Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mitochondrial iron chelation ameliorates cigarette smoke–induced bronchitis and emphysema in mice

Abstract

Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element–binding protein 2 (IRP2) as an important COPD susceptibility gene and have shown that IRP2 protein is increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD. By integrating RNA immunoprecipitation followed by sequencing (RIP-seq), RNA sequencing (RNA-seq), and gene expression and functional enrichment clustering analysis, we identified Irp2 as a regulator of mitochondrial function in the lungs of mice. Irp2 increased mitochondrial iron loading and levels of cytochrome c oxidase (COX), which led to mitochondrial dysfunction and subsequent experimental COPD. Frataxin-deficient mice, which had higher mitochondrial iron loading, showed impaired airway mucociliary clearance (MCC) and higher pulmonary inflammation at baseline, whereas mice deficient in the synthesis of cytochrome c oxidase, which have reduced COX, were protected from CS-induced pulmonary inflammation and impairment of MCC. Mice treated with a mitochondrial iron chelator or mice fed a low-iron diet were protected from CS-induced COPD. Mitochondrial iron chelation also alleviated CS-induced impairment of MCC, CS-induced pulmonary inflammation and CS-associated lung injury in mice with established COPD, suggesting a critical functional role and potential therapeutic intervention for the mitochondrial-iron axis in COPD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Irp2 is pathogenic in experimental COPD.
Figure 2: Novel targets of IRP2 in the lung.
Figure 3: Irp2−/− mice resist CS-induced mitochondrial dysfunction.
Figure 4: IRP2-associated mitochondrial-iron loading and CS exposure.
Figure 5: COX is pathogenic in experimental COPD.
Figure 6: Targeting mitochondrial iron in experimental COPD.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Barnes, P.J., Shapiro, S.D. & Pauwels, R.A. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur. Respir. J. 22, 672–688 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Hogg, J.C. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 2645–2653 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Siedlinski, M. et al. Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. Hum. Genet. 132, 431–441 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. DeMeo, D.L. et al. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. Am. J. Hum. Genet. 85, 493–502 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qiu, W. et al. ECLIPSE Investigators. Genetics of sputum gene expression in chronic obstructive pulmonary disease. PLoS One 6, e24395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hardin, M. et al. CHRNA3/5, IREB2 and ADCY2 are associated with severe chronic obstructive pulmonary disease in Poland. Am. J. Respir. Cell Mol. Biol. 47, 203–208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pillai, S.G. et al. ICGN Investigators. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 5, e1000421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saccone, N.L. et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet. 6, e1001053 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thorgeirsson, T.E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee, J.H. et al. IREB2 and GALC are associated with pulmonary artery enlargement in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 52, 365–376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meyron-Holtz, E.G. et al. Genetic ablations of iron-regulatory proteins 1 and 2 reveal why iron-regulatory protein 2 dominates iron homeostasis. EMBO J. 23, 386–395 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghosh, M.C. et al. Deletion of iron-regulatory protein 1 causes polycythemia and pulmonary hypertension in mice through translational derepression of HIF2α. Cell Metab. 17, 271–281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. LaVaute, T. et al. Targeted deletion of the gene encoding iron-regulatory protein 2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat. Genet. 27, 209–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Jeong, S.Y. et al. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice. PLoS One 6, e25404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cooperman, S.S. et al. Microcytic anemia, erythropoietic protoporphyria and neurodegeneration in mice with targeted deletion of iron-regulatory protein 2. Blood 106, 1084–1091 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoshida, T. et al. Rtp801, a suppressor of mTOR signaling, is an essential mediator of cigarette smoke–induced pulmonary injury and emphysema. Nat. Med. 16, 767–773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mizumura, K. et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J. Clin. Invest. 124, 3987–4003 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lam, H.C. et al. Histone deacetylase 6–mediated selective autophagy regulates COPD-associated cilia dysfunction. J. Clin. Invest. 123, 5212–5230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leopold, P.L. et al. Smoking is associated with shortened airway cilia. PLoS One 4, e8157 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thorley, A.J. & Tetley, T.D. Pulmonary epithelium, cigarette smoke and chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2, 409–428 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Moroishi, T., Nishiyama, M., Takeda, Y., Iwai, K. & Nakayama, K.I. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo. Cell Metab. 14, 339–351 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. An, C.H. et al. TLR4 deficiency promotes autophagy during cigarette smoke–induced pulmonary emphysema. Am. J. Physiol. Lung Cell. Mol. Physiol. 303, L748–L757 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Braber, S. et al. Cigarette smoke–induced lung emphysema in mice is associated with prolyl endopeptidase, an enzyme involved in collagen breakdown. Am. J. Physiol. Lung Cell. Mol. Physiol. 300, L255–L265 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Kantrow, S.P., Shen, Z., Jagneaux, T., Zhang, P. & Nelson, S. Neutrophil-mediated lung permeability and host defense proteins. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L738–L745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qiu, C. et al. Anti–interleukin-33 inhibits cigarette smoke–induced lung inflammation in mice. Immunology 138, 76–82 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Hubeau, C., Kubera, J.E., Masek-Hammerman, K. & Williams, C.M. Interleukin-6 neutralization alleviates pulmonary inflammation in mice exposed to cigarette smoke and poly(I:C). Clin. Sci. 125, 483–493 (2013).

    Article  CAS  Google Scholar 

  27. Galy, B. et al. Iron-regulatory proteins secure mitochondrial iron sufficiency and function. Cell Metab. 12, 194–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Fujimura, M., Morita-Fujimura, Y., Murakami, K., Kawase, M. & Chan, P.H. Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 18, 1239–1247 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Huang, M.L. et al. Elucidation of the mechanism of mitochondrial iron loading in Friedreich's ataxia by analysis of a mouse mutant. Proc. Natl. Acad. Sci. USA 106, 16381–16386 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hentze, M.W., Muckenthaler, M.U., Galy, B. & Camaschella, C. Two to tango: regulation of mammalian iron metabolism. Cell 142, 24–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Shaw, G.C. et al. Mitoferrin is essential for erythroid iron assimilation. Nature 440, 96–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Whitnall, M. et al. Identification of nonferritin mitochondrial iron deposits in a mouse model of Friedreich's ataxia. Proc. Natl. Acad. Sci. USA 109, 20590–20595 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Slebos, D.J. et al. Mitochondrial localization and function of heme oxygenase–1 in cigarette smoke–induced cell death. Am. J. Respir. Cell Mol. Biol. 36, 409–417 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Clemente, P. et al. hCOA3 stabilizes cytochrome c oxidase 1 (COX1) and promotes cytochrome c oxidase assembly in human mitochondria. J. Biol. Chem. 288, 8321–8331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gattermann, N. et al. Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome c oxidase in two patients with acquired idiopathic sideroblastic anemia. Blood 90, 4961–4972 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Huttemann, M. et al. Cytochrome c oxidase subunit 4 isoform 2–knockout mice show reduced enzyme activity, airway hyporeactivity and lung pathology. FASEB J. 26, 3916–3930 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, H. et al. Analysis of mouse models of cytochrome c oxidase deficiency owing to mutations in Sco2. Hum. Mol. Genet. 19, 170–180 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Ning, W. et al. Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease. Proc. Natl. Acad. Sci. USA 101, 14895–14900 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sohn, Y.S., Breuer, W., Munnich, A. & Cabantchik, Z.I. Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood 111, 1690–1699 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Filosa, A. et al. Long-term treatment with deferiprone enhances left ventricular ejection function when compared to deferoxamine in patients with thalassemia major. Blood Cells Mol. Dis. 51, 85–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Hancock, D.B. et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet. 42, 45–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Repapi, E. et al. Genome-wide association study identifies five loci associated with lung function. Nat. Genet. 42, 36–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Lambrechts, D. et al. The 15q24/25 susceptibility variant for lung cancer and chronic obstructive pulmonary disease is associated with emphysema. Am. J. Respir. Crit. Care Med. 181, 486–493 (2010).

    Article  PubMed  Google Scholar 

  44. Cho, M.H. et al. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum. Mol. Genet. 21, 947–957 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Cho, M.H. et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir. Med. 2, 214–225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cho, M.H. et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat. Genet. 42, 200–202 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilk, J.B. et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet. 5, e1000429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rensvold, J.W. et al. Complementary RNA and protein profiling identifies iron as a key regulator of mitochondrial biogenesis. Cell Reports 3, 237–245 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Agarwal, A.R., Yin, F. & Cadenas, E. Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells. Am. J. Respir. Cell Mol. Biol. 51, 284–293 (2014).

    PubMed  Google Scholar 

  50. Caron, M.A., Debigaré, R., Dekhuijzen, P.N. & Maltais, F. Comparative assessment of the quadriceps and the diaphragm in patients with COPD. J. Appl. Physiol. 107, 952–961 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Crul, T. et al. Gene expression profiling in vastus lateralis muscle during an acute exacerbation of COPD. Cell. Physiol. Biochem. 25, 491–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Ghio, A.J. et al. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am. J. Respir. Crit. Care Med. 178, 1130–1138 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Philippot, Q. et al. Increased iron sequestration in alveolar macrophages in chronic obstructive pulmonary disease. PLoS One 9, e96285 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Silverberg, D.S. et al. Anemia and iron deficiency in COPD patients: prevalence and the effects of correction of the anemia with erythropoiesis stimulating agents and intravenous iron. BMC Pulm. Med. 14, 24 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schneckenpointner, R. et al. The clinical significance of anemia and disturbed iron homeostasis in chronic respiratory failure. Int. J. Clin. Pract. 68, 130–138 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Nickol, A.H. & Frise, M.C. A cross-sectional study of the prevalence and associations of iron deficiency in a cohort of patients with chronic obstructive pulmonary disease. BMJ Open 5, e007911 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tandara, L. et al. Systemic inflammation upregulates serum hepcidin in exacerbations and stabile chronic obstructive pulmonary disease. Clin. Biochem. 48, 1252–1257 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Sauleda, J. et al. Cytochrome oxidase activity and mitochondrial gene expression in skeletal muscle of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 157, 1413–1417 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Antonicka, H. et al. Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum. Mol. Genet. 12, 2693–2702 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Castaldi, P.J. et al. Genetic control of gene expression at novel and established chronic obstructive pulmonary disease loci. Hum. Mol. Genet. 24, 1200–1210 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Lee, P.J. et al. Regulation of heme oxygenase–1 expression in vivo and in vitro in hyperoxic lung injury. Am. J. Respir. Cell Mol. Biol. 14, 556–568 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Siempos, I.I. et al. Cecal ligation and puncture–induced sepsis as a model to study autophagy in mice. J. Vis. Exp. 84, e51066 (2014).

    Google Scholar 

  63. Chen, Z.H. et al. Autophagy protein microtubule-associated protein 1 light chain–3B (LC3B) activates extrinsic apoptosis during cigarette smoke–induced emphysema. Proc. Natl. Acad. Sci. USA 107, 18880–18885 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Parameswaran, H., Majumdar, A., Ito, S., Alencar, A.M. & Suki, B. Quantitative characterization of airspace enlargement in emphysema. J. Appl. Physiol. 100, 186–193 (2006).

    Article  PubMed  Google Scholar 

  65. Laucho-Contreras, M.E., Taylor, K.L., Mahadeva, R., Boukedes, S.S. & Owen, C.A. Automated measurement of pulmonary emphysema and small-airway remodeling in cigarette smoke–exposed mice. J. Vis. Exp. 95, e52236 (2015).

    Google Scholar 

  66. Jacob, R.E. et al. Comparison of two quantitative methods of discerning airspace enlargement in smoke-exposed mice. PLoS One 4, e6670 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jacob, R.E., Minard, K.R., Laicher, G. & Timchalk, C. 3D 3He diffusion MRI as a local in vivo morphometric tool to evaluate emphysematous rat lungs. J. Appl. Physiol. 105, 1291–1300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wilson, A.A. et al. Amelioration of emphysema in mice through lentiviral transduction of long-lived pulmonary alveolar macrophages. J. Clin. Invest. 120, 379–389 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Hamakawa, H. et al. Structure-function relations in an elastase-induced mouse model of emphysema. Am. J. Respir. Cell Mol. Biol. 45, 517–524 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Summer, R. et al. Alveolar macrophage activation and an emphysema-like phenotype in adiponectin-deficient mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L1035–L1042 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Nobuyuki, O. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. Syst. 9, 62–66 (1979).

    Article  Google Scholar 

  72. Soille, P. in Morphological Image Analysis: Principles and Applications (Springer-Verlag, Berlin, Heidelberg) 170–171 (1999).

  73. Meyer, F. Topographic distance and watershed lines. Signal Processing 38, 113–125 (1994).

    Article  Google Scholar 

  74. Kuhn, C. 3rd et al. Airway hyper-responsiveness and airway obstruction in transgenic mice. Morphologic correlates in mice overexpressing interleukin (IL)-11 and IL-6 in the lung. Am. J. Respir. Cell Mol. Biol. 22, 289–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Bhashyam, A.R. et al. A pilot study to examine the effect of chronic treatment with immunosuppressive drugs on mucociliary clearance in a vagotomized murine model. PLoS One 7, e45312 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mortensen, J., Lange, P., Nyboe, J. & Groth, S. Lung mucociliary clearance. Eur. J. Nucl. Med. 21, 953–961 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Goforth, J.B., Anderson, S.A., Nizzi, C.P. & Eisenstein, R.S. Multiple determinants within iron-responsive elements dictate iron-regulatory protein binding and regulatory hierarchy. RNA 16, 154–169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dai, M. et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 33, e175 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dennis, G. Jr. et al. DAVID: Database for annotation, visualization and integrated discovery. Genome Biol. 4, 3 (2003).

    Article  Google Scholar 

  80. Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  Google Scholar 

  81. Clauset, A., Newman, M.E. & Moore, C. Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004).

    Article  CAS  Google Scholar 

  82. Oron, A.P., Jiang, Z. & Gentleman, R. Gene set–enrichment analysis using linear models and diagnostics. Bioinformatics 24, 2586–2591 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Blake, J.A. et al. Gene Ontology Consortium. Gene Ontology annotations and resources. Nucleic Acids Res. 41, D530–D535 (2013).

    CAS  PubMed  Google Scholar 

  84. Smyth, G.K. Bioinformatics and Computational Biology Solutions Using {R} and Bioconductor (Springer, New York, 2005).

  85. Johnson, W.E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article  PubMed  Google Scholar 

  86. Vestbo, J. et al. ECLIPSE investigators. Evaluation of COPD longitudinally to identify predictive surrogate end points (ECLIPSE). Eur. Respir. J. 31, 869–873 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Campbell, J.D. et al. A gene-expression signature of emphysema-related lung destruction and its reversal by the tripeptide GHK. Genome Med. 4, 67 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, Z.H. et al. Egr-1 regulates autophagy in cigarette smoke–induced chronic obstructive pulmonary disease. PLoS One 3, e3316 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Epsztejn, S., Kakhlon, O., Glickstein, H., Breuer, W. & Cabantchik, I. Fluorescence analysis of the labile iron pool of mammalian cells. Anal. Biochem. 248, 31–40 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Hoff, K.G. et al. In vivo fluorescence detection of Fe-S clusters coordinated by human GRX2. Chem. Biol. 16, 1299–1308 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J.S. Moon, H.C. Lam, K. Taylor and B. Ding for technical assistance. The authors also acknowledge S. Chan (Harvard Medical School) for the cyto-GRX2 and mito-GRX2 plasmids, Y. Hua (Columbia University) for the breeding of the Sco2ki/ki and Sco2ki/ko mice and J. Connelly (ApoPharma Inc.) for providing Ferriprox. The authors also thank R. Rubio for assistance with RNA-seq, Y. Shao for assistance with the microarray study and M. Ericsson for assistance with transmission electron microscopy. The authors also acknowledge discussion and input from S.W. Ryter, C.A. MacRae and P.Y. Sips. This work was supported by US National Institutes of Health (NIH) grants P01-HL114501 (A.M.K.C.), R01-HL055330 (A.M.K.C.), R01-HL079904 (A.M.K.C.), R01-AI111475-01 (C.A.O.), R01-HL86814 (C.A.O.), R21-HL111835 (C.A.O.), HL122513 (H.P.), R01-HL086936 (to J.M.D'A.) and P01-HD080642 (Project 2 to E.A.S.), NIH–National Heart, Lung and Blood Institute grant K99-HL125899 (S.M.C.), American Lung Association Biomedical Research grant RG-348928 (S.M.C.), a Flight Attendants Medical Research Institute (FAMRI) clinical innovator award (A.M.K.C.), clinical innovator FAMRI grant CIA#123046 (C.A.O.), FAMRI Young Clinical Scientist awards YFEL141004 (F.P.) and YFEL103236 (M.P.G.), and US Department of Defense grant W911F-15-1-0169 (E.A.S.). S.M.C., A.M.K.C., J.Q. and E.K.S. were also supported by NIH grant P01-HL105339 (to E.K.S.). K.G. was supported by NIH grant R01-HL111759 (to J.Q., G.C.Y. and E.K.S.). C.A.O. was also supported by NIH grants R21-ES025379-01 (to A. Fedulov), P01-HL105339 (to E.K.S.) and P01-HL114501 (to A.M.K.C.) and by Brigham and Women's Hospital–Lovelace Respiratory Research institute Research Consortium grants. G.M. and C.K. were supported by NIH grant R01-GM088999 (to G.M.). M.C.G. and T.A.R. acknowledge support from the intramural research program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH. Additional support was provided by the Muscular Dystrophy Association (E.A.S.) and the J. Willard and Alice S. Marriott Foundation (E.A.S.).

Author information

Authors and Affiliations

Authors

Contributions

S.M.C. and A.M.K.C. conceived and designed the study. S.M.C., K.G., M.E.L.-C., M.A.P., I.I.S., E.P., C.K., K.M., Z.-H.C., N.C.W., K.T.R., M.C.G. and A.M. performed experiments. K.G. analyzed RIP-seq, gene expression and human expression data and performed functional clustering analysis. A.R.B. and M.C. reconstructed and analyzed MCC images. S.C.M. provided technical support for the MCC experiments. C.A.O., F.P. and H.P. analyzed morphometric data. M.C.G. and T.A.R. provided the Irp2−/− mice. E.A.S. provided the Sco2ki/ki and Sco2ki/ko mice, and M.P.G. and J.M.D'A. provided technical support. D.L.D. helped with the LGRC human data set. S.M.C., K.G., G.-C.Y., J.Q., E.K.S., G.M., C.A.O. and A.M.K.C. provided critical analysis and discussions. S.M.C. and A.M.K.C. wrote the paper with significant input and contributions from K.G. and C.A.O. All coauthors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Augustine M K Choi.

Ethics declarations

Competing interests

In the past three years, E.K.S. received honoraria and consulting fees from Merck and grant support and consulting fees from GlaxoSmithKline.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–4 (PDF 4840 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cloonan, S., Glass, K., Laucho-Contreras, M. et al. Mitochondrial iron chelation ameliorates cigarette smoke–induced bronchitis and emphysema in mice. Nat Med 22, 163–174 (2016). https://doi.org/10.1038/nm.4021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4021

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research