can lead to the disruption of cellular processes such as DNA repair, cell-cycle checkpoints and apoptosis.

  • The ultimate effect of free radicals is complex and depends on their local concentration, the microenvironment and the genetic background of the individual.

  • Nitric oxide and its derivatives damage DNA and modify protein structure and function but can also protect from cytotoxicity. These 'two faces' of nitric oxide highlight the need for further study before considering nitric oxide as a target for chemoprevention in high cancer risk, chronic inflammatory diseases.

  • People with cancer-prone inflammatory diseases, such as ulcerative colitis, haemochromatosis and viral hepatitis, have alterations in cancer-related genes and proteins,which are associated with free-radical stress.

  • Transgenic and knockout animal models support the role of free radicals in carcinogenesis.

  • Prospective chemoprevention studies are needed to evaluate the use of antioxidants and inhibitors of pro-oxidant enzymes for the prevention of cancer in people with oxyradical overload diseases.

Abstract

Free radicals are ubiquitous in our body and are generated by normal physiological processes, including aerobic metabolism and inflammatory responses, to eliminate invading pathogenic microorganisms. Because free radicals can also inflict cellular damage, several defences have evolved both to protect our cells from radicals — such as antioxidant scavengers and enzymes — and to repair DNA damage. Understanding the association between chronic inflammation and cancer provides insights into the molecular mechanisms involved. In particular, we highlight the interaction between nitric oxide and p53 as a crucial pathway in inflammatory-mediated carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impact of free radicals released at sites of inflammation on cellular molecules.
Figure 2: Free-radical generation, cellular stress and tumorigenesis.
Figure 3: Gene–microenvironment interactions in chronic inflammation.
Figure 4: Chronic inflammation and production of free radicals regulate multiple cellular processes.

Similar content being viewed by others

References

  1. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nathan, C. Points of control in inflammation. Nature 420, 846–852 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Christen, S., Hagen, T. M., Shigenaga, M. K. & Ames, B. N. in Microbes and Malignancy: Infection as a Cause of Cancer 35–88 (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  4. Ames, B. N., Gold, L. S. & Willett, W. C. The causes and prevention of cancer. Proc. Natl Acad. Sci. USA 92, 5258–5265 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cerutti, P. A. & Trump, B. F. Inflammation and oxidative stress in carcinogenesis. Cancer Cells 3, 1–7 (1991).

    CAS  PubMed  Google Scholar 

  6. Shalon, D., Smith, S. J. & Brown, P. O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6, 639–645 (1996).

    CAS  PubMed  Google Scholar 

  7. Cerutti, P. A. Prooxidant states and tumor promotion. Science 227, 375–381 (1985).

    CAS  PubMed  Google Scholar 

  8. Phillips, L. L. Effect of free radicals on chromosomes of barley. Science 124, 889–890 (1956). Key study showing that free radicals damage DNA.

    CAS  PubMed  Google Scholar 

  9. Wiseman, H. & Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313, 17–29 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Marshall, H. E., Merchant, K. & Stamler, J. S. Nitrosation and oxidation in the regulation of gene expression. FASEB J. 14, 1889–1900 (2000).

    CAS  PubMed  Google Scholar 

  11. Aulak, K. S. et al. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc. Natl Acad. Sci. USA 98, 12056–12061 (2001). Important report of vast protein nitration following an inflammatory challenge in animals.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Marnett, L. J. Oxyradicals and DNA damage. Carcinogenesis 21, 361–370 (2000).

    CAS  PubMed  Google Scholar 

  13. Whiteman, M., Hooper, D. C., Scott, G. S., Koprowski, H. & Halliwell, B. Inhibition of hypochlorous acid-induced cellular toxicity by nitrite. Proc. Natl Acad. Sci. USA 99, 12061–12066 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gutteridge, J. M. & Halliwell, B. Free radicals and antioxidants in the year 2000. A historical look to the future. Ann. NY Acad. Sci. 899, 136–147 (2000).

    CAS  PubMed  Google Scholar 

  15. Beckman, J. S. & Koppenol, W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271, C1424–C1437 (1996).

    CAS  PubMed  Google Scholar 

  16. Espey, M. G. et al. A chemical perspective on the interplay between NO, reactive oxygen species, and reactive nitrogen oxide species. Ann. NY Acad. Sci. 962, 195–206 (2002).

    CAS  PubMed  Google Scholar 

  17. Pryor, W. A. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu. Rev. Physiol. 48, 657–667 (1986).

    CAS  PubMed  Google Scholar 

  18. Radi, R. Peroxynitrite reactions and diffusion in biology. Chem. Res. Toxicol. 11, 720–721 (1998).

    CAS  PubMed  Google Scholar 

  19. Thomas, D. D., Liu, X., Kantrow, S. P. & Lancaster, J. R. Jr. The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2 . Proc. Natl Acad. Sci. USA 98, 355–360 (2001).

    CAS  PubMed  Google Scholar 

  20. Stadtman, E. R. & Levine, R. L. Protein oxidation. Ann. NY Acad. Sci. 899, 191–208 (2000).

    CAS  PubMed  Google Scholar 

  21. Eiserich, J. P., Patel, R. P. & O'Donnell, V. B. Pathophysiology of nitric oxide and related species: free radical reactions and modification of biomolecules. Mol. Aspects Med. 19, 221–357 (1998).

    CAS  PubMed  Google Scholar 

  22. Squadrito, G. L. & Pryor, W. A. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic. Biol. Med. 25, 392–403 (1998).

    CAS  PubMed  Google Scholar 

  23. Hofseth, L. J. et al. Nitric oxide-induced cellular stress and p53 activation in chronic inflammation. Proc. Natl Acad. Sci. USA 100, 143–148 (2003).

    CAS  PubMed  Google Scholar 

  24. Nakaya, N., Lowe, S. W., Taya, Y., Chenchik, A. & Enikolopov, G. Specific pattern of p53 phosphorylation during nitric oxide-induced cell cycle arrest. Oncogene 19, 6369–6375 (2000).

    CAS  PubMed  Google Scholar 

  25. Xu, W., Liu, L., Smith, G. C. & Charles, l. Nitric oxide upregulates expression of DNA-PKcs to protect cells from DNA-damaging anti-tumour agents. Nature Cell Biol. 2, 339–345 (2000). Key study showing that nitric oxide activates kinases.

    CAS  PubMed  Google Scholar 

  26. Wink, D. A. et al. Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr. Top. Cell Regul. 34, 159–187 (1996).

    CAS  PubMed  Google Scholar 

  27. Pervin, S., Singh, R. & Chaudhuri, G. Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): potential role of cyclin D1. Proc. Natl Acad. Sci. USA 98, 3583–3588 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Melino, G. et al. S-nitrosylation regulates apoptosis. Nature 388, 432–433 (1997). This report showed that nitric oxide changes the structure and function of key apoptosis proteins.

    CAS  PubMed  Google Scholar 

  29. Jaiswal, M., LaRusso, N. F., Nishioka, N., Nakabeppu, Y. & Gores, G. J. Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res. 61, 6388–6393 (2001).

    CAS  PubMed  Google Scholar 

  30. Wink, D. A. & Laval, J. The Fpg protein, a DNA repair enzyme, is inhibited by the biomediator nitric oxide in vitro and in vivo. Carcinogenesis 15, 2125–2129 (1994).

    CAS  PubMed  Google Scholar 

  31. Jenkins, D. C. et al. Roles of nitric oxide in tumor growth. Proc. Natl Acad. Sci. USA 92, 4392–4396 (1995). Key study showing the dual roles of nitric oxide in animals.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Maeda, H., Noguchi, Y., Sato, K. & Akaike, T. Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Jpn. J. Cancer Res. 85, 331–334 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tozer, G. M., Prise, V. E. & Chaplin, D. J. Inhibition of nitric oxide synthase induces a selective reduction in tumor blood flow that is reversible with L-arginine. Cancer Res. 57, 948–955 (1997).

    CAS  PubMed  Google Scholar 

  34. Tamir, S., Burney, S. & Tannenbaum, S. R. DNA damage by nitric oxide. Chem. Res. Toxicol. 9, 821–827 (1996).

    CAS  PubMed  Google Scholar 

  35. Ohshima, H. & Bartsch, H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat. Res. 305, 253–264 (1994).

    CAS  PubMed  Google Scholar 

  36. Wink, D. A. et al. The effect of various nitric oxide-donor agents on hydrogen peroxide-mediated toxicity: a direct correlation between nitric oxide formation and protection. Arch. Biochem. Biophys. 331, 241–248 (1996).

    CAS  PubMed  Google Scholar 

  37. Heller, R., Polack, T., Grabner, R. & Till, U. Nitric oxide inhibits proliferation of human endothelial cells via a mechanism independent of cGMP. Atherosclerosis 144, 49–57 (1999).

    CAS  PubMed  Google Scholar 

  38. Kanamaru, Y., Takada, T., Saura, R. & Mizuno, K. Effect of nitric oxide on mouse clonal osteogenic cell, MC3T3-E1, proliferation in vitro. Kobe J. Med. Sci. 47, 1–11 (2001).

    CAS  PubMed  Google Scholar 

  39. Ulibarri, J. A., Mozdziak, P. E., Schultz, E., Cook, C. & Best, T. M. Nitric oxide donors, sodium nitroprusside and S-nitroso-N-acetylpencillamine, stimulate myoblast proliferation in vitro. In Vitro Cell Dev. Biol. Anim. 35, 215–218 (1999).

    CAS  PubMed  Google Scholar 

  40. Weller, R., Billiar, T. & Vodovotz, Y. Pro- and anti-apoptotic effects of nitric oxide in irradiated keratinocytes: the role of superoxide. Skin Pharmacol. Appl. Skin Physiol. 15, 348–352 (2002).

    CAS  PubMed  Google Scholar 

  41. Nicotera, P., Bonfoco, E. & Brune, B. Mechanisms for nitric oxide-induced cell death: involvement of apoptosis. Adv. Neuroimmunol. 5, 411–420 (1995).

    CAS  PubMed  Google Scholar 

  42. Dimmeler, S., Haendeler, J., Nehls, M. & Zeiher, A. M. Suppression of apoptosis by nitric oxide via inhibition of interleukin-1β-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J. Exp. Med. 185, 601–607 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, J., Bombeck, C. A., Yang, S., Kim, Y. M. & Billiar, T. R. Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes. J. Biol. Chem. 274, 17325–17333 (1999).

    CAS  PubMed  Google Scholar 

  44. Kim, Y. -M., Chung, H. -T., Simmons, R. L. & Billiar, T. R. Cellular non-heme iron content is a determinant of nitric oxide-mediated apoptosis, necrosis, and caspase inhibition. J. Biol. Chem. 275, 10954–10961 (2000).

    CAS  PubMed  Google Scholar 

  45. Chung, H. T., Pae, H. O., Choi, B. M., Billiar, T. R. & Kim, Y. M. Nitric oxide as a bioregulator of apoptosis. Biochem. Biophys. Res. Commun. 282, 1075–1079 (2001).

    CAS  PubMed  Google Scholar 

  46. Melillo, G. et al. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J. Exp. Med. 182, 1683–1693 (1995).

    CAS  PubMed  Google Scholar 

  47. Chen, B. & Deen, W. M. Analysis of the effects of cell spacing and liquid depth on nitric oxide and its oxidation products in cell cultures. Chem. Res. Toxicol. 14, 135–147 (2001).

    CAS  PubMed  Google Scholar 

  48. Burney, S., Niles, J. C., Dedon, P. C. & Tannenbaum, S. R. DNA damage in deoxynucleosides and oligonucleotides treated with peroxynitrite. Chem. Res. Toxicol. 12, 513–520 (1999).

    CAS  PubMed  Google Scholar 

  49. Burney, S., Caulfield, J. L., Niles, J. C., Wishnok, J. S. & Tannenbaum, S. R. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat. Res. 424, 37–49 (1999).

    CAS  PubMed  Google Scholar 

  50. Gorsdorf, S., Appel, K. E., Engeholm, C. & Obe, G. Nitrogen dioxide induces DNA single-strand breaks in cultured Chinese hamster cells. Carcinogenesis 11, 37–41 (1990).

    CAS  PubMed  Google Scholar 

  51. Schmidt, K., Desch, W., Klatt, P., Kukovetz, W. R. & Mayer, B. Release of nitric oxide from donors with known half-life: a mathematical model for calculating nitric oxide concentrations in aerobic solutions. Naunyn Schmiedebergs Arch. Pharmacol. 355, 457–462 (1997).

    CAS  PubMed  Google Scholar 

  52. Hofseth, L. J., Hussain, S. P., Wogan, G. N. & Harris, C. C. Nitric oxide in cancer and chemoprevention. Free Radic. Biol. Med. (in the press).

  53. Zhuang, J. C., Wright, T. L., deRojas-Walker, T., Tannenbaum, S. R. & Wogan, G. N. Nitric oxide-induced mutations in the HPRT gene of human lymphoblastoid TK6 cells and in Salmonella typhimurium. Environ. Mol. Mutagen. 35, 39–47 (2000).

    CAS  PubMed  Google Scholar 

  54. Zhuang, J. C., Lin, C., Lin, D. & Wogan, G. N. Mutagenesis associated with nitric oxide production in macrophages. Proc. Natl Acad. Sci. USA 95, 8286–8291 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sibghat-Ullah et al. Base analog and neighboring base effects on substrate specificity of recombinant human G:T mismatch-specific thymine DNA-glycosylase. Biochemistry 35, 12926–12932 (1996).

    CAS  PubMed  Google Scholar 

  56. Ambs, S. et al. p53 and vascular endothelial growth factor regulate tumour growth of NOS2-expressing human carcinoma cells. Nature Med. 4, 1371–1376 (1998). The authors showed that a p53 background has a crucial role in dictating the pro- or antitumorigenic effects of nitric oxide.

    CAS  PubMed  Google Scholar 

  57. Papapetropoulos, A., Garcia-Cardena, G., Madri, J. A. & Sessa, W. C. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Invest. 100, 3131–3139 (1997). Key study showing that nitric oxide stimulates angiogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Forrester, K. et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase (NOS2) expression by wild-type p53. Proc. Natl Acad. Sci. USA 93, 2442–2447 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ambs, S. et al. Upregulation of NOS2 expression in cancer-prone p53 knockout mice. Proc. Natl Acad. Sci. USA 95, 8823–8828 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ambs, S. et al. Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J. Natl Cancer Inst. 91, 86–88 (1999).

    CAS  PubMed  Google Scholar 

  61. Hussain, S. P. et al. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res. 60, 3333–3337 (2000).

    CAS  PubMed  Google Scholar 

  62. Hussain, S. P. et al. Increased p53 mutation load in nontumorous human liver of wilson disease and hemochromatosis: oxyradical overload diseases. Proc. Natl Acad. Sci. USA 97, 12770–12775 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ambs, S. et al. Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res. 58, 334–341 (1998).

    CAS  PubMed  Google Scholar 

  64. Alleva, D. G., Burger, C. J. & Elgert, K. D. Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production. Role of tumor-derived IL-10, TGF-beta, and prostaglandin E2. J. Immunol. 153, 1674–1686 (1994).

    CAS  PubMed  Google Scholar 

  65. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    CAS  PubMed  Google Scholar 

  66. Greenblatt, M. S., Bennett, W. P., Hollstein, M. & Harris, C. C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878 (1994).

    CAS  PubMed  Google Scholar 

  67. O''Rourke, R. W. et al. A potential transcriptional activation element in the p53 protein. Oncogene 5, 1829–1832 (1990).

    CAS  Google Scholar 

  68. Thomsen, L. L. et al. Nitric oxide synthase activity in human breast cancer. Br. J. Cancer 72, 41–44 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ellie, E., Loiseau, H., Lafond, F., Arsaut, J. & Demotes-Mainard, J. Differential expression of inducible nitric oxide synthase mRNA in human brain tumours. Neuroreport 7, 294–296 (1995).

    CAS  PubMed  Google Scholar 

  70. Gallo, O. et al. Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J. Natl Cancer Inst. 90, 587–596 (1998).

    CAS  PubMed  Google Scholar 

  71. Berenblum, I. The cocarcinogenic action of croton resin. Cancer Res. 1, 44–48 (1941).

    CAS  Google Scholar 

  72. Friedwald, W. F. & Rous, P. The initiating and promoting elements in tumor production: an analysis of the effects of tar, benzpyrene, and methylcholanthrene on rabbit skin. J. Exp. Med. 80, 101–126 (1944). References 71 and 72 are important papers describing a role for chronic irritation and associated inflammation in tumorigenesis in animals.

    Google Scholar 

  73. Cooper, H. S. et al. The role of mutant Apc in the development of dysplasia and cancer in the mouse model of dextran sulfate sodium-induced colitis. Gastroenterology 121, 1407–1416 (2001).

    CAS  PubMed  Google Scholar 

  74. Hokari, R. et al. Reduced sensitivity of inducible nitric oxide synthase-deficient mice to chronic colitis. Free Radic. Biol. Med. 31, 153–163 (2001).

    CAS  PubMed  Google Scholar 

  75. Goldstein, S. R. et al. Development of esophageal metaplasia and adenocarcinoma in a rat surgical model without the use of a carcinogen. Carcinogenesis 18, 2265–2270 (1997).

    CAS  PubMed  Google Scholar 

  76. Chen, X. et al. An esophagogastroduodenal anastomosis model for esophageal adenocarcinogenesis in rats and enhancement by iron overload. Carcinogenesis 20, 1801–1808 (1999).

    CAS  PubMed  Google Scholar 

  77. Chisari, F. V. et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 59, 1145–1156 (1989). A key paper describing a mechanism by which hepatitis B virus and chronic irritation lead to development of hepatocellular carcinoma in animals.

    CAS  PubMed  Google Scholar 

  78. Lee, A. Animal models of Helicobacter infection. Mol. Med. Today 5, 500–501 (1999).

    CAS  PubMed  Google Scholar 

  79. Kumar, A. & Creery, W. D. The therapeutic potential of interleukin 10 in infection and inflammation. Arch. Immunol. Ther. Exp. (Warsz.) 48, 529–538 (2000).

    CAS  Google Scholar 

  80. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993). Key study describing how the genetic knockout of Il-10 leads to colitis in animals.

    CAS  PubMed  Google Scholar 

  81. Berg, D. J. et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J. Clin. Invest. 98, 1010–1020 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kullberg, M. C. et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and gamma interferon-dependent mechanism. Infect. Immun. 66, 5157–5166 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. MacMicking, J. D. et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81, 641–650 (1995). Key study describing the phenotype of iNOS -knockout mice and showing that iNOS defends the host against infectious agents and tumour cells at the risk of contributing to tissue damage and shock.

    CAS  PubMed  Google Scholar 

  84. Mashimo, H. & Goyal, R. K. Lessons from genetically engineered animal models. IV. Nitric oxide synthase gene knockout mice. Am. J. Physiol. 277, G745–G750 (1999).

    CAS  PubMed  Google Scholar 

  85. McCafferty, D. M., Miampamba, M., Sihota, E., Sharkey, K. A. & Kubes, P. Role of inducible nitric oxide synthase in trinitrobenzene sulphonic acid induced colitis in mice. Gut 45, 864–873 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zingarelli, B., Szabo, C. & Salzman, A. L. Reduced oxidative and nitrosative damage in murine experimental colitis in the absence of inducible nitric oxide synthase. Gut 45, 199–209 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Konopka, T. E. et al. Nitric oxide synthase II gene disruption: implications for tumor growth and vascular endothelial growth factor production. Cancer Res. 61, 3182–3187 (2001).

    CAS  PubMed  Google Scholar 

  88. Ahn, B. & Ohshima, H. Suppression of intestinal polyposis in Apc(Min/+) mice by inhibiting nitric oxide production. Cancer Res. 61, 8357–8360 (2001).

    CAS  PubMed  Google Scholar 

  89. Gupta, R. A. & DuBois, R. N. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nature Rev. Cancer 1, 11–21 (2001).

    CAS  Google Scholar 

  90. Tiano, H. F. et al. Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Res. 62, 3395–3401 (2002).

    CAS  PubMed  Google Scholar 

  91. Langenbach, R., Loftin, C. D., Lee, C. & Tiano, H. Cyclooxygenase-deficient mice. A summary of their characteristics and susceptibilities to inflammation and carcinogenesis. Ann. NY Acad. Sci. 889, 52–61 (1999).

    CAS  PubMed  Google Scholar 

  92. Chulada, P. C. et al. Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res. 60, 4705–4708 (2000).

    CAS  PubMed  Google Scholar 

  93. Williams, C. S., Tsujii, M., Reese, J., Dey, S. K. & DuBois, R. N. Host cyclooxygenase-2 modulates carcinoma growth. J. Clin. Invest. 105, 1589–1594 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Oshima, M. et al. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    CAS  PubMed  Google Scholar 

  95. Chandrasekharan, N. V. et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc. Natl Acad. Sci. USA 99, 13926–13931 (2002). An important paper describing another form of cyclooxygenase, COX3.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hofseth, L. J., Hussain, S. P., Wang, X. W. & Harris, C. C. in Gastrointestinal Oncology: Principles and Practice 539–558 (Lippincott Williams & Wilkins, Philadelphia, 2002).

    Google Scholar 

  97. Niederau, C. et al. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N. Engl. J. Med. 313, 1256–1262 (1985).

    CAS  PubMed  Google Scholar 

  98. Bomford, A. Genetics of haemochromatosis. Lancet 360, 1673–1681 (2002).

    CAS  PubMed  Google Scholar 

  99. Britton, R. S. Metal-induced hepatotoxicity. Semin. Liver Dis. 16, 3–12 (1996).

    CAS  PubMed  Google Scholar 

  100. Sagripanti, J. L. DNA damage mediated by metal ions with special reference to copper and iron. Met. Ions. Biol. Syst. 36, 179–209 (1999).

    CAS  PubMed  Google Scholar 

  101. Linn, S. DNA damage by iron and hydrogen peroxide in vitro and in vivo. Drug Metab. Rev. 30, 313–326 (1998).

    CAS  PubMed  Google Scholar 

  102. Wang, D., Kreutzer, D. A. & Essigmann, J. M. Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat. Res. 400, 99–115 (1998).

    CAS  PubMed  Google Scholar 

  103. Gatei, M. et al. Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies. J. Biol. Chem. 276, 17276–17280 (2001).

    CAS  PubMed  Google Scholar 

  104. Bartsch, H. Keynote address: exocyclic adducts as new risk markers for DNA damage in man. IARC Sci. Publ. 150, 1–16 (1999).

    CAS  Google Scholar 

  105. Nair, J., Barbin, A., Velic, I. & Bartsch, H. Etheno DNA-base adducts from endogenous reactive species. Mutat. Res. 424, 59–69 (1999).

    CAS  PubMed  Google Scholar 

  106. Marnett, L. J. Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res. 424, 83–95 (1999).

    CAS  PubMed  Google Scholar 

  107. Niemela, O. et al. Hepatic lipid peroxidation in hereditary hemochromatosis and alcoholic liver injury. J. Lab Clin. Med. 133, 451–460 (1999).

    CAS  PubMed  Google Scholar 

  108. Young, I. S. et al. Antioxidant status and lipid peroxidation in hereditary haemochromatosis. Free Radic. Biol. Med. 16, 393–397 (1994).

    CAS  PubMed  Google Scholar 

  109. Nair, J. et al. Lipid peroxidation-induced etheno-DNA adducts in the liver of patients with the genetic metal storage disorders Wilson's disease and primary hemochromatosis. Cancer Epidemiol. Biomarkers Prev. 7, 435–440 (1998).

    CAS  PubMed  Google Scholar 

  110. Riddell, R. H. et al. Dysplasia in inflammatory bowel disease: standardized classification with provisional clinical applications. Hum. Pathol. 14, 931–968 (1983).

    CAS  PubMed  Google Scholar 

  111. Wong, N. A. & Harrison, D. J. Colorectal neoplasia in ulcerative colitis-recent advances. Histopathology 39, 221–234 (2001).

    CAS  PubMed  Google Scholar 

  112. O'Sullivan, J. N. et al. Chromosomal instability in ulcerative colitis is related to telomere shortening. Nature Genet. 32, 280–284 (2002).

    CAS  PubMed  Google Scholar 

  113. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    CAS  PubMed  Google Scholar 

  114. Burmer, G. C. et al. Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele. Gastroenterology 103, 1602–1610 (1992).

    CAS  PubMed  Google Scholar 

  115. Tarmin, L. et al. Adenomatous polyposis coli gene mutations in ulcerative colitis-associated dysplasias and cancers versus sporadic colon neoplasms. Cancer Res. 55, 2035–2038 (1995).

    CAS  PubMed  Google Scholar 

  116. Yin, J. et al. p53 point mutations in dysplastic and cancerous ulcerative colitis lesions. Gastroenterology 104, 1633–1639 (1993).

    CAS  PubMed  Google Scholar 

  117. Robinson, W. S. Molecular events in the pathogenesis of hepadnavirus-associated hepatocellular carcinoma. Annu. Rev. Med. 45, 297–323 (1994).

    CAS  PubMed  Google Scholar 

  118. Murakami, T., Kim, T. & Nakamura, H. Hepatitis, cirrhosis, and hepatoma. J. Magn. Reson. Imaging 8, 346–358 (1998).

    CAS  PubMed  Google Scholar 

  119. Hagen, T. M. et al. Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 91, 12808–12812 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Mahe, Y. et al. Hepatitis B virus X protein transactivates human interleukin-8 gene through acting on nuclear factor kB and CCAAT/enhancer-binding protein-like cis-elements. J. Biol. Chem. 266, 13759–13763 (1991).

    CAS  PubMed  Google Scholar 

  121. Hu, K. Q., Yu, C. H. & Vierling, J. M. Up-regulation of intercellular adhesion molecule 1 transcription by hepatitis B virus X protein. Proc. Natl Acad. Sci. USA 89, 11441–11445 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhou, D. X., Taraboulos, A., Ou, J. H. & Yen, T. S. Activation of class I major histocompatibility complex gene expression by hepatitis B virus. J. Virol. 64, 4025–4028 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lara-Pezzi, E. et al. The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. J. Clin. Invest. 110, 1831–1838 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Majano, P. L. et al. Inducible nitric oxide synthase expression in chronic viral hepatitis. Evidence for a virus-induced gene upregulation. J. Clin. Invest. 101, 1343–1352 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee, M. O. et al. Hepatitis B virus X protein induced expression of interleukin 18 (IL-18): a potential mechanism for liver injury caused by hepatitis B virus (HBV) infection. J. Hepatol. 37, 380–386 (2002).

    CAS  PubMed  Google Scholar 

  126. Kuo, G. et al. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244, 362–364 (1989).

    CAS  PubMed  Google Scholar 

  127. Choo, Q. L. et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362 (1989).

    CAS  PubMed  Google Scholar 

  128. Lee, Y. S. et al. Induction of oh8Gua glycosylase in rat kidneys by potassium bromate (KBrO3), a renal oxidative carcinogen. Mutat. Res. 364, 227–233 (1996).

    PubMed  Google Scholar 

  129. Rusyn, I. et al. Expression of base excision repair enzymes in rat and mouse liver is induced by peroxisome proliferators and is dependent upon carcinogenic potency. Carcinogenesis 21, 2141–2145 (2000).

    CAS  PubMed  Google Scholar 

  130. Goode, E. L., Ulrich, C. M. & Potter, J. D. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol. Biomarkers Prev. 11, 1513–1530 (2002).

    CAS  PubMed  Google Scholar 

  131. Ambrosone, C. B. et al. Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res. 59, 602–606 (1999).

    CAS  PubMed  Google Scholar 

  132. Ratnasinghe, D. et al. Glutathione peroxidase codon 198 polymorphism variant increases lung cancer risk. Cancer Res. 60, 6381–6383 (2000).

    CAS  PubMed  Google Scholar 

  133. Moldawer, L. L. et al. Application of gene therapy to acute inflammatory diseases. Shock 12, 83–101 (1999).

    CAS  PubMed  Google Scholar 

  134. Rosin, M. P. & Hofseth, L. J. in Microbes and Malignancy: Infection as a Cause of Human Cancers 313–345 (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  135. Ikeda, K. et al. Interferon decreases hepatocellular carcinogenesis in patients with cirrhosis caused by the hepatitis B virus: a pilot study. Cancer 82, 827–835 (1998).

    CAS  PubMed  Google Scholar 

  136. Moradpour, D. & Blum, H. E. Current and evolving therapies for hepatitis C. Eur. J. Gastroenterol. Hepatol. 11, 1199–1202 (1999).

    CAS  PubMed  Google Scholar 

  137. Gramenzi, A. et al. Impact of interferon therapy on the natural history of hepatitis C virus related cirrhosis. Gut 48, 843–848 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Nishiguchi, S. et al. Prevention of hepatocellular carcinoma in patients with chronic active hepatitis C and cirrhosis. Lancet 357, 196–197 (2001). This key prospective study shows that interferon-α inhibits hepatocellular carcinoma that is associated with hepatitis C.

    CAS  PubMed  Google Scholar 

  139. Nishiguchi, S. et al. Randomised trial of effects of interferon-alpha on incidence of hepatocellular carcinoma in chronic active hepatitis C with cirrhosis. Lancet 346, 1051–1055 (1995).

    CAS  PubMed  Google Scholar 

  140. Fiorucci, S., Antonelli, E., Burgaud, J. L. & Morelli, A. Nitric oxide-releasing NSAIDs: a review of their current status. Drug Safety 24, 801–811 (2001).

    CAS  PubMed  Google Scholar 

  141. Rao, C. V. et al. Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res. 62, 165–170 (2002).

    CAS  PubMed  Google Scholar 

  142. Yamamoto, Y. & Gaynor, R. B. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J. Clin. Invest. 107, 135–142 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Tateishi, M., Takano, H., Hashizume, M., Kabashima, A. & Sugimachi, K. Long-term results of corticosteroid administration via appendicostomy in patients with ulcerative colitis involving the entire colon. Int. Surg. 83, 235–240 (1998).

    CAS  PubMed  Google Scholar 

  144. Hamilton, L. C. & Warner, T. D. Interactions between inducible isoforms of nitric oxide synthase and cyclo-oxygenase in vivo: investigations using the selective inhibitors, 1400W and celecoxib. Br. J. Pharmacol. 125, 335–340 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Aguilar, F., Harris, C. C., Sun, T., Hollstein, M. & Cerutti, P. Geographic variation of p53 mutational profile in nonmalignant human liver. Science 264, 1317–1319 (1994).

    CAS  PubMed  Google Scholar 

  146. Aguilar, F., Hussain, S. P. & Cerutti, P. Aflatoxin B1 induces the transversion of G→T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc. Natl Acad. Sci. USA 90, 8586–8590 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Hussain, S. P., Aguilar, F. & Cerutti, P. Mutagenesis of codon 248 of the human p53 tumor suppressor gene by N-ethyl-N-nitrosourea. Oncogene 9, 13–18 (1994).

    CAS  PubMed  Google Scholar 

  148. Sidransky, D. Emerging molecular markers of cancer. Nature Rev. Cancer 2, 210–219 (2002).

    CAS  Google Scholar 

  149. Traverso, G. et al. Detection of proximal colorectal cancers through analysis of faecal DNA. Lancet 359, 403–404 (2002).

    CAS  PubMed  Google Scholar 

  150. Marnett, L. J. & Plastaras, J. P. Endogenous DNA damage and mutation. Trends Genet. 17, 214–221 (2001).

    CAS  PubMed  Google Scholar 

  151. Bartsch, H. Studies on biomarkers in cancer etiology and prevention: a summary and challenge of 20 years of interdisciplinary research. Mutat. Res. 462, 255–279 (2000).

    CAS  PubMed  Google Scholar 

  152. Subbaramaiah, K. et al. Inhibition of cyclooxygenase-2 gene expression by p53. J. Biol. Chem. 274, 10911–10915 (1999).

    CAS  PubMed  Google Scholar 

  153. Gillen, C. D., Walmsley, R. S., Prior, P., Andrews, H. A. & Allan, R. N. Ulcerative colitis and Crohn's disease: a comparison of the colorectal cancer risk in extensive colitis. Gut 35, 1590–1592 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Ekbom, A., Helmick, C., Zack, M. & Adami, H. O. Ulcerative colitis and colorectal cancer. A population-based study. N. Engl. J Med. 323, 1228–1233 (1990).

    CAS  PubMed  Google Scholar 

  155. Shin, H. R. et al. Hepatitis B and C virus, Clonorchis sinensis for the risk of liver cancer: a case-control study in Pusan, Korea. Int. J. Epidemiol. 25, 933–940 (1996).

    CAS  PubMed  Google Scholar 

  156. Mitchell, H., Drake, M. & Medley, G. Prospective evaluation of risk of cervical cancer after cytological evidence of human papilloma virus infection. Lancet 1, 573–575 (1986).

    CAS  PubMed  Google Scholar 

  157. Zhang, Z. F. et al. Helicobacter pylori infection on the risk of stomach cancer and chronic atrophic gastritis. Cancer Detect. Prev. 23, 357–367 (1999).

    CAS  PubMed  Google Scholar 

  158. Esrig, D., McEvoy, K. & Bennett, C. J. Bladder cancer in the spinal cord-injured patient with long-term catheterization: a casual relationship? Semin. Urol. 10, 102–108 (1992).

    CAS  PubMed  Google Scholar 

  159. Streitz, J. M. Jr. Barrett's esophagus and esophageal cancer. Chest Surg. Clin. N. Am. 4, 227–240 (1994).

    PubMed  Google Scholar 

  160. Bansal, P. & Sonnenberg, A. Pancreatitis is a risk factor for pancreatic cancer. Gastroenterology 109, 247–251 (1995).

    CAS  PubMed  Google Scholar 

  161. Oka, H. et al. Prospective study of chemoprevention of hepatocellular carcinoma with Sho-saiko-to (TJ-9). Cancer 76, 743–749 (1995). This important prospective study shows the use of TJ-9 as a chemopreventive agent against hepatocellular carcinoma.

    CAS  PubMed  Google Scholar 

  162. Correa, P. et al. Chemoprevention of gastric dysplasia: randomized trial of antioxidant supplements and anti-Helicobacter pylori therapy. J. Natl Cancer Inst. 92, 1881–1888 (2000). Key prospective study showing antioxidants prevent against gastric carcinogenesis that is associated with Helicobacter pylori.

    CAS  PubMed  Google Scholar 

  163. Zullo, A. et al. Ascorbic acid and intestinal metaplasia in the stomach: a prospective, randomized study. Aliment. Pharmacol. Ther. 14, 1303–1309 (2000).

    CAS  PubMed  Google Scholar 

  164. Rotola, A. et al. Beta-interferon treatment of cervical intraepithelial neoplasia: a multicenter clinical trial. Intervirology 38, 325–331 (1995).

    CAS  PubMed  Google Scholar 

  165. Meyskens, F. L. Jr. et al. Enhancement of regression of cervical intraepithelial neoplasia II (moderate dysplasia) with topically applied all-trans-retinoic acid: a randomized trial. J. Natl Cancer Inst. 86, 539–543 (1994).

    PubMed  Google Scholar 

  166. Bansal, P. & Sonnenberg, A. Risk factors of colorectal cancer in inflammatory bowel disease. Am. J. Gastroenterol. 91, 44–48 (1996).

    CAS  PubMed  Google Scholar 

  167. Eaden, J., Abrams, K., Ekbom, A., Jackson, E. & Mayberry, J. Colorectal cancer prevention in ulcerative colitis: a case-control study. Aliment. Pharmacol. Ther. 14, 145–153 (2000).

    CAS  PubMed  Google Scholar 

  168. Lashner, B. A., Provencher, K. S., Seidner, D. L., Knesebeck, A. & Brzezinski, A. The effect of folic acid supplementation on the risk for cancer or dysplasia in ulcerative colitis. Gastroenterology 112, 29–32 (1997).

    CAS  PubMed  Google Scholar 

  169. Moody, G. A., Jayanthi, V., Probert, C. S., Mac, K. H. & Mayberry, J. F. Long-term therapy with sulphasalazine protects against colorectal cancer in ulcerative colitis: a retrospective study of colorectal cancer risk and compliance with treatment in Leicestershire. Eur. J. Gastroenterol. Hepatol. 8, 1179–1183 (1996).

    CAS  PubMed  Google Scholar 

  170. Pinczowski, D., Ekbom, A., Baron, J., Yuen, J. & Adami, H. O. Risk factors for colorectal cancer in patients with ulcerative colitis: a case-control study. Gastroenterology 107, 117–120 (1994).

    CAS  PubMed  Google Scholar 

  171. Tung, B. Y. et al. Ursodiol use is associated with lower prevalence of colonic neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Ann. Intern. Med. 134, 89–95 (2001).

    CAS  PubMed  Google Scholar 

  172. Pan, W. H. et al. Vitamin A, Vitamin E or beta-carotene status and hepatitis B-related hepatocellular carcinoma. Ann. Epidemiol. 3, 217–224 (1993).

    CAS  PubMed  Google Scholar 

  173. Yu, M. W. et al. Plasma selenium levels and risk of hepatocellular carcinoma among men with chronic hepatitis virus infection. Am. J. Epidemiol. 150, 367–374 (1999).

    CAS  PubMed  Google Scholar 

  174. Yu, M. W. et al. Plasma carotenoids, glutathione S-transferase M1 and T1 genetic polymorphisms, and risk of hepatocellular carcinoma: independent and interactive effects. Am. J. Epidemiol. 149, 621–629 (1999).

    CAS  PubMed  Google Scholar 

  175. van Rossum, T. G., Vulto, A. G., de Man, R. A., Brouwer, J. T. & Schalm, S. W. Glycyrrhizin as a potential treatment for chronic hepatitis C. Aliment. Pharmacol. Ther. 12, 199–205 (1998).

    CAS  PubMed  Google Scholar 

  176. Arase, Y. et al. The long term efficacy of glycyrrhizin in chronic hepatitis C patients. Cancer 79, 1494–1500 (1997).

    CAS  PubMed  Google Scholar 

  177. Rock, C. L., Michael, C. W., Reynolds, R. K. & Ruffin, M. T. Prevention of cervix cancer. Crit. Rev. Oncol. Hematol. 33, 169–185 (2000).

    CAS  PubMed  Google Scholar 

  178. Zaridze, D., Borisova, E., Maximovitch, D. & Chkhikvadze, V. Aspirin protects against gastric cancer: results of a case-control study from Moscow, Russia. Int. J. Cancer 82, 473–476 (1999).

    CAS  PubMed  Google Scholar 

  179. Dennis, L. K., Lynch, C. F & Torner, J. C. Epidemiologic association between prostatitis and prostate cancer. Urology 60, 78–83 (2002).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Khan for graphical assistance, D. Dudek for editorial assistance and K. McPherson for assistance in manuscript preparation. We also thank G. Wogan for his useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis C. Harris.

Related links

Related links

DATABASES

Cancer.gov

brain cancer

breast cancer

colon cancer

hepatocellular carcinoma

lung cancer

oesophageal cancer

stomach cancer

LocusLink

APC

Cox1

COX1

Cox2

COX2

ferritin H

ferroportin

FOS

glutathione peroxidase 1

HFE

Il-10

IL-10

iNOS

JUN

MnSOD

MYC

p53

transferrrin receptor 2

VEGF

WAF1

OMIM

Crohn's disease

haemochromatosis

ulcerative colitis

FURTHER INFORMATION

For further information on Barrett's oesophagus

For further information on chemoprevention

For further information on inflammatory diseases

For further information on viral hepatitis

Glossary

CYTOKINE

A soluble protein that is produced and released by individual cells that transmit distinct messages of activation, inhibition, chemoattraction or apoptosis to other cells. This interaction triggers effector mechanisms within the responding cell. Key pro-inflammatory cytokines include IL-1β, TNF-α and IFN-γ.

FREE RADICAL

An atom or a group of atoms that has an unpaired electron. These are highly reactive to biological molecules and will damage them.

NITRATION

Addition of an equivalent of NO2˙ in a free-radical mechanism, often resulting in the formation of 3-nitrotyrosine. This modification can affect the function of certain proteins and is involved in disease pathology, including cancer.

NITROSATION

Addition of an equivalent of NO+ (nitrosonium ion or nitrosyl cation) to an amine, thiol or hydroxyaromatic group.

LIPID PEROXIDATION

Auto-oxidation of lipids that are exposed to oxygen.

MALONDIALDEHYDE

A naturally occurring, bioactive by-product of lipid peroxidation and prostaglandin synthesis that has the potential to damage DNA. It reacts with DNA to form adducts to deoxyguanosine and deoxyadenosine.

FAS LIGAND

A 40-kDa transmembrane protein that belongs to the tumour necrosis factor (TNF) family. It is a potent pro-apoptotic factor.

APC GENE

The adenomatous polyposis coli gene is a tumour suppressor. Mutations in the gene are responsible for familial adenomatous polyposis and most sporadic colorectal cancers. The best understood function of APC is the destabilization of β-catenin, a key effector of the WNT signalling pathway.

NON-STEROIDAL ANTI-INFLAMMATORY DRUGS

(NSAIDs). This heterogeneous group of drugs primarily target the cyclooxygenase enzymes to treat pain, fever and inflammation.

BIOMARKER

A specific biochemical that provides a measure of a biological response to an endogenous or exogenous agent. The biological responses might be at the molecular, cellular or whole-organism level.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, S., Hofseth, L. & Harris, C. Radical causes of cancer. Nat Rev Cancer 3, 276–285 (2003). https://doi.org/10.1038/nrc1046

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1046

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing