Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension

Abstract

Pulmonary hypertension (PH) is characterized by increased proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs). Forkhead box O (FoxO) transcription factors are key regulators of cellular proliferation. Here we show that in pulmonary vessels and PASMCs of human and experimental PH lungs, FoxO1 expression is downregulated and FoxO1 is inactivated via phosphorylation and nuclear exclusion. These findings could be reproduced using ex vivo exposure of PASMCs to growth factors and inflammatory cytokines. Pharmacological inhibition and genetic ablation of FoxO1 in smooth muscle cells reproduced PH features in vitro and in vivo. Either pharmacological reconstitution of FoxO1 activity using intravenous or inhaled paclitaxel, or reconstitution of the transcriptional activity of FoxO1 by gene therapy, restored the physiologically quiescent PASMC phenotype in vitro, linked to changes in cell cycle control and bone morphogenic protein receptor type 2 (BMPR2) signaling, and reversed vascular remodeling and right-heart hypertrophy in vivo. Thus, PASMC FoxO1 is a critical integrator of multiple signaling pathways driving PH, and reconstitution of FoxO1 activity offers a potential therapeutic option for PH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression and localization of FoxO isoforms and FoxO-regulated genes in the PAH pulmonary vasculature.
Figure 2: FoxO1 downregulation in PAH PASMCs and in response to pro-hypertensive growth factors and cytokines.
Figure 3: Pharmacological inhibition or genetic ablation of FoxO1 in PASMCs reproduces PH features in vitro and in vivo.
Figure 4: Constitutive activation of FoxO1 reverses the hyperproliferation and apoptosis resistance of PAH PASMCs in vitro and in vivo.
Figure 5: Small-molecule activators of FoxO1 decrease proliferation and induce apoptosis of PAH PASMCs.
Figure 6: Paclitaxel reverses pulmonary vascular remodeling and pulmonary hypertension in MCT-induced PAH and hypoxia+SU5416–induced PAH in rats.

Similar content being viewed by others

References

  1. D'Alonzo, G.E. et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann. Intern. Med. 115, 343–349 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Seeger, W. & Pullamsetti, S.S. Mechanics and mechanisms of pulmonary hypertension—conference summary and translational perspectives. Pulm. Circ. 3, 128–136 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Olschewski, H. et al. Inhaled iloprost for severe pulmonary hypertension. N. Engl. J. Med. 347, 322–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Galiè, N. et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med. 353, 2148–2157 (2005).

    Article  PubMed  Google Scholar 

  5. Rubin, L.J. et al. Bosentan therapy for pulmonary arterial hypertension. N. Engl. J. Med. 346, 896–903 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Benza, R.L. et al. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL Registry. Chest 142, 448–456 (2012).

    Article  PubMed  Google Scholar 

  7. Schermuly, R.T., Ghofrani, H.A., Wilkins, M.R. & Grimminger, F. Mechanisms of disease: pulmonary arterial hypertension. Nat. Rev. Cardiol. 8, 443–455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grimminger, F., Schermuly, R.T. & Ghofrani, H.A. Targeting non-malignant disorders with tyrosine kinase inhibitors. Nat. Rev. Drug Discov. 9, 956–970 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Schermuly, R.T. et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Invest. 115, 2811–2821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pullamsetti, S.S. et al. Role of Src tyrosine kinases in experimental pulmonary hypertension. Arterioscler. Thromb. Vasc. Biol. 32, 1354–1365 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Merklinger, S.L., Jones, P.L., Martinez, E.C. & Rabinovitch, M. Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation 112, 423–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Archer, S.L. et al. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1α-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am. J. Physiol. Heart Circ. Physiol. 294, H570–H578 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Gomez-Arroyo, J. et al. Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy due to pulmonary arterial hypertension. Circ. Heart Fail. 6, 136–144 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tuder, R.M., Davis, L.A. & Graham, B.B. Targeting energetic metabolism: a new frontier in the pathogenesis and treatment of pulmonary hypertension. Am. J. Respir. Crit. Care Med. 185, 260–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghofrani, H.A., Seeger, W. & Grimminger, F. Imatinib for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 353, 1412–1413 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Hoeper, M.M. et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation 127, 1128–1138 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Savai, R. et al. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 186, 897–908 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Yeager, M.E. et al. Circulating myeloid-derived suppressor cells are increased and activated in pulmonary hypertension. Chest 141, 944–952 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Stacher, E. et al. Modern age pathology of pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 186, 261–272 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Price, L.C. et al. Inflammation in pulmonary arterial hypertension. Chest 141, 210–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Kherbeck, N. et al. The role of inflammation and autoimmunity in the pathophysiology of pulmonary arterial hypertension. Clin. Rev. Allergy Immunol. 44, 31–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Rabinovitch, M. Molecular pathogenesis of pulmonary arterial hypertension. J. Clin. Invest. 118, 2372–2379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pullamsetti, S.S. et al. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am. J. Respir. Crit. Care Med. 185, 409–419 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Rabinovitch, M. Molecular pathogenesis of pulmonary arterial hypertension. J. Clin. Invest. 122, 4306–4313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Accili, D. & Arden, K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Hosaka, T. et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc. Natl. Acad. Sci. USA 101, 2975–2980 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Tran, H., Brunet, A., Griffith, E.C. & Greenberg, M.E. The many forks in FOXO's road. Sci. STKE 2003, RE5 (2003).

    PubMed  Google Scholar 

  28. Eijkelenboom, A. & Burgering, B.M. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14, 83–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Calnan, D.R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Oellerich, M.F. & Potente, M. FOXOs and sirtuins in vascular growth, maintenance, and aging. Circ. Res. 110, 1238–1251 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Paik, J.H. FOXOs in the maintenance of vascular homoeostasis. Biochem. Soc. Trans. 34, 731–734 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Mahajan, S.G. et al. A novel function of FoxO transcription factors in thrombin-stimulated vascular smooth muscle cell proliferation. Thromb. Haemost. 108, 148–158 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Paik, J.H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao, Y., Wang, Y. & Zhu, W.G. Applications of post-translational modifications of FoxO family proteins in biological functions. J. Mol. Cell Biol. 3, 276–282 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Nagashima, T. et al. Discovery of novel forkhead box O1 inhibitors for treating type 2 diabetes: improvement of fasting glycemia in diabetic db/db mice. Mol. Pharmacol. 78, 961–970 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Van Der Heide, L.P., Hoekman, M.F. & Smidt, M.P. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem. J. 380, 297–309 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schroeder, F.C., Kau, T.R., Silver, P.A. & Clardy, J. The psammaplysenes, specific inhibitors of FOXO1a nuclear export. J. Nat. Prod. 68, 574–576 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Kau, T.R. et al. A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell 4, 463–476 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Scagliotti, G.V. et al. International, randomized, placebo-controlled, double-blind phase III study of motesanib plus carboplatin/paclitaxel in patients with advanced nonsquamous non-small-cell lung cancer: MONET1. J. Clin. Oncol. 30, 2829–2836 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Goto, T., Takano, M., Hirata, J. & Tsuda, H. The involvement of FOXO1 in cytotoxic stress and drug-resistance induced by paclitaxel in ovarian cancers. Br. J. Cancer 98, 1068–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deng, Z. et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am. J. Hum. Genet. 67, 737–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Atkinson, C. et al. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105, 1672–1678 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, J. et al. Id proteins are critical downstream effectors of BMP signaling in human pulmonary arterial smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 305, L312–L321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Frid, M.G. et al. Sustained hypoxia leads to the emergence of cells with enhanced growth, migratory, and promitogenic potentials within the distal pulmonary artery wall. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L1059–L1072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tu, L. et al. Autocrine fibroblast growth factor-2 signaling contributes to altered endothelial phenotype in pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 45, 311–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Voelkel, N.F. et al. Janus face of vascular endothelial growth factor: the obligatory survival factor for lung vascular endothelium controls precapillary artery remodeling in severe pulmonary hypertension. Crit. Care Med. 30, S251–S256 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Humbert, M. et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am. J. Respir. Crit. Care Med. 151, 1628–1631 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Dorfmüller, P., Perros, F., Balabanian, K. & Humbert, M. Inflammation in pulmonary arterial hypertension. Eur. Respir. J. 22, 358–363 (2003).

    Article  PubMed  Google Scholar 

  49. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Taraseviciene-Stewart, L. et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death–dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J. 15, 427–438 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Lang, M. et al. The soluble guanylate cyclase stimulator riociguat ameliorates pulmonary hypertension induced by hypoxia and SU5416 in rats. PLoS ONE 7, e43433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Toba, M. et al. Temporal hemodynamic and histological progression in Sugen5416/hypoxia/normoxia-exposed pulmonary arterial hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 306, H243–H250 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Piao, L. et al. FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: therapeutic benefits of dichloroacetate. J. Mol. Med. 91, 333–346 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Milas, L., Saito, Y., Hunter, N., Milross, C.G. & Mason, K.A. Therapeutic potential of paclitaxel-radiation treatment of a murine ovarian carcinoma. Radiother. Oncol. 40, 163–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, X. et al. Anti-tumor efficacy and biodistribution of intravenous polymeric micellar paclitaxel. Anticancer Drugs 8, 696–701 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Stabile, E. et al. Drug-eluting balloon for treatment of superficial femoral artery in-stent restenosis. J. Am. Coll. Cardiol. 60, 1739–1742 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Yin, Y. et al. The potential efficacy of R8-modified paclitaxel-loaded liposomes on pulmonary arterial hypertension. Pharm. Res. 30, 2050–2062 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Condliffe, R. et al. Connective tissue disease-associated pulmonary arterial hypertension in the modern treatment era. Am. J. Respir. Crit. Care Med. 179, 151–157 (2009).

    Article  PubMed  Google Scholar 

  59. Heath, D. & Yacoub, M. Lung mast cells in plexogenic pulmonary arteriopathy. J. Clin. Pathol. 44, 1003–1006 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Keller, C. et al. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev. 18, 2614–2626 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weissmann, N. et al. Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc. Natl. Acad. Sci. USA 103, 19093–19098 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Kojonazarov, B. et al. Effects of multikinase inhibitors on pressure overload-induced right ventricular remodeling. Int. J. Cardiol. 167, 2630–2637 (2013).

    Article  PubMed  Google Scholar 

  63. Urboniene, D., Haber, I., Fang, Y.H., Thenappan, T. & Archer, S.L. Validation of high-resolution echocardiography and magnetic resonance imaging vs. high-fidelity catheterization in experimental pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 299, L401–L412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Koskenvuo, J.W. et al. A comparison of echocardiography to invasive measurement in the evaluation of pulmonary arterial hypertension in a rat model. Int. J. Cardiovasc. Imaging 26, 509–518 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Weisel, F.C. et al. Impact of S-adenosylmethionine decarboxylase 1 on pulmonary vascular remodeling. Circulation 129, 1510–1523 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Fink, L. et al. Real-time quantitative RT-PCR after laser-assisted cell picking. Nat. Med. 4, 1329–1333 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Fink, L. et al. cDNA array hybridization after laser-assisted microdissection from nonneoplastic tissue. Am. J. Pathol. 160, 81–90 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pullamsetti, S.S. et al. cAMP phosphodiesterase inhibitors increases nitric oxide production by modulating dimethylarginine dimethylaminohydrolases. Circulation 123, 1194–1204 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Lai, Y.J. et al. Role of the prostanoid EP4 receptor in iloprost-mediated vasodilatation in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 178, 188–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Kim, Y.M. et al. Neutrophil elastase is produced by pulmonary artery smooth muscle cells and is linked to neointimal lesions. Am. J. Pathol. 179, 1560–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nakae, J. et al. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J. Clin. Invest. 108, 1359–1367 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Clardy and R. Kalb from Harvard Medical School for kindly providing Sam A. We thank M. Rabinovitch (Stanford University School of Medicine) for providing the mouse PASMC isolation protocol. We also acknowledge the excellent technical assistance of K. Leib in performing cell culture experiments, U. Eule, C. Vroom and A. Hecker in intact animal experiments and M. Schmoranzer, M. Hoeck and V. Golchert in histological studies. We thank K. Quanz for performing isolated lung experiments. We acknowledge M. Potente for providing genotyping protocol and siRNAs. This work was supported by the Max Planck Society, the Scientific and Economic Excellence in Hesse (LOEWE) Programm and the German Research Foundation through Excellence Cluster 147 Cardio-Pulmonary System (ECCPS), Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy).

Author information

Authors and Affiliations

Authors

Contributions

R.S., D.S., H.M.A.-T., B.K., C.M., R.T.S. and S.S.P. acquired the data. R.S., D.S., H.M.A.-T., B.K., C.M., N.W., R.T.S. and S.S.P. analyzed and interpreted the data. R.S., N.W., R.T.S., D.S., W.S. and S.S.P. conceived and designed research. M.R.C. contributed transgenic mice. R.S., W.S., F.G. and S.S.P. drafted the manuscript. R.S., W.S., N.W., R.T.S. and S.S.P. handled the funding and supervision.

Corresponding author

Correspondence to Soni Savai Pullamsetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Table 1 (PDF 12040 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savai, R., Al-Tamari, H., Sedding, D. et al. Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nat Med 20, 1289–1300 (2014). https://doi.org/10.1038/nm.3695

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3695

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research