Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A density-independent rigidity transition in biological tissues

Abstract

Cell migration is important in many biological processes, including embryonic development, cancer metastasis and wound healing. In these tissues, a cell’s motion is often strongly constrained by its neighbours, leading to glassy dynamics. Although self-propelled particle models exhibit a density-driven glass transition, this does not explain liquid-to-solid transitions in confluent tissues, where there are no gaps between cells and therefore the density is constant. Here we demonstrate the existence of a new type of rigidity transition that occurs in the well-studied vertex model for confluent tissue monolayers at constant density. We find that the onset of rigidity is governed by a model parameter that encodes single-cell properties such as cell–cell adhesion and cortical tension, providing an explanation for liquid-to-solid transitions in confluent tissues and making testable predictions about how these transitions differ from those in particulate matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Energy barriers for local cellular rearrangements.
Figure 2: A rigidity transition in confluent tissues.
Figure 3: Analysis of the vibrational density of states.
Figure 4: Shear modulus as a function of p0αp0, which is the system-specific distance to the rigidity transition.
Figure 5: A simple four-cell model.

Similar content being viewed by others

References

  1. Schoetz, E.-M., Lanio, M., Talbot, J. A. & Manning, M. L. Glassy dynamics in three-dimensional embryonic tissues. J. R. Soc. Interface 10, 20130726 (2013).

    Article  Google Scholar 

  2. Angelini, T. E. et al. Glass-like dynamics of collective cell migration. Proc. Natl Acad. Sci. USA 108, 4714–4719 (2011).

    Article  ADS  Google Scholar 

  3. Nnetu, K. D., Knorr, M., Käs, J. & Zink, M. The impact of jamming on boundaries of collectively moving weak-interacting cells. New J. Phys. 14, 115012 (2012).

    Article  ADS  Google Scholar 

  4. Haxton, T. K., Schmiedeberg, M. & Liu, A. J. Universal jamming phase diagram in the hard-sphere limit. Phys. Rev. E 83, 031503 (2011).

    Article  ADS  Google Scholar 

  5. Abate, A. R. & Durian, D. J. Topological persistence and dynamical heterogeneities near jamming. Phys. Rev. E 76, 021306 (2007).

    Article  ADS  Google Scholar 

  6. Liu, A. J. & Nagel, S. R. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010).

    Article  ADS  Google Scholar 

  7. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  8. Henkes, S., Fily, Y. & Marchetti, M. C. Active jamming: Self-propelled soft particles at high density. Phys. Rev. E 84, 040301 (2011).

    Article  ADS  Google Scholar 

  9. Chate, H., Ginelli, F., Gregoire, G., Peruani, F. & Raynaud, F. Modeling collective motion: Variations on the Vicsek model. Eur. Phys. J. B 64, 451–456 (2008).

    Article  ADS  Google Scholar 

  10. Berthier, L. Nonequilibrium glassy dynamics of self-propelled hard disks. Phys. Rev. Lett. 112, 220602 (2014).

    Article  ADS  Google Scholar 

  11. Berthier, L. & Kurchan, J. Non-equilibrium glass transitions in driven and active matter. Nature Phys. 9, 310–314 (2013).

    Article  ADS  Google Scholar 

  12. Petitjean, L. et al. Velocity fields in a collectively migrating epithelium. Biophys. J. 98, 1790–1800 (2010).

    Article  ADS  Google Scholar 

  13. Nagai, T. & Honda, H. A dynamic cell model for the formation of epithelial tissues. Phil. Mag. B 81, 699–719 (2001).

    Article  ADS  Google Scholar 

  14. Farhadifar, R., Röper, J.-C., Aigouy, B., Eaton, S. & Jülicher, F. The influence of cell mechanics, cell–cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007).

    Article  Google Scholar 

  15. Hufnagel, L., Teleman, A. A., Rouault, H., Cohen, S. M. & Shraiman, B. I. On the mechanism of wing size determination in fly development. Proc. Natl Acad. Sci. USA 104, 3835–3840 (2007).

    Article  ADS  Google Scholar 

  16. Staple, D. B. et al. Mechanics and remodelling of cell packings in epithelia. Eur. Phys. J. E 33, 117–127 (2010).

    Article  Google Scholar 

  17. Hilgenfeldt, S., Erisken, S. & Carthew, R. W. Physical modeling of cell geometric order in an epithelial tissue. Proc. Natl Acad. Sci. USA 105, 907–911 (2008).

    Article  ADS  Google Scholar 

  18. Manning, M. L., Foty, R. A., Steinberg, M. S. & Schoetz, E.-M. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension. Proc. Natl Acad. Sci. USA 107, 12517–12522 (2010).

    Article  ADS  Google Scholar 

  19. Wang, G., Manning, M. L. & Amack, J. D. Regional cell shape changes control form and function of Kupffer’s vesicle in the zebrafish embryo. Dev. Biol. 370, 52–62 (2012).

    Article  Google Scholar 

  20. Chiou, K. K., Hufnagel, L. & Shraiman, B. I. Mechanical stress inference for two dimensional cell arrays. PLoS Comput. Biol. 8, e1002512 (2012).

    Article  ADS  Google Scholar 

  21. Fletcher, A. G., Osterfield, M., Baker, R. E. & Shvartsman, S. Y. Vertex models of epithelial morphogenesis. Biophys. J. 106, 2291–2304 (2014).

    Article  ADS  Google Scholar 

  22. Hočevar, A. & Ziherl, P. Degenerate polygonal tilings in simple animal tissues. Phys. Rev. E 80, 011904 (2009).

    Article  ADS  Google Scholar 

  23. Zehnder, S. M., Suaris, M., Bellaire, M. M. & Angelini, T. E. Cell volume fluctuations in MDCK monolayers. Biophys. J. 108, 247–250 (2015).

    Article  ADS  Google Scholar 

  24. Graner, F. & Glazier, J. A. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69, 2013–2016 (1992).

    Article  ADS  Google Scholar 

  25. Amack, J. D. & Manning, M. L. Extending the differential adhesion hypothesis in embryonic cell sorting. Science 338, 212–215 (2012).

    Article  ADS  Google Scholar 

  26. Lecuit, T. “Developmental mechanics”: Cellular patterns controlled by adhesion, cortical tension and cell division. HFSP J. 2, 72–78 (2008).

    Article  Google Scholar 

  27. Guillot, C. & Lecuit, T. Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340, 1185–1189 (2013).

    Article  ADS  Google Scholar 

  28. Weaire, D. L. & Hutzler, S. The Physics of Foams (Oxford Univ. Press, 1999).

    Google Scholar 

  29. Bi, D., Lopez, J. H., Schwarz, J. M. & Manning, M. L. Energy barriers and cell migration in densely packed tissues. Soft Matter 10, 1885–1890 (2014).

    Article  ADS  Google Scholar 

  30. Newhall, K. A., Jorjadze, I., Vanden-Eijnden, E. & Brujic, J. A statistical mechanics framework captures the packing of monodisperse particles. Soft Matter 7, 11518–11525 (2011).

    Article  ADS  Google Scholar 

  31. Aste, T. & Di Matteo, T. Emergence of gamma distributions in granular materials and packing models. Phys. Rev. E 77, 021309 (2008).

    Article  ADS  Google Scholar 

  32. Bi, D., Zhang, J., Behringer, R. P. & Chakraborty, B. Fluctuations in shear-jammed states: A statistical ensemble approach. Europhys. Lett. 102, 34002 (2013).

    Article  ADS  Google Scholar 

  33. Kadanoff, L. P. et al. Static phenomena near critical points: Theory and experiment. Rev. Mod. Phys. 39, 395–431 (1967).

    Article  ADS  Google Scholar 

  34. Olsson, P. & Teitel, S. Critical scaling of shear viscosity at the jamming transition. Phys. Rev. Lett. 99, 178001 (2007).

    Article  ADS  Google Scholar 

  35. Das, M., Quint, D. A. & Schwarz, J. M. Redundancy and cooperativity in the mechanics of compositely crosslinked filamentous networks. PLoS ONE 7, e35939 (2012).

    Article  ADS  Google Scholar 

  36. Broedersz, C. P., Mao, X., Lubensky, T. C. & MacKintosh, F. C. Criticality and isostaticity in fibre networks. Nature Phys. 7, 983–988 (2011).

    Article  ADS  Google Scholar 

  37. Heussinger, C. & Frey, E. Floppy modes and nonaffine deformations in random fiber networks. Phys. Rev. Lett. 97, 105501 (2006).

    Article  ADS  Google Scholar 

  38. Ashcroft, N. W. & Mermin, N. D. Solid State Physics HRW International edn (Holt, Rinehart and Winston, 1976).

    MATH  Google Scholar 

  39. Silbert, L. E., Liu, A. J. & Nagel, S. R. Vibrations and diverging length scales near the unjamming transition. Phys. Rev. Lett. 95, 098301 (2005).

    Article  ADS  Google Scholar 

  40. Wyart, M., Silbert, L. E., Nagel, S. R. & Witten, T. A. Effects of compression on the vibrational modes of marginally jammed solids. Phys. Rev. E 72, 051306 (2005).

    Article  ADS  Google Scholar 

  41. Manning, M. L. & Liu, A. J. A random matrix definition of the boson peak. Europhys. Lett. 109, 36002 (2013).

    Article  ADS  Google Scholar 

  42. O’Hern, C. S., Langer, S. A., Liu, A. J. & Nagel, S. R. Random packings of frictionless particles. Phys. Rev. Lett. 88, 075507 (2002).

    Article  ADS  Google Scholar 

  43. Park, J.-A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nature Mater. http://dx.doi.org/63x (2015).

  44. Sadati, M., Qazvini, N. T., Krishnan, R., Park, C. Y. & Fredberg, J. J. Collective migration and cell jamming. Differentiation 86, 121–125 (2013).

    Article  Google Scholar 

  45. Kasza, K. E., Farrell, D. L. & Zallen, J. A. Spatiotemporal control of epithelial remodeling by regulated myosin phosphorylation. Proc. Natl Acad. Sci. USA 111, 11732–11737 (2014).

    Article  ADS  Google Scholar 

  46. Kalluri, R. & Weinberg, R. A. et al. The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  Google Scholar 

  47. Gabrielli, A. & Torquato, S. Voronoi and void statistics for superhomogeneous point processes. Phys. Rev. E 70, 041105 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  48. Torquato, S. & Haslach, H. W. Jr Random heterogeneous materials: Microstructure and macroscopic properties. Appl. Mech. Rev. 55, B62–B63 (2002).

    Article  Google Scholar 

  49. Brakke, K. A. The Surface Evolver. Exp. Math. 1, 141–165 (1992).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank G. Salbreux and M. C. Marchetti for substantial and useful comments on this manuscript. M.L.M. acknowledges support from the Alfred P. Sloan Foundation, and M.L.M. and D.B. acknowledge support from NSF-CMMI-1334611 and NSF-DMR-1352184. M.L.M. and D.B. also would like to thank the KITP at the University of California Santa Barbara for hospitality, supported in part by NSF PHY11-25915. The authors also acknowledge the Syracuse University HTC Campus Grid and NSF award ACI-1341006.

Author information

Authors and Affiliations

Authors

Contributions

D.B., M.L.M. and J.M.S. conceived and designed the project, which was executed and analysed by D.B. and J.H.L., with oversight from J.M.S. and M.L.M. D.B., J.M.S. and M.L.M. prepared the manuscript.

Corresponding author

Correspondence to M. Lisa Manning.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, D., Lopez, J., Schwarz, J. et al. A density-independent rigidity transition in biological tissues. Nature Phys 11, 1074–1079 (2015). https://doi.org/10.1038/nphys3471

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3471

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing