Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

PAR3 is a cofactor for PAR4 activation by thrombin

Abstract

Identification of the mechanisms by which the coagulation protease thrombin activates platelets is critical for understanding haemostasis and thrombosis. Thrombin activates cells at least in part by cleaving protease-activated G-protein-coupled receptors (PARs)1. PAR3 and PAR4 are thrombin receptors expressed in mouse platelets2,3. Inhibition of thrombin binding to mPAR3 (ref. 4) and knockout of the mPAR3 gene3 inhibited mouse platelet activation at low but not high concentrations of thrombin. Thus PAR3 is important for thrombin signalling in mouse platelets. Expression of human PAR3 in heterologous expression systems reliably resulted in responsiveness to thrombin2. Curiously, despite its importance for the activation of mouse platelets by thrombin3,4, mouse PAR3 (mPAR3) did not lead to thrombin signalling even when overexpressed. We now report that mPAR3 and mPAR4 interact in a novel way: mPAR3 does not itself mediate transmembrane signalling but instead functions as a cofactor for the cleavage and activation of mPAR4 by thrombin. This establishes a paradigm for cofactor-assisted PAR activation and for a G-protein-coupled receptor's acting as an accessory molecule to present ligand to another receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of mPAR3 and mPAR4 co-expression on signalling and receptor cleavage.
Figure 2: PAR3's thrombin-interacting sequences are necessary and sufficient to promote mPAR4 activation.
Figure 3: Models of PAR activation.
Figure 4: Mouse platelets desensitized with PAR4-activating peptide are refractory to stimulation with thrombin.

Similar content being viewed by others

References

  1. Coughlin,S. R. How the protease thrombin talks to cells. Proc. Natl Acad. Sci. USA 96, 11023–11027 ( 1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ishihara,H. et al. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386, 502– 506 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Kahn,M. L. et al. A dual thrombin receptor system for platelet activation. Nature 394, 690–694 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ishihara,H., Zeng,D., Connolly,A. J., Tam,C. & Coughlin,S. R. Antibodies to protease-activated receptor 3 inhibit activation of mouse platelets by thrombin. Blood 91, 4152–4157 (1998).

    CAS  PubMed  Google Scholar 

  5. Kuner,R. et al. Role of heteromer formation in GABAB receptor function. Science 283, 74–77 ( 1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Jordan,B. A. & Devi,L. A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697–699 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. White,J. H. et al. Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396, 679 –682 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Kaupmann,K. et al. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683– 687 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kahn,M. L., Nakanishi-Matsui,M., Shapiro, M. J., Ishihara,H. & Coughlin,S. R. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J. Clin. Invest. 103, 879–887 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vu,T. -K. H., Wheaton,V. I., Hung,D. T. & Coughlin,S. R. Domains specifying thrombin–receptor interaction. Nature 353, 674–677 ( 1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Liu,L., Vu,T. -K. H., Esmon,C. T. & Coughlin,S. R. The region of the thrombin receptor resembling hirudin binds to thrombin and alters enzyme specificity. J. Biol. Chem. 266, 16977–16980 (1991).

    CAS  PubMed  Google Scholar 

  12. Mathews,I. I. et al. Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes. Biochemistry 33, 3266–3279 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Ishii,K., Gerszten,R., Zheng,Y. -W., Turck,C. W. & Coughlin,S. R. Determinants of thrombin receptor cleavage: receptor domains involved, specificity, and role of the P3 aspartate. J. Biol. Chem. 270, 16435– 16440 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Ishii,K., Hein,L., Kobilka,B. & Coughlin,S. R. Kinetics of thrombin receptor cleavage on intact cells. Relation to signaling. J. Biol. Chem. 268, 9780–9786 (1993).

    CAS  PubMed  Google Scholar 

  15. Vu,T. -K. H., Hung,D. T., Wheaton,V. I. & Coughlin,S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057–1068 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Xu,W. F. et al. Cloning and characterization of human protease-activated receptor 4. Proc. Natl Acad. Sci. USA 95, 6642– 6646 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Okamura,T., Hasitz,M. & Jamieson, G. A. Platelet glycocalicin: interaction with thrombin and role as thrombin receptor on the platelet surface. J. Biol. Chem. 253, 3435–3443 ( 1978).

    Google Scholar 

  18. Colman,R. W., Marder,V. J., Salzman,E. W. & Hirsh,J. in Hemostasis and Thrombosis (eds Colman, R. W., Marder, V. J., Salzman, E. W. & Hirsh, J.) 3–18 (Lippincott, Philadelphia, 1994).

    Google Scholar 

  19. Ulevitch,R. J. & Tobias,P. S. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13, 437–457 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  20. Chow,J. C., Young,D. W., Golenbock,D. T., Christ,W. J. & Gusovsky,F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 274, 10689–10692 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Heinrich,P. C., Behrmann,I., Müller-Newen, G., Schaper,F. & Graeve,L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334 , 297–314 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klagsbrun,M. Mediators of angiogenesis: the biological significance of basic fibroblast growth factor (bFGF)–heparin and heparan sulfate interactions. Semin. Cancer Biol. 3, 81–87 (1992).

    CAS  PubMed  Google Scholar 

  23. Vivien,D., Attisano,L., Wrana,J. L. & Massagué,J. Signaling activity of homologous and heterologous transforming growth factor-beta receptor kinase complexes. J. Biol. Chem. 270, 7134 –7141 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Chen,J., Ishii,M., Wang,L., Ishii,K. & Coughlin,S. R. Thrombin receptor activation: confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. J. Biol. Chem. 269, 16041 –16045 (1994).

    CAS  PubMed  Google Scholar 

  25. Sage,S. O. in Platelets, A Practical Approach (eds Watson, S. P. & Authi, K. S.) 67–90 (IRL, Oxford, 1996).

    Google Scholar 

Download references

Acknowledgements

We thank H. Bourne, T. Nakanishi, M. Shapiro and J. Trejo for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun R. Coughlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakanishi-Matsui, M., Zheng, YW., Sulciner, D. et al. PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404, 609–613 (2000). https://doi.org/10.1038/35007085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35007085

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing