Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature

Abstract

Fibroblasts and smooth muscle cells (FSMCs) are principal cell types of connective and adventitial tissues that participate in the development, physiology and pathology of internal organs, with incompletely defined cellular origins. Here, we identify and prospectively isolate from the mesothelium a mouse cell lineage that is committed to FSMCs. The mesothelium is an epithelial monolayer covering the vertebrate thoracic and abdominal cavities and internal organs. Time-lapse imaging and transplantation experiments reveal robust generation of FSMCs from the mesothelium. By targeting mesothelin (MSLN), a surface marker expressed on mesothelial cells, we identify and isolate precursors capable of clonally generating FSMCs. Using a genetic lineage tracing approach, we show that embryonic and adult mesothelium represents a common lineage to trunk FSMCs, and trunk vasculature, with minimal contributions from neural crest, or circulating cells. The isolation of FSMC precursors enables the examination of multiple aspects of smooth muscle and fibroblast biology as well as the prospective isolation of these precursors for potential regenerative medicine purposes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Derivation of FSMCs from cultured mesothelium.
Figure 2: Derivation of FSMCs from transplantation of mesothelium in vivo.
Figure 3: Flow cytometry, in vitro clonal analysis and differentiation of MSLN+Lin cells.
Figure 4: Genetic lineage tracing of fibroblasts within internal organs.
Figure 5: Genetic lineage tracing of smooth muscle within internal organs, and their vasculature.
Figure 6: Polyclonal origins for smooth muscle revealed by clonal analysis of tetrachimaeric mice.
Figure 7: Polyclonal contributions of MSLN+ precursors to smooth muscle during the first postnatal month.
Figure 8: Developmental restriction of MSLN+ precursors to FSMCs following sublethal irradiation.

Similar content being viewed by others

References

  1. Hay, E. D. Development of the vertebrate cornea. Int. Rev. Cytol. 63, 263–322 (1979).

    Article  Google Scholar 

  2. Bochaton-Piallat, M. L. & Gabbiani, G. Smooth muscle cell: a key cell for plaque vulnerability regulation? Circ. Res. 98, 448–449 (2006).

    Article  CAS  Google Scholar 

  3. Kennedy, L. J. & Weissman, I. L. Dual origin of intimal cells in cardiac-allograft arteriosclerosis. N. Engl. J. Med. 285, 884–887 (1971).

    Article  Google Scholar 

  4. De Wever, O., Demetter, P., Mareel, M. & Bracke, M. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer 123, 2229–2238 (2008).

    Article  CAS  Google Scholar 

  5. Desmoulière, A., Guyot, C. & Gabbiani, G. The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int. J. Dev. Biol. 48, 509–517 (2004).

    Article  Google Scholar 

  6. Albini, A. & Sporn, M. B. The tumour microenvironment as a target for chemoprevention. Nat. Rev. Cancer 7, 139–147 (2007).

    Article  CAS  Google Scholar 

  7. Gittenberger-de Groot, A. C., Vrancken Peeters, M. P., Mentink, M. M., Gourdie, R. G. & Poelmann, R. E. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ. Res. 82, 1043–1052 (1998).

    Article  CAS  Google Scholar 

  8. Prockop, D. J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74 (1997).

    Article  CAS  Google Scholar 

  9. Zhang, N. et al. Blood-borne stem cells differentiate into vascular and cardiac lineages during normal development. Stem Cells Dev. 15, 17–28 (2006).

    Article  Google Scholar 

  10. Hashimoto, N., Jin, H., Liu, T., Chensue, S. W. & Phan, S. H. Bone marrow- derived progenitor cells in pulmonary fibrosis. J. Clin. Invest. 113, 243–52 (2004).

    Article  CAS  Google Scholar 

  11. Wagers, A. J., Sherwood, R. I., Christensen, J. L. & Weissman, I. L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002).

    Article  CAS  Google Scholar 

  12. Jiang, X., Rowitch, D. H., Soriano, P., McMahon, A. P. & Sucov, H. M. Fate of the mammalian cardiac neural crest. Science 297, 2256–2259 (2002).

    Article  Google Scholar 

  13. Sorrell, J. M. & Caplan, A. I. Fibroblasts-a diverse population at the center of it all. Int. Rev. Cell Mol. Biol. 276, 161–214 (2009).

    Article  Google Scholar 

  14. Rinn, J. L., Bondre, C., Gladstone, H. B., Brown, P. O. & Chang, H. Y. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet. 2, e119 (2006).

    Article  Google Scholar 

  15. Mutsaers, S. E. & Wilkosz, S. Structure and function of mesothelial cells. Cancer Treat. Res. 134, 1–19 (2007).

    CAS  PubMed  Google Scholar 

  16. Yung, S. & Chan, T. M. Intrinsic cells: mesothelial cells—central players in regulating inflammation and resolution. Perit. Dial. Int. 29, S21–S27 (2009).

    CAS  PubMed  Google Scholar 

  17. Herrick, S. E. & Mutsaers, S. E. Mesothelial progenitor cells and their potential in tissue engineering. Int. J. Biochem. Cell Biol. 36, 621–642 (2004).

    Article  CAS  Google Scholar 

  18. Elmadbouh, I., Michel, J. B. & Chachques, J. C. Mesothelial cell transplantation in myocardial infarction. Int. J. Artif. Organs 30, 541–549 (2007).

    Article  CAS  Google Scholar 

  19. Mutsaers, S. E. & Di Paolo, N. Future directions in mesothelial transplantation research. Int. J. Artif. Organs 30, 557–561 (2007).

    Article  CAS  Google Scholar 

  20. Hardy, R. R. B-1 B cell development. J. Immunol. 177, 2749–2754 (2006).

    Article  CAS  Google Scholar 

  21. Chang, K. & Pastan, I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc. Natl Acad. Sci. USA 93, 136–140 (1996).

    Article  CAS  Google Scholar 

  22. Sahoo, D. et al. MiDReG: a method of mining developmentally regulated genes using Boolean implications. Proc. Natl Acad. Sci. USA 107, 5732–5737 (2010).

    Article  CAS  Google Scholar 

  23. Olivera-Martinez, I., Missier, S., Fraboulet, S., Thélu, J. & Dhouailly, D. Differential regulation of the chick dorsal thoracic dermal progenitors from the medial dermomyotome. Development 129, 4763–4772 (2002).

    CAS  PubMed  Google Scholar 

  24. Atit, R. et al. β-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev. Biol. 296, 164–176 (2006).

    Article  CAS  Google Scholar 

  25. Tran, T. H. et al. Role of canonical Wnt signaling/ß-catenin via Dermo1 in cranial dermal cell development. Development 137, 3973–3984 (2010).

    Article  CAS  Google Scholar 

  26. Ueno, H. & Weissman, I. L. Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev. Cell 11, 519–533 (2006).

    Article  CAS  Google Scholar 

  27. Kirsch, D. G. et al. p53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis. Science 327, 593–596 (2010).

    Article  CAS  Google Scholar 

  28. Jiang, X., Rowitch, D. H., Soriano, P., McMahon, A. P. & Sucov, H. M. Fate of the mammalian cardiac neural crest. Development 127, 1607–1616 (2000).

    CAS  PubMed  Google Scholar 

  29. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    Article  CAS  Google Scholar 

  30. Yamauchi, Y. et al. A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice. Dev. Biol. 212, 191–203 (1999).

    Article  CAS  Google Scholar 

  31. Cheung, M. et al. The transcriptional control of trunk neural crest induction, survival, and delamination. Dev. Cell 8, 179–192 (2005).

    Article  CAS  Google Scholar 

  32. Choudhary, B. et al. Cardiovascular malformations with normal smooth muscle differentiation in neural crest-specific type II TGFβ receptor (Tgfbr2) mutant mice. Dev. Biol. 289, 420–429 (2006).

    Article  CAS  Google Scholar 

  33. Wright, D. H., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    Article  CAS  Google Scholar 

  34. Mikawa, T. & Gourdie, R. G. Pericardial mesoderm generates a population of smooth muscle cells migrating into the heart along with ingrowth of the pericardial organ. Dev. Biol. 174, 221–232 (1996).

    Article  CAS  Google Scholar 

  35. Männer, J. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat. Rec. 255, 212–226 (1999).

    Article  Google Scholar 

  36. Wessels, A. & Pérez-Pomares, J. M. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 276, 43–57 (2004).

    Article  CAS  Google Scholar 

  37. Smart, N. et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature 474, 640–644 (2011).

    Article  CAS  Google Scholar 

  38. Cai, C. L. et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454, 104–108 (2008).

    Article  CAS  Google Scholar 

  39. Zhou, B. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109–113 (2008).

    Article  CAS  Google Scholar 

  40. Chong, J. J. et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9, 527–540 (2011).

    Article  CAS  Google Scholar 

  41. Zeng, B., Ren, X. F., Cao, F., Zhou, X. Y. & Zhang, J. Developmental patterns and characteristics of epicardial cell markers Tbx18 and Wt1 in murine embryonic heart. J. Biomed. Sci. 18, 67 (2011).

    Article  CAS  Google Scholar 

  42. Christoffels, V. M. et al. Tbx18 and the fate of epicardial progenitors. Nature 458, E8–E9 (2009).

    Article  Google Scholar 

  43. Hosen, N. et al. The Wilms’ tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia 21, 1783–1791 (2007).

    Article  CAS  Google Scholar 

  44. Wilm, B., Ipenberg, A., Hastie, N. D., Burch, J. B. & Bader, D. M. The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132, 5317–5328 (2005).

    Article  CAS  Google Scholar 

  45. Que, J. et al. Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc. Natl Acad. Sci. USA 105, 16626–16630 (2008).

    Article  CAS  Google Scholar 

  46. Sahoo, D., Dill, D. L., Gentles, A. J., Tibshirani, R. & Plevritis, S. K. Boolean implication networks derived from large scale, whole genome microarray datasets. Gen. Biol. 9, R157 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Mosley for assisting with generating the transgenic M s l nCLN mice, and R. Kopito, M. Brandeis and K. Bersuker for usage and their assistance with the time-lapse video. We thank T. Violante for her assistance with sectioning, D. Hunter for his assistance with histochemical staining and G. Paz and D. Montoro for their assistance with figure preparation. The CreERT2IRES–lacZ–PGK–neo cassette was a gift from R. J. Gilbertson (St. Jude Children’s Research Hospital, USA). This work was supported in part by a grant from the California Institute of Regenerative Medicine (RC1 00354 to I.L.W.), the Smith Family Trust (to I.L.W.) and from the National Institutes of Health (RO1 DK064640 to P.X.X.). Y.R. is supported by the Human Frontier Science Program (HFSP) Long Term Fellowship, and the Machiah Foundation Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Y.R. designed and performed the experiments, with suggestions from I.L.W. Y.R. imaged and analysed the data from all experiments. T.M. created the MSLN–CreER construct, with help from Y.R. D.S. contributed the Boolean analysis. P-X.X. contributed the tetrachimaera mouse models. J.R.B. contributed the PoCre transgenic mice model. Y.R. and I.L.W. wrote the manuscript.

Corresponding author

Correspondence to Yuval Rinkevich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1595 kb)

Supplementary Information

Supplementary Information (AVI 2376 kb)

Supplementary Information

Supplementary Information (AVI 2209 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinkevich, Y., Mori, T., Sahoo, D. et al. Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nat Cell Biol 14, 1251–1260 (2012). https://doi.org/10.1038/ncb2610

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2610

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing