Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dysregulation of the TSC-mTOR pathway in human disease

Abstract

The mammalian target of rapamycin (mTOR) has a central role in the regulation of cell growth. mTOR receives input from multiple signaling pathways, including growth factors and nutrients, to stimulate protein synthesis by phosphorylating key translation regulators such as ribosomal S6 kinase and eukaryote initiation factor 4E binding protein 1. High levels of dysregulated mTOR activity are associated with several hamartoma syndromes, including tuberous sclerosis complex, the PTEN-related hamartoma syndromes and Peutz-Jeghers syndrome. These disorders are all caused by mutations in tumor-suppressor genes that negatively regulate mTOR. Here we discuss the emerging evidence for a functional relationship between the mTOR signaling pathway and several genetic diseases, and we present evidence supporting a model in which dysregulation of mTOR may be a common molecular basis, not only for hamartoma syndromes, but also for other cellular hypertrophic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mTOR signaling in the regulation of translation.
Figure 2: The molecular link between several inherited human diseases.

Similar content being viewed by others

References

  1. Heitman, J., Movva, N.R. & Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–909 (1991).

    CAS  PubMed  Google Scholar 

  2. Brown, E.J. et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758 (1994).

    CAS  PubMed  Google Scholar 

  3. Chiu, M.I., Katz, H. & Berlin, V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc. Natl. Acad. Sci. USA 91, 12574–12578 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S.H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

    CAS  PubMed  Google Scholar 

  5. Harris, T.E. & Lawrence, J.C. Jr. TOR signaling. Sci STKE 2003, re15 (2003).

    PubMed  Google Scholar 

  6. Jacinto, E. & Hall, M.N. Tor signalling in bugs, brain and brawn. Nat. Rev. Mol. Cell Biol. 4, 117–126 (2003).

    CAS  PubMed  Google Scholar 

  7. Sarbassov dos, D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).

    Google Scholar 

  8. Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002).

    CAS  PubMed  Google Scholar 

  9. Kim, D.H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    CAS  PubMed  Google Scholar 

  10. Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457–468 (2002).

    CAS  PubMed  Google Scholar 

  11. Avruch, J., Belham, C., Weng, Q., Hara, K. & Yonezawa, K. The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. Prog. Mol. Subcell. Biol. 26, 115–154 (2001).

    CAS  PubMed  Google Scholar 

  12. Meyuhas, O. Synthesis of the translational apparatus is regulated at the translational level. Eur. J. Biochem. 267, 6321–6330 (2000).

    CAS  PubMed  Google Scholar 

  13. Gingras, A.C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963 (1999).

    CAS  PubMed  Google Scholar 

  14. Mamane, Y. et al. eIF4E--from translation to transformation. Oncogene 23, 3172–3179 (2004).

    CAS  PubMed  Google Scholar 

  15. Fingar, D.C. et al. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 24, 200–216 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Potter, C.J., Huang, H. & Xu, T. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105, 357–368 (2001).

    CAS  PubMed  Google Scholar 

  17. Tapon, N., Ito, N., Dickson, B.J., Treisman, J.E. & Hariharan, I.K. The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105, 345–355 (2001).

    CAS  PubMed  Google Scholar 

  18. Gao, X. & Pan, D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 15, 1383–1392 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stocker, H. et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell Biol. 5, 559–565 (2003).

    CAS  PubMed  Google Scholar 

  20. Saucedo, L.J. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 5, 566–571 (2003).

    CAS  PubMed  Google Scholar 

  21. Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J. & Cantley, L.C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162 (2002).

    CAS  PubMed  Google Scholar 

  22. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648–657 (2002).

    CAS  PubMed  Google Scholar 

  23. Potter, C.J., Pedraza, L.G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4, 658–665 (2002).

    CAS  PubMed  Google Scholar 

  24. Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5, 578–581 (2003).

    CAS  PubMed  Google Scholar 

  25. Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11, 1457–1466 (2003).

    CAS  PubMed  Google Scholar 

  26. Inoki, K., Li, Y., Xu, T. & Guan, K.L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829–1834 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Goncharova, E.A. et al. Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. J. Biol. Chem. 277, 30958–30967 (2002).

    CAS  PubMed  Google Scholar 

  28. Kwiatkowski, D.J. et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet. 11, 525–534 (2002).

    CAS  PubMed  Google Scholar 

  29. Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl. Acad. Sci. USA 98, 10320–10325 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao, X. et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat. Cell Biol. 4, 699–704 (2002).

    CAS  PubMed  Google Scholar 

  31. Dennis, P.B. et al. Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102–1105 (2001).

    CAS  PubMed  Google Scholar 

  32. Hardie, D.G., Carling, D. & Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67, 821–855 (1998).

    CAS  PubMed  Google Scholar 

  33. Inoki, K., Zhu, T. & Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    CAS  PubMed  Google Scholar 

  34. Hawley, S.A. et al. Complexes between the LKB1 tumor suppressor, STRADalpha/beta and MO25alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003).

    PubMed  PubMed Central  Google Scholar 

  35. Hong, S.P., Leiper, F.C., Woods, A., Carling, D. & Carlson, M. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. USA 100, 8839–8843 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003).

    CAS  PubMed  Google Scholar 

  37. Corradetti, M.N., Inoki, K., Bardeesy, N., DePinho, R.A. & Guan, K.L. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. 18, 1533–1538 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shaw, R.J. et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6, 91–99 (2004).

    CAS  PubMed  Google Scholar 

  39. Shaw, R.J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. USA 101, 3329–3335 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Klionsky, D.J. & Ohsumi, Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 1–32 (1999).

    CAS  PubMed  Google Scholar 

  41. Gozuacik, D. & Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891–2906 (2004).

    CAS  PubMed  Google Scholar 

  42. Kamada, Y., Sekito, T. & Ohsumi, Y. Autophagy in yeast: a TOR-mediated response to nutrient starvation. Curr. Top. Microbiol. Immunol. 279, 73–84 (2004).

    CAS  PubMed  Google Scholar 

  43. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004).

    CAS  PubMed  Google Scholar 

  44. van der Hoeve, J. Eye symptoms in tuberous sclerosis of the brain. Trans. Ophthalmol. Soc. UK 20, 329–334 (1920).

    Google Scholar 

  45. Tucker, M., Goldstein, A., Dean, M. & Knudson, A. National Cancer Institute Workshop Report: the phakomatoses revisited. J. Natl. Cancer Inst. 92, 530–533 (2000).

    CAS  PubMed  Google Scholar 

  46. van Slegtenhorst, M. et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277, 805–808 (1997).

    CAS  PubMed  Google Scholar 

  47. The European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75, 1305–1315 (1993).

  48. Niida, Y. et al. Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am. J. Hum. Genet. 69, 493–503 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tucker, T. & Friedman, J.M. Pathogenesis of hereditary tumors: beyond the “two-hit” hypothesis. Clin. Genet. 62, 345–357 (2002).

    CAS  PubMed  Google Scholar 

  50. El-Hashemite, N., Zhang, H., Henske, E.P. & Kwiatkowski, D.J. Mutation in TSC2 and activation of mammalian target of rapamycin signalling pathway in renal angiomyolipoma. Lancet 361, 1348–1349 (2003).

    CAS  PubMed  Google Scholar 

  51. Kwiatkowski, D.J. Tuberous sclerosis: from tubers to mTOR. Ann. Hum. Genet. 67, 87–96 (2003).

    CAS  PubMed  Google Scholar 

  52. Sawyers, C.L. Will mTOR inhibitors make it as cancer drugs? Cancer Cell 4, 343–348 (2003).

    CAS  PubMed  Google Scholar 

  53. Kenerson, H.L., Aicher, L.D., True, L.D. & Yeung, R.S. Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res. 62, 5645–5650 (2002).

    CAS  PubMed  Google Scholar 

  54. Eng, C. PTEN: one gene, many syndromes. Hum. Mutat. 22, 183–198 (2003).

    CAS  PubMed  Google Scholar 

  55. Maehama, T., Taylor, G.S. & Dixon, J.E. PTEN and MYOTUBULARIN: Novel Phosphoinositide Phosphatases. Annu. Rev. Biochem. 70, 247–279 (2001).

    CAS  PubMed  Google Scholar 

  56. Zhou, X.P. et al. Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am. J. Hum. Genet. 73, 404–411 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Neshat, M.S. et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. USA 98, 10314–10319 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Majumder, P.K. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat. Med. 10, 594–601 (2004).

    CAS  PubMed  Google Scholar 

  59. Devroede, G., Lemieux, B., Masse, S., Lamarche, J. & Herman, P.S. Colonic hamartomas in tuberous sclerosis. Gastroenterology 94, 182–188 (1988).

    CAS  PubMed  Google Scholar 

  60. Gomez, M.R., Sampson, J. & Whittemore, V.H. Tuberous Sclerosis Complex 340 (Oxford University Press, Oxford, 1999).

    Google Scholar 

  61. Hernan, I. et al. De novo germline mutation in the serine-threonine kinase STK11/LKB1 gene associated with Peutz-Jeghers syndrome. Clin. Genet. 66, 58–62 (2004).

    CAS  PubMed  Google Scholar 

  62. Entius, M.M. et al. Molecular genetic alterations in hamartomatous polyps and carcinomas of patients with Peutz-Jeghers syndrome. J. Clin. Pathol. 54, 126–131 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bardeesy, N. et al. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 419, 162–167 (2002).

    CAS  PubMed  Google Scholar 

  64. Miyoshi, H. et al. Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res. 62, 2261–2266 (2002).

    CAS  PubMed  Google Scholar 

  65. Kandt, R.S. Tuberous sclerosis complex and neurofibromatosis type 1: the two most common neurocutaneous diseases. Neurol. Clin. 21, 983–1004 (2003).

    PubMed  Google Scholar 

  66. Cichowski, K. & Jacks, T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593–604 (2001).

    CAS  PubMed  Google Scholar 

  67. Furuta, S., Hidaka, E., Ogata, A., Yokota, S. & Kamata, T. Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene 23, 3898–3904 (2004).

    CAS  PubMed  Google Scholar 

  68. Shao, J., Evers, B.M. & Sheng, H. Roles of phosphatidylinositol 3′-kinase and mammalian target of rapamycin/p70 ribosomal protein S6 kinase in K-Ras-mediated transformation of intestinal epithelial cells. Cancer Res. 64, 229–235 (2004).

    CAS  PubMed  Google Scholar 

  69. Kaelin, W.G. Jr. The von Hippel-Lindau gene, kidney cancer, and oxygen sensing. J. Am. Soc. Nephrol. 14, 2703–2711 (2003).

    PubMed  Google Scholar 

  70. El-Hashemite, N., Walker, V., Zhang, H. & Kwiatkowski, D.J. Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin. Cancer Res. 63, 5173–5177 (2003).

    CAS  PubMed  Google Scholar 

  71. Brugarolas, J.B., Vazquez, F., Reddy, A., Sellers, W.R. & Kaelin, W.G., Jr. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4, 147–158 (2003).

    CAS  PubMed  Google Scholar 

  72. Su, L.K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    CAS  PubMed  Google Scholar 

  73. Fearnhead, N.S., Britton, M.P. & Bodmer, W.F. The ABC of APC. Hum. Mol. Genet. 10, 721–733 (2001).

    CAS  PubMed  Google Scholar 

  74. Gera, J.F. et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J. Biol. Chem. 279, 2737–2746 (2004).

    CAS  PubMed  Google Scholar 

  75. Mak, B.C., Takemaru, K., Kenerson, H.L., Moon, R.T. & Yeung, R.S. The tuberin-hamartin complex negatively regulates Beta -catenin signaling activity. J. Biol. Chem. 278, 5947–5951 (2003).

    CAS  PubMed  Google Scholar 

  76. Howe, J.R. et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280, 1086–1088 (1998).

    CAS  PubMed  Google Scholar 

  77. Zhou, X.P. et al. Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan-Riley-Ruvalcaba syndromes. Am. J. Hum. Genet. 69, 704–711 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Eng, C. Constipation, polyps, or cancer? Let PTEN predict your future. Am. J. Med. Genet. 122A, 315–322 (2003).

    PubMed  Google Scholar 

  79. Birchenall-Roberts, M.C. et al. Tuberous sclerosis complex 2 gene product interacts with human SMAD proteins. A molecular link of two tumor suppressor pathways. J. Biol. Chem. 279, 25605–25613 (2004).

    CAS  PubMed  Google Scholar 

  80. Rajan, P., Panchision, D.M., Newell, L.F. & McKay, R.D. BMPs signal alternately through a SMAD or FRAP-STAT pathway to regulate fate choice in CNS stem cells. J. Cell Biol. 161, 911–921 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. He, X.C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat. Genet. 36, 1117–1121 (2004).

    CAS  PubMed  Google Scholar 

  82. Kirschner, L.S. et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat. Genet. 26, 89–92 (2000).

    CAS  PubMed  Google Scholar 

  83. Stratakis, C.A. Genetics of Peutz-Jeghers syndrome, Carney complex and other familial lentiginoses. Horm. Res. 54, 334–343 (2000).

    CAS  PubMed  Google Scholar 

  84. Nickerson, M.L. et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2, 157–164 (2002).

    CAS  PubMed  Google Scholar 

  85. Hancock, E. & Osborne, J. Lymphangioleiomyomatosis: a review of the literature. Respir. Med. 96, 1–6 (2002).

    CAS  PubMed  Google Scholar 

  86. Pavlovich, C.P. & Schmidt, L.S. Searching for the hereditary causes of renal-cell carcinoma. Nat. Rev. Cancer 4, 381–393 (2004).

    CAS  PubMed  Google Scholar 

  87. Okimoto, K. et al. A germ-line insertion in the Birt-Hogg-Dube (BHD) gene gives rise to the Nihon rat model of inherited renal cancer. Proc. Natl. Acad. Sci. USA 101, 2023–2027 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Harrington, L.S. et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell Biol. 166, 213–223 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Shah, O.J., Wang, Z. & Hunter, T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr. Biol. 14, 1650–1656 (2004).

    CAS  PubMed  Google Scholar 

  90. Um, S.H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004).

    CAS  PubMed  Google Scholar 

  91. Zhang, H. et al. Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J. Clin. Invest. 112, 1223–1233 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Shioi, T. et al. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 107, 1664–1670 (2003).

    CAS  PubMed  Google Scholar 

  93. Blair, E. et al. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum. Mol. Genet. 10, 1215–1220 (2001).

    CAS  PubMed  Google Scholar 

  94. Gollob, M.H. et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N. Engl. J. Med. 344, 1823–1831 (2001).

    CAS  PubMed  Google Scholar 

  95. Daniel, T. & Carling, D. Functional analysis of mutations in the gamma 2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-Parkinson-White syndrome. J. Biol. Chem. 277, 51017–51024 (2002).

    CAS  PubMed  Google Scholar 

  96. Chan, A.Y., Soltys, C.L., Young, M.E., Proud, C.G. & Dyck, J.R. Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J. Biol. Chem. 279, 32771–32779 (2004).

    CAS  PubMed  Google Scholar 

  97. Abraham, R.T. & Wiederrecht, G.J. Immunopharmacology of rapamycin. Annu. Rev. Immunol. 14, 483–510 (1996).

    CAS  PubMed  Google Scholar 

  98. Garza, L., Aude, Y.W. & Saucedo, J.F. Can we prevent in-stent restenosis? Curr. Opin. Cardiol. 17, 518–525 (2002).

    PubMed  Google Scholar 

  99. Huang, S. & Houghton, P.J. Targeting mTOR signaling for cancer therapy. Curr. Opin. Pharmacol. 3, 371–377 (2003).

    CAS  PubMed  Google Scholar 

  100. Bjornsti, M.A. & Houghton, P.J. The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer 4, 335–348 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Ginsburg, J. Bernat, C-H. Lee and the members of the laboratory of K.-L.G. for critical reading of the manuscript and for discussions. We apologize to those colleagues whose work could not be cited in this review owing to space limitations. M.N.C. is funded by a fellowship from the Program in Organogenesis, and the work of the authors is supported by grants from the Walther Cancer Institute and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Liang Guan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoki, K., Corradetti, M. & Guan, KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 37, 19–24 (2005). https://doi.org/10.1038/ng1494

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing