Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression

Abstract

During the resolution phase of inflammation, the 'corpses' of apoptotic leukocytes are gradually cleared by macrophages. Here we report that during the resolution of peritonitis, the CCR5 chemokine receptor ligands CCL3 and CCL5 persisted in CCR5-deficient mice. CCR5 expression on apoptotic neutrophils and activated apoptotic T cells sequestered and effectively cleared CCL3 and CCL5 from sites of inflammation. CCR5 expression on late apoptotic human polymorphonuclear cells was downregulated by proinflammatory stimuli, including tumor necrosis factor, and was upregulated by 'proresolution' lipid mediators, including lipoxin A4, resolvin E1 and protectin D1. Our results suggest that CCR5+ apoptotic leukocytes act as 'terminators' of chemokine signaling during the resolution of inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increased CCL3 and CCL5 in peritoneal exudates from Ccr5−/− mice during the resolution of peritonitis.
Figure 2: Ccr5−/− macrophages engulf apoptotic PMNs more efficiently than do wild-type macrophages.
Figure 3: Ccr5−/− macrophages are more mature than wild-type macrophages.
Figure 4: CCR5 mediates chemokine scavenging by apoptotic PMNs.
Figure 5: Regulation of CCR5 expression on late apoptotic human PMNs.
Figure 6: Apoptotic activated peripheral blood T cells have high expression of CCR5.
Figure 7: Late apoptotic T cells have high expression of CCR5.
Figure 8: CCR5 on apoptotic cells has characteristics different from those of CCR5 on live cells.

Similar content being viewed by others

References

  1. Majno, G & Joris, I. Cells, Tissues, and Disease: Principles of General Pathology (Oxford University Press, New York, 2004).

    Google Scholar 

  2. Serhan, C.N. Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity? Prostaglandins 53, 107–137 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Levy, B.D., Clish, C.B., Schmidt, B., Gronert, K. & Serhan, C.N. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2, 612–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Serhan, C.N. A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem. Cell Biol. 122, 305–321 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Rossi, A.G. & Haslett, C. in Proinflammatory and Antiinflammatory Peptides (ed. Said, S.I.) 9–24 (Marcel Dekker, New York, 1998).

    Google Scholar 

  6. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2, 965–975 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Gilroy, D.W. & Perretti, M. Aspirin and steroids: new mechanistic findings and avenues for drug discovery. Curr. Opin. Pharmacol. 5, 405–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Godson, C. et al. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol. 164, 1663–1667 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Hanayama, R. et al. Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Byrne, A. & Reen, D.J. Lipopolysaccharide induces rapid production of IL-10 by monocytes in the presence of apoptotic neutrophils. J. Immunol. 168, 1968–1977 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Savill, J., Hogg, N., Ren, Y. & Haslett, C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest. 90, 1513–1522 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kim, S., Elkon, K.B. & Ma, X. Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity 21, 643–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Mitchell, S. et al. Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J. Am. Soc. Nephrol. 13, 2497–2507 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304, 1147–1150 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Aprahamian, T. et al. Impaired clearance of apoptotic cells promotes synergy between atherogenesis and autoimmune disease. J. Exp. Med. 199, 1121–1131 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Potter, P.K., Cortes-Hernandez, J., Quartier, P., Botto, M. & Walport, M.J. Lupus-prone mice have an abnormal response to thioglycolate and an impaired clearance of apoptotic cells. J. Immunol. 170, 3223–3232 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Bandeira-Melo, C. et al. Cyclooxygenase-2-derived prostaglandin E2 and lipoxin A4 accelerate resolution of allergic edema in Angiostrongylus costaricensis-infected rats: relationship with concurrent eosinophilia. J. Immunol. 164, 1029–1036 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Arita, M. et al. Stereochemical assignment, antiinflammatory properties, and receptor for the ω-3 lipid mediator resolvin E1. J. Exp. Med. 201, 713–722 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ariel, A. et al. The docosatriene protectin D1 Is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. J. Biol. Chem. 280, 43079–43086 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Bannenberg, G.L. et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol. 174, 4345–4355 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Wahl, S.M., Swisher, J., McCartney-Francis, N. & Chen, W. TGF-β: the perpetrator of immune suppression by regulatory T cells and suicidal T cells. J. Leukoc. Biol. 76, 15–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Luster, A.D., Alon, R. & von Andrian, U.H. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6, 1182–1190 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Strieter, R.M., Belperio, J.A., Phillips, R.J. & Keane, M.P. CXC chemokines in angiogenesis of cancer. Semin. Cancer Biol. 14, 195–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Oppermann, M. Chemokine receptor CCR5: insights into structure, function, and regulation. Cell. Signal. 16, 1201–1210 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Alkhatib, G. et al. CC CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Arur, S. et al. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev. Cell 4, 587–598 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Hachicha, M., Pouliot, M., Petasis, N.A. & Serhan, C.N. Lipoxin (LX)A4 and aspirin-triggered 15-epi-LXA4 inhibit tumor necrosis factor 1α-initiated neutrophil responses and trafficking: regulators of a cytokine-chemokine axis. J. Exp. Med. 189, 1923–1930 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Huynh, M.L., Fadok, V.A. & Henson, P.M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation. J. Clin. Invest. 109, 41–50 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Green, D. & Kroemer, G. The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol. 8, 267–271 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Rot, A. & von Andrian, U.H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22, 891–928 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Proost, P. et al. Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78β into a most efficient monocyte attractant and CCR1 agonist. Blood 96, 1674–1680 (2000).

    CAS  PubMed  Google Scholar 

  32. Guan, E., Wang, J., Roderiquez, G. & Norcross, M.A. Natural truncation of the chemokine MIP-1β/CCL4 affects receptor specificity but not anti-HIV-1 activity. J. Biol. Chem. 277, 32348–32352 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Oravecz, T. et al. Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. J. Exp. Med. 186, 1865–1872 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Jamieson, T. et al. The chemokine receptor D6 limits the inflammatory response in vivo. Nat. Immunol. 6, 403–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. D'Amico, G. et al. Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nat. Immunol. 1, 387–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Chan, A., Magnus, T. & Gold, R. Phagocytosis of apoptotic inflammatory cells by microglia and modulation by different cytokines: mechanism for removal of apoptotic cells in the inflamed nervous system. Glia 33, 87–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Tyner, J.W. et al. CCL5–CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat. Med. 11, 1180–1187 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Whyte, M.K., Meagher, L.C., MacDermot, J. & Haslett, C. Impairment of function in aging neutrophils is associated with apoptosis. J. Immunol. 150, 5124–5134 (1993).

    CAS  PubMed  Google Scholar 

  39. Ness, T.L. et al. CCR1 and CC chemokine ligand 5 interactions exacerbate innate immune responses during sepsis. J. Immunol. 173, 6938–6948 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Heredia, A. et al. Rapamycin causes down-regulation of CCR5 and accumulation of anti-HIV β-chemokines: an approach to suppress R5 strains of HIV-1. Proc. Natl. Acad. Sci. USA 100, 10411–10416 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. O'Shea, J.J., Ma, A. & Lipsky, P. Cytokines and autoimmunity. Nat. Rev. Immunol. 2, 37–45 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Serhan, C.N. et al. Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry 34, 14609–14615 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Brunetti, M. et al. Polymorphonuclear leukocyte apoptosis is inhibited by platelet-released mediators, role of TGFβ-1. Thromb. Haemost. 84, 478–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, W. et al. Requirement for transforming growth factor β1 in controlling T cell apoptosis. J. Exp. Med. 194, 439–453 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Chen, W., Frank, M.E., Jin, W. & Wahl, S.M. TGF-β released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity 14, 715–725 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Hebert, M.J., Takano, T., Holthofer, H. & Brady, H.R. Sequential morphologic events during apoptosis of human neutrophils. Modulation by lipoxygenase-derived eicosanoids. J. Immunol. 157, 3105–3115 (1996).

    CAS  PubMed  Google Scholar 

  47. Serhan, C.N. et al. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J. Immunol. 176, 1848–1859 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Wysocki, C.A. et al. Differential roles for CCR5 expression on donor T cells during graft-versus-host disease based on pretransplant conditioning. J. Immunol. 173, 845–854 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Kuziel, W.A. et al. CCR5 deficiency is not protective in the early stages of atherogenesis in apoE knockout mice. Atherosclerosis 167, 25–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Kumar, S. et al. SMM-chemokines: a class of unnatural synthetic molecules as chemical probes of chemokine receptor biology and leads for therapeutic development. Chem. Biol. 13, 69–79 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M.H. Small for assistance in manuscript preparation, and J. Deady for technical assistance. Supported by the US National Institutes of Health (GM38765, DK-074448 and P50-DE016191 to C.N.S., and DK-074449 to A.D.L.) and the Arthritis Foundation (A.A.).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in experimental planning and data analysis and contributed to manuscript preparation. A.A. carried out FACS analysis, binding, chemotaxis, human cell isolation and cell culture; G.F. carried out experiments, FACS analysis, human cell isolation and culture; Y.-P.S. carried out peritonitis experiments and related analyses; A.K. and T.E.V.D. carried out Luminex analyses and related experimental design; A.D.L. carried out experiments with CCR5-deficient mice.

Corresponding author

Correspondence to Charles N Serhan.

Ethics declarations

Competing interests

C.N.S. is a consultant for the clinical development of lipoxin stable analogs with Berlex-Schering and for the development of Resolvin E1 with Resolvex Pharma.

Supplementary information

Supplementary Fig. 1

Ly-6G+F4/80+ in peritoneal exudates are PMN-macrophage conjugates. (PDF 170 kb)

Supplementary Fig. 2

Increased CCL4 binding to late apoptotic T cells. (PDF 219 kb)

Supplementary Fig. 3

Caspase inhibition abrogates apoptosis-induced modulation of CCL4 binding to late apoptotic T cells. (PDF 263 kb)

Supplementary Fig. 4

Scheme of the role of apoptotic leukocytes and pro-resolving lipid mediators in the resolution of inflammation. (PDF 412 kb)

Supplementary Methods (PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariel, A., Fredman, G., Sun, YP. et al. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nat Immunol 7, 1209–1216 (2006). https://doi.org/10.1038/ni1392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing