Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus

Abstract

Foregut malformations (oesophageal atresia, tracheo-oesophageal fistula, lung anomalies and congenital stenosis of the oesophagus and trachea) are relatively common anomalies occurring in 1 in 2,000-5,000 live births, although their aetiology is poorly understood1. The secreted glycoprotein Sonic hedgehog (Shh) has been suggested to act as an endodermal signal that controls hindgut patterning2 and lung growth3. In mice, three zinc-finger transcription factors, Gli1, Gli2 and Gli3, have been implicated in the transduction of Shh signal4,5,6,7,8,9,10. We report here that mutant mice lacking Gli2 function exhibit foregut defects, including stenosis of the oesophagus and trachea, as well as hypoplasia and lobulation defects of the lung. A reduction of 50% in the gene dosage of Gli3 in a Gli2–/– background resulted in oesophageal atresia with tracheo-oesophageal fistula and a severe lung phenotype. Mutant mice lacking both Gli2 and Gli3 function did not form oesophagus, trachea and lung. These results indicate that Gli2 and Gli3 possess specific and overlapping functions in Shh signalling during foregut development, and suggest that mutations in GLI genes may be involved in human foregut malformations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Foregut malformations in Gli2–/– embryos.
Figure 3: Foregut malformations in Gli2–/–Gli3+/– embryos.
Figure 2: Downregulation of Gli1 and Ptch expression in Gli2 –/– lungs.
Figure 4: Absence of oesophagus, trachea and lung in Gli2–/–Gli3–/– embryos.
Figure 5: Oesophagus, trachea and lung primordia fail to form in Gli2 –/–Gli3–/– embryos.

Similar content being viewed by others

References

  1. Skandalakis, J.E. & Gray, S.W. Embryology For Surgeons. (Williams & Wilkins, Baltimore, 1994).

    Google Scholar 

  2. Roberts, D.J. et al. Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 121, 3163–3174 (1995).

    CAS  PubMed  Google Scholar 

  3. Bellusci, S. et al. Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124, 53–63 (1997).

    CAS  Google Scholar 

  4. Mo, R. et al. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 124, 113–123 ( 1997).

    CAS  PubMed  Google Scholar 

  5. Sasaki, H., Hui, C. -c., Nakafuku, M. & Kondoh, H. A binding site for Gli proteins is essential for HNF3ß floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124, 1313–1322 (1997).

    CAS  PubMed  Google Scholar 

  6. Hynes, M. et al. Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron 19, 15–26 (1997).

    Article  CAS  Google Scholar 

  7. Grindley, J.C., Bellusci, S., Perkins, D. & Hogan, B.L.M. Evidence for the involvement of the Gli gene family in embryonic mouse lung development. Dev. Biol. 188, 337– 348 (1997).

    Article  CAS  Google Scholar 

  8. Masuya, H., Sagai, T., Moriwaki, K. & Shiroishi, T. Multigenic control of the localization of the zone of polarizing activity in limb morphogenesis in the mouse. Dev. Biol. 182, 42– 51 (1997).

    Article  CAS  Google Scholar 

  9. Buscher, D., Bosse, B., Heymer, J. & Ruther, U. Evidence for genetic control of Sonic hedgehog by Gli3 in mouse limb development. Mech. Dev. 62, 175–182 ( 1997).

    Article  CAS  Google Scholar 

  10. Ding, Q. et al. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 125, 2533–2543 (1998).

    CAS  PubMed  Google Scholar 

  11. Spooner, B.S. & Wessells, N.K. Mammalian lung development: interactions in primordium formation and bronchial morphogenesis. J. Exp. Zool. 175, 445–454 ( 1970).

    Article  CAS  Google Scholar 

  12. Wessells, N.K. Mammalian lung development: interactions in formation and morphogenesis of tracheal buds. J. Exp. Zool. 175, 455– 466 (1970).

    Article  CAS  Google Scholar 

  13. Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 ( 1993).

    Article  CAS  Google Scholar 

  14. Hui, C. -c., Slusarski, D., Platt, K.A., Holmgren, R. & Joyner, A.L. Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2 and Gli-3, in ectoderm- and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev. Biol. 162, 402–413 (1994).

    Article  CAS  Google Scholar 

  15. Bellusci, S., Grindley, J., Emoto, H., Itoh, N. & Hogan, B.L.M. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124, 4867–4878 (1997).

    CAS  Google Scholar 

  16. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    Article  CAS  Google Scholar 

  17. Litingtung, Y., Lei, L., Westphal, H. & Chiang, C. Sonic hedgehog is essential for the development of the foregut. Nature Genet. 20, 58–61 ( 1998).

    Article  CAS  Google Scholar 

  18. Biesecker, L.G. Strike three for GLI3. Nature Genet. 17, 259–260 (1997).

    Article  CAS  Google Scholar 

  19. Kang, S., Graham, J.M. Jr, Olney, A.H. & Biesecker, L.G. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nature Genet. 15, 266– 268 (1997).

    Article  CAS  Google Scholar 

  20. Verloes, A., David, A., Ngo, L. & Bottani, A. Stringent delineation of Pallister-Hall syndrome in two long surviving patients: importance of radiological anomalies of the hands. J. Med. Genet. 32, 605–611 (1995).

    Article  CAS  Google Scholar 

  21. Hui, C. -c. & Joyner, A.L. A mouse model of Greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nature Genet. 3, 241–246 (1993).

    Article  CAS  Google Scholar 

  22. Gasca, S., Hill, D., Klingensmith, J. & Rossant, J. Characterization of a gene trap insertion into a novel gene, cordon-bleu, expressed in axial structures of the gastrulating mouse embryo. Dev. Genet. 17, 141–154 (1995).

    Article  CAS  Google Scholar 

  23. Goodrich, L.V., Johnson, R.L., Milenkovic, L., McMahon, J.A. & Scott, M.P. Conservation of the hedgehog /patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev. 10, 301–312 (1996).

    Article  CAS  Google Scholar 

  24. Takabatake, T. et al. Hedgehog and patched gene expression in adult ocular tissues. FEBS Lett. 410, 485–489 (1997).

    Article  CAS  Google Scholar 

  25. Johansson, B.M. & Wiles, M.V. Evidence for involvement of activin A and bone morphogenic protein 4 in mammalian mesoderm and hematopoietic development. Mol. Cell. Biol. 15, 141– 151 (1995).

    Article  CAS  Google Scholar 

  26. Gratzner, H.G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science 218, 474–475 (1982).

    Article  CAS  Google Scholar 

  27. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Chiang and B. Hogan for sharing unpublished data, M. Crackower and H. Lipshitz for suggestions on the manuscript and B. Hogan, G. Martin, A. McMahon, H. Sasaki, J. Rossant and M. Scott for reagents. This work was supported by the National Cancer Institute of Canada (C.-c.H.), Ontario Thoracic Society (C.-c.H. & M.P.) and Medical Research Council of Canada (M.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-chung Hui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motoyama, J., Liu, J., Mo, R. et al. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet 20, 54–57 (1998). https://doi.org/10.1038/1711

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing