Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin

Abstract

Signaling by type I cytokines involves the formation of receptor homodimers, heterodimers or higher order receptor oligomers. Here we report the cloning of a type I cytokine receptor subunit that is most closely related to the common cytokine receptor γ chain (γc). Binding and crosslinking experiments demonstrate that this protein is the receptor for a recently described interleukin 7 (IL-7)-like factor, thymic stromal lymphopoietin (TSLP). Binding of TSLP to the thymic stromal lymphopoietin receptor (TSLPR) is increased markedly in the presence of the IL-7 receptor α chain (IL-7Rα). IL-7Rα–expressing but not parental 32D cells proliferate in the presence of exogenous TSLP. Moreover, a combination of IL-7Rα and TSLPR is required for TSLP-dependent activation of a STAT5-dependent reporter construct. Thus it is shown that IL-7Rα is a component of both the IL-7 and TSLP receptors, which helps to explain why deletion of the gene that encodes IL-7Rα affects the lymphoid system more severely than deletion of the gene encoding IL-7 does. Cloning of TSLPR should facilitate an understanding of TSLP function and its signaling mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A ubiquitously expressed receptor subunit (TSLPR) shares homology with murine γc.
Figure 2: The receptor is ubiquitously expressed.
Figure 3: Homodimerization of TSLPR does not lead to proliferation.
Figure 4: Affinity labeling of TSLPR and IL-7Rα using 125I-TSLP>.
Figure 5: High affinity TSLP receptors—displacement binding experiment.
Figure 6: IL-7Rα is required for proliferation in response to TSLP.
Figure 7: TSLPR is required for signaling by TSLP.

Similar content being viewed by others

References

  1. Bazan, J. F. Haemopoietic receptors and helical cytokines. Immunol. Today 11, 350–354 (1990).

    CAS  PubMed  Google Scholar 

  2. Leonard, W. J. in Fundamental Immunology (ed. Paul, W. E.) 741–774 (Lippincott Raven Publishers, Philadelphia, PA, 1999).

    Google Scholar 

  3. Leonard, W. J. & O'Shea, J. J. Jaks and STATs: biological implications. Annu. Rev. Immunol. 16, 293–322 (1998).

    CAS  PubMed  Google Scholar 

  4. Lin, J. X., Mietz, J., Modi, W. S., John, S. & Leonard, W. J. Cloning of human Stat5B. Reconstitution of interleukin-2-induced Stat5A and Stat5B DNA binding activity in COS-7 cells. J. Biol. Chem. 271, 10738–10744 (1996).

    CAS  PubMed  Google Scholar 

  5. Taniguchi, T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268, 251–255 (1995).

    CAS  PubMed  Google Scholar 

  6. Leonard, W. J., Shores, E. W. & Love, P. E. Role of the common cytokine receptor gamma chain in cytokine signaling and lymphoid development. Immunol. Rev. 148, 97–114 (1995).

    CAS  PubMed  Google Scholar 

  7. Sugamura, K. et al. The common gamma-chain for multiple cytokine receptors. Adv. Immunol. 59, 225–277 (1995).

    CAS  PubMed  Google Scholar 

  8. Nelson, B. H., Lord, J. D. & Greenberg, P. D. Cytoplasmic domains of the interleukin-2 receptor beta and gamma chains mediate the signal for T-cell proliferation. Nature 369, 333–336 (1994).

    CAS  PubMed  Google Scholar 

  9. Nakamura, Y. et al. Heterodimerization of the IL-2 receptor beta- and gamma-chain cytoplasmic domains is required for signalling. Nature 369, 330–333 (1994).

    CAS  PubMed  Google Scholar 

  10. Russell, S. M. et al. Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science 266, 1042–1045 (1994).

    CAS  PubMed  Google Scholar 

  11. Boussiotis, V. A. et al. Prevention of T cell anergy by signaling through the gamma c chain of the IL-2 receptor. Science 266, 1039–1042 (1994).

    CAS  PubMed  Google Scholar 

  12. Miyazaki, T. et al. Functional activation of Jak1 and Jak3 by selective association with IL- 2 receptor subunits. Science 266, 1045–1047 (1994).

    CAS  PubMed  Google Scholar 

  13. Johnston, J. A. et al. Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature 370, 151–153 (1994).

    CAS  PubMed  Google Scholar 

  14. Witthuhn, B. A. et al. Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 370, 153–157 (1994).

    CAS  PubMed  Google Scholar 

  15. Nielsen, M., Svejgaard, A., Skov, S. & Odum, N. Interleukin-2 induces tyrosine phosphorylation and nuclear translocation of stat3 in human T lymphocytes. Eur. J. Immunol. 24, 3082–3086 (1994).

    CAS  PubMed  Google Scholar 

  16. Noguchi, M. et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157 (1993).

    CAS  PubMed  Google Scholar 

  17. Noguchi, M. et al. Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262, 1877–1880 (1993).

    CAS  PubMed  Google Scholar 

  18. Kondo, M. et al. Functional participation of the IL-2 receptor gamma chain in IL-7 receptor complexes. Science 263, 1453–1454 (1994).

    CAS  PubMed  Google Scholar 

  19. Kondo, M. et al. Sharing of the interleukin-2 (IL-2) receptor gamma chain between receptors for IL-2 and IL-4. Science 262, 1874–1877 (1993).

    CAS  PubMed  Google Scholar 

  20. Russell, S. M. et al. Interleukin-2 receptor gamma chain: a sfunctional component of the interleukin-4 receptor. Science 262, 1880–1883 (1993).

    CAS  PubMed  Google Scholar 

  21. Takeshita, T. et al. Cloning of the gamma chain of the human IL-2 receptor. Science 257, 379–382 (1992).

    CAS  PubMed  Google Scholar 

  22. Giri, J. G. et al. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO. J. 13, 2822–2830 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kimura, Y. et al. Sharing of the IL-2 receptor gamma chain with the functional IL-9 receptor complex. Int. Immunol. 7, 115–120 (1995).

    CAS  PubMed  Google Scholar 

  24. Levin, S. D. et al. Thymic stromal lymphopoietin: a cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism. J. Immunol. 162, 677–683 (1999).

    CAS  PubMed  Google Scholar 

  25. Friend, S. L. et al. A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. Exp. Hematol. 22, 321–328 (1994).

    CAS  PubMed  Google Scholar 

  26. Kumaki, S. et al. Cloning of the mouse interleukin 2 receptor gamma chain: demonstration of functional differences between the mouse and human receptors. Biochem. Biophys. Res. Commun. 193, 356–363 (1993).

    CAS  PubMed  Google Scholar 

  27. Cao, X. et al. Characterization of cDNAs encoding the murine interleukin 2 receptor (IL-2R) gamma chain: chromosomal mapping and tissue specificity of IL- 2R gamma chain expression. Proc. Natl. Acad. Sci. USA 90, 8464–8468 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kobayashi, N., Nakagawa, S., Minami, Y., Taniguchi, T. & Kono, T. Cloning and sequencing of the cDNA encoding a mouse IL-2 receptor gamma. Gene 130, 303–304 (1993).

    CAS  PubMed  Google Scholar 

  29. Suda, T. et al. A stimulatory effect of recombinant murine interleukin-7 (IL-7) on B- cell colony formation and an inhibitory effect of IL-1 alpha. Blood 74, 1936–1941 (1989).

    CAS  PubMed  Google Scholar 

  30. Lee, G., Namen, A. E., Gillis, S., Ellingsworth, L. R. & Kincade, P. W. Normal B cell precursors responsive to recombinant murine IL-7 and inhibition of IL-7 activity by transforming growth factor-beta. J. Immunol. 142, 3875–3883 (1989).

    CAS  PubMed  Google Scholar 

  31. Sudo, T. et al. Interleukin 7 production and function in stromal cell-dependent B cell development. J. Exp. Med. 170, 333–338 (1989).

    CAS  PubMed  Google Scholar 

  32. Candeias, S., Muegge, K. & Durum, S. K. IL-7 receptor and VDJ recombination: trophic versus mechanistic actions. Immunity 6, 501–508 (1997).

    CAS  PubMed  Google Scholar 

  33. Munson, P. J. & Rodbard, D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107, 220–239 (1980).

    CAS  PubMed  Google Scholar 

  34. Isaksen, D. E. et al. Requirement for stat5 in thymic stromal lymphopoietin-mediated signal transduction. J. Immunol. 163, 5971–5977 (1999).

    CAS  PubMed  Google Scholar 

  35. Hirano, T., Nakajima, K. & Hibi, M. Signaling mechanisms through gp130: a model of the cytokine system. Cytokine Growth Factor Rev. 8, 241–252 (1997).

    CAS  PubMed  Google Scholar 

  36. Taga, T. & Kishimoto, T. Gp130 and the interleukin-6 family of cytokines. Annu. Rev. Immunol. 15, 797–819 (1997).

    CAS  PubMed  Google Scholar 

  37. Miyajima, A. et al. Signal transduction by the GM-CSF, IL-3 and IL-5 receptors. Leukemia 11 Suppl. 3, 418–422 (1997).

    PubMed  Google Scholar 

  38. Guthridge, M. A. et al. Mechanism of activation of the GM-CSF, IL-3, and IL-5 family of receptors. Stem Cells 16, 301–313 (1998).

    CAS  PubMed  Google Scholar 

  39. Burdach, S., Nishinakamura, R., Dirksen, U. & Murray, R. The physiologic role of interleukin-3, interleukin-5, granulocyte- macrophage colony-stimulating factor, and the beta c receptor system. Curr. Opin. Hematol. 5, 177–180 (1998).

    CAS  PubMed  Google Scholar 

  40. de Vos, A. M., Ultsch, M. & Kossiakoff, A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–12 (1992).

    CAS  PubMed  Google Scholar 

  41. Hilton, D. J., Watowich, S. S., Katz, L. & Lodish, H. F. Saturation mutagenesis of the WSXWS motif of the erythropoietin receptor. J. Biol. Chem. 271, 4699–4708 (1996).

    CAS  PubMed  Google Scholar 

  42. Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D. & Hayakawa, K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–25 (1991).

    CAS  PubMed  Google Scholar 

  43. von Freeden-Jeffry, U., Moore, T. A., Zlotnik, A. & Murray, R. in Cytokine Knockouts (eds Durum, S. K. Muegge, K.) 21–36 (Humana Press Inc., Totowa, NJ, 1998).

    Google Scholar 

  44. Peschon, J. J., Gliniak, B. C., Morrissey, P. & Maraskovsky, E. in Cytokine Knockouts (eds Durum, S. K. & Muegge, K.) 37–52 (Humana Press Inc., Totowa, NJ, 1998).

    Google Scholar 

  45. Peschon, J. J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    CAS  PubMed  Google Scholar 

  46. He, Y. W., Nakajima, H., Leonard, W. J., Adkins, B. & Malek, T. R. The common gamma-chain of cytokine receptors regulates intrathymic T cell development at multiple stages. J. Immunol. 158, 2592–2599 (1997).

    CAS  PubMed  Google Scholar 

  47. von Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene–deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).

    CAS  PubMed  Google Scholar 

  48. Pandey, A., Duan, H. & Dixit, V. M. Characterization of a novel Src-like adapter protein that associates with the Eck receptor tyrosine kinase. J. Biol. Chem. 270, 19201–19204 (1995).

    CAS  PubMed  Google Scholar 

  49. Ziegler, S. E. et al. Reconstitution of a functional interleukin (IL)-7 receptor demonstrates that the IL-2 receptor gamma chain is required for IL-7 signal transduction. Eur. J. Immunol. 25, 399–404 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.P was supported by the Howard Temin Award by NCI (K01 CA 75447). We thank Brad Nelson for providing Kit–β and Kit–γ constructs as well as IL-2 and Xin Liu for providing pMX-IRES-GFP construct. We also thank Peter Munson, CIT, NIH for valuable discussions related to analysis of Scatchard data with the LIGAND computer program. This work was supported in part by grants HL 32262 (H.F.L.), AI44259 (S.F.Z.), CA 26122 (H.B.) and AI44160 (A.F. and S.D.L.) from the National Institutes of Health, and by a grant from Amgen Corporation to H.F.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren J. Leonard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, A., Ozaki, K., Baumann, H. et al. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat Immunol 1, 59–64 (2000). https://doi.org/10.1038/76923

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76923

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing