Skip to main content
Log in

Endothelin-1 Binding to Endothelin Receptors in the Rat Anterior Pituitary Gland: Possible Formation of an ETA–ETB Receptor Heterodimer

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

1. Interaction in the recognition of endothelin-1 (ET-1), a typical bivalent ET receptor-ligand, between ETA and ETB receptors was investigated in the rat anterior pituitary gland, using our quantitative receptor autoradiographic method with tissue sections preserving the cell-membrane structure and ET receptor-related compounds.

2. In saturation binding studies with increasing concentrations (0.77–200 pM) of 125I-ET-1 (nonselective bivalent radioligand), 125I-ET-1 binding to the rat anterior pituitary gland was saturable and single with a K D of 71 pM and a B max of 120 fmol mg−1. When 1.0 μM BQ-123 (ETA antagonist) was added to the incubation buffer, binding parameters were 8.3 pM of K D and 8.0 fmol mg−1 of B max, whereas 10 nM sarafotoxin S6c (ETB agonist) exerted little change in these binding parameters (K D, 72 pM; B max, 110 fmol mg−1).

3. Competition binding studies with a fixed amount (3.8 pM) of 125I-ET-1 revealed that when 1.0 μM BQ-123 was present in the incubation buffer, ETB receptor-related compounds such as sarafotoxin S6c, ET-3, IRL1620 (ETB agonist), and BQ-788 (ETB antagonist) competitively inhibited 125I-ET-1 binding with K is of 140, 18, 350 pM, and 14 nM, respectively, however, these compounds were not significant competitors for 125I-ET-1 binding in the case of absence of BQ-123.

4. In cold-ligand saturation studies with a fixed amount (390 pM) of 125I-IRL 1620 (ETB radioligand), IRL1620 bound to a single population of the ETB receptor, and no change was observed in binding characteristics in the presence of 1.0 μM BQ-123. 125I-IRL1620 binding was competitively inhibited by ET-1 and ET-3 in the absence of BQ-123, with K is of 20 and 29 pM, respectively, the affinities being much the same as those of 29 nM, in the presence of 1.0 μM BQ-123.

5. Two nonbivalent ETA antagonists, BQ-123 and PD151242, were highly sensitive and full competitors for 125I-ET-1 binding (5.0 pM), in the presence of 10 nM sarafotoxin S6c.

6. Taken together with the present finding that mRNAs encoding the rat ETA and the ETB receptors are expressed in the anterior pituitary gland, we tentatively conclude that although there are ETA and ETB receptors with a functional binding capability for ET receptor-ligands, the ETB receptor does not independently recognize ET-1 without the aid of the ETA receptor. If this thesis is tenable, then ET-1 can bridge between the two receptors to form an ETA–ETB receptor heterodimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • AbdAlla, S., Lother, H., and Quitterer, U. (2001). AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407:94–98.

    Google Scholar 

  • Amemiya, Y., and Miyahara, J. (1988). Imaging plate illuminates many fields. Nature 336:89–90.

    PubMed  Google Scholar 

  • Arai, H., Hori, S., Aramori, I., Ohkubo, H., and Nakanishi, S. (1990). Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348:730–732.

    PubMed  Google Scholar 

  • Bax, W. A., and Saxena, P. R. (1994). The current endothelin receptor classification: Time for reconsideration? Trend. Pharmacol. Sci. 15:379–386.

    Google Scholar 

  • Chang, W.-P., and Clevenger, C. V. (1996). Modulation of growth factor receptor function by isoform heterodimerization. Proc. Natl. Acad. Sci. U.S.A. 93:5947–5952.

    PubMed  Google Scholar 

  • Clozel, M., and Gray, G. A. (1995). Are there different ETB receptors mediating constriction and relaxation?J. Cardiovasc. Pharmacol. 26(suppl. 3):S262–S264.

    PubMed  Google Scholar 

  • Davenport, A. P., Kuc, R. E., Fitzgerald, F., Maguire, J. J., Berryman, K., and Doherty, A. M. (1994). p125I-PD151242: A selective radioligand for human ETA receptors. Br. J. Pharmacol. 111:4–6.

    PubMed  Google Scholar 

  • Edwards, R. M., and Trizna, W. (1995). Characterization of p125I-endothelin-1 binding to rat and rabbit renal microvasculature. J. Pharmacol. Exp. Therap. 274:1084–1089.

    Google Scholar 

  • Fukuroda, T., Ozaki, S., Ihara, M., Ishikawa, K., Yano, M., MIyauchi, T., Ishikawa, S., Onizuka, M., Goto, K., and Nishikibe, M. (1996). Necessity of dual blockade of endothelin ETpA and ETpBreceptor subtypes for antagonism of endothelin-1-induced contraction in human bronchi. Br. J. Pharmacol.117:995–999.

    PubMed  Google Scholar 

  • Fukuroda, T., Ozaki, S., Ihara, M., Ishikawa, K., Yano, M., and Nishikibe, M. (1994). Synergistic inhibition by BQ-123 and BQ-788 of endothelin-1-induced contractions of the rabbit pulmonary artery. Br. J. Pharmacol. 113:336–338.

    PubMed  Google Scholar 

  • Ihara, M., Noguchi, K., Saeki,T., Fukuroda,T., Tsuchida,S., Kimura, S., Fukami,T., Ishikawa, K., Nishikibe, M., and Yano, M. (1992). Biological profiles of highly potent novel endothelin antagonists selective for the ETA receptor. Life Sci. 50:247–255.

    PubMed  Google Scholar 

  • Ishikawa, K., Ihara, M., Noguchi, K., Mase, T., Mino, N., Saeki, T., Fukuroda, T., Fukami, T., Ozaki, S., Nagase, T., Nishikibe, M., and Yano, M. (1994). Biochemical and pharmacological profile of a potent and selective endothelin B-receptor antagonist, BQ-788. Proc. Natl. Acad. Sci. U.S.A. 91:4892–4896.

    PubMed  Google Scholar 

  • Jensen, N., Hasselblatt, M., Sirén, A.-L., Schilling, L., Scmidt, M., and Ehrenreich, H. (1998).ETA andETB specific ligands synergistically antagonize endothelin-1 binding to an atypical endothelin receptor in primary rat astrocytes. J. Neurochem. 70:473–482.

    PubMed  Google Scholar 

  • Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin, M. M., Dai, M., Yao, W.-J., Johnson, M., Gunwaldsen, C., Huang, L.-Y., Tang, C., Shen, Q., Salon, J. A., Morse, K., Laz, T., Smith, K. E., Nagarathnam, D., Noble, S. A., Branchek, T. A., and Gerald, C. (1998). GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396:674–678.

    PubMed  Google Scholar 

  • Jordan, B. A., and Devi, L. A. (1999). G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–699.

    PubMed  Google Scholar 

  • Kanyicska, B., and Freeman, M. E. (1993). Characterization of endothelin receptors in the anterior pituitary gland. Am. J. Physiol. 265:E601–E608.

    PubMed  Google Scholar 

  • Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froest, W., Beck, P., Mosbacher, J., Bischoff, S., Kulik, A., Shegemoto, R., Karschin, A., and Bettler, B. (1998). GABAB-receptor subtypes assemble into funtional heteromeric complexes. Nature 396:683–687.

    PubMed  Google Scholar 

  • McPherson, G. A. (1985). Analysis of radioligand binding experiments.Acollection of computer programs for the IBMPC. J. Pharmacol. Methods 14:213–228.

    PubMed  Google Scholar 

  • Munson, P. J., and Rodbard, D. (1980). LIGAND:Aversatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107:220–239.

    PubMed  Google Scholar 

  • Nishiyama, M., Shan, L.-H., Moroi, K., Masaki, T., and Kimura, S. (1995). Heterogeneity of endothelin ETA receptor-mediated contractions in the rabbit saphenous vein. Eur. J. Pharmacol. 286:209–212.

    PubMed  Google Scholar 

  • Ozaki, S., Ohwaki, K., Ihara, M., Ishikawa, K., and Yano,M. (1997). Coexpression studies with endothelin receptor subtypes indicate the existence of intracellular cross-talk between ETA and ETB receptors. J. Biochem. 121:440–447.

    PubMed  Google Scholar 

  • Portoghese, P. S. (1989). Bivalent ligands and the message–address concept in the design of selective opioid receptor antagonists. Trend. Pharmacol. Sci. 10:230–235.

    Google Scholar 

  • Sakamoto, A., Yanagisawa, M., Sawamura, T., Enoki, T., Ohtani, T., Sakurai, T., Nakao, K., Toyo-oka, T., and Masaki, T. (1993). Distinct subdomains of human endothelin receptors determine their selectivity to endothelinA-selective antagonist and endothelinB-selective agonists. J. Biol. Chem. 268:8547–8553.

    PubMed  Google Scholar 

  • Sakurai, T., Yanagisawa, M., Takuwa, Y., Miyazaki, H., Kimura, S., Goto, K., and Masaki, T. (1990). Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348:732–735.

    PubMed  Google Scholar 

  • Schwyzer, R. (1977). ACTH: A short introductory review. Ann. N. Y. Acad. Sci. 297:3–26.

    PubMed  Google Scholar 

  • Shibata, S., Niwa, M., Himeno, A., Gana, N. G., Shigematsu, K., Matsumoto, M., Yamashita, K., Sumikawa, K., and Taniyama, K. (1997). The endothelin ETA receptor exists in the caudal solitary tract nucleus of the rat brain.Cell. Mol. Neurobiol. 17:151–156.

    PubMed  Google Scholar 

  • Shigematsu, K., Nakatani, A., Kawai, K., Moriuchi, R., Katamine, S., Miyamoto, T., and Niwa, M. (1996). Two subtypes of endothelin receptors and endothelin peptides are expressed in differential cell types of the rat placenta: In vitro receptor autoradiographic and in situ hybridization studies. Endocrinology 137:738–748.

    PubMed  Google Scholar 

  • Sokolovsky, M., Shraga-levine, Z., and Galron, R. (1994). Ligand-specific stimulation/inhibition of cAMP formation by a novel endothelin receptor subtype. Biochemistry 33:11417–11419.

    PubMed  Google Scholar 

  • Takai, M., Umemura, I., Yamasaki, K., Watakabe, T., Fujitani, Y., Oda, K., Urade, Y., Inui, T., Yamamura, T., and Okada, T. (1992).Apotent and specific agonist, Suc-[Glup9, Alap11,15]-endothelin-1 (8-21), IRL 1620, for the ETB receptor. Biochem. Biophy. Res. Commun. 184:953–959.

    Google Scholar 

  • Takemori, A. E., and Portoghese, P. S. (1992). Selective natrexone-derived opioid receptor antagonists. Ann. Rev. Pharmacol. Toxicol. 32:239–269.

    Google Scholar 

  • Tsutsumi, K., Niwa, M., Kitagawa,N., Yamaga, S., Anda, T., Himeno, A., Sato,T., Khalid, H., Taniyama, K., and Shibata, S. (1994). Enhanced expression of an endothelinETA receptor in capillaries from human glioblastoma:Aquantitative receptor autoradiographic analysis using a radioluminographic imaging plate system. J. Neurochem. 63:2240–2247.

    PubMed  Google Scholar 

  • Watakabe,T., Urade,Y., Takai, M., Umemura,I., and Okada,T. (1992).Areversible radioligand specific for the ETB receptor: p125ITyrp13-Suc-[Glup9,Alap11,15]-endothelin-1(8-21), p125IIRL 1620. Biochem. Biophy. Res. Commun. 185:867–873.

    Google Scholar 

  • White, J. H., Wise, A., Main, M. J., Green, A., Fraser, N. J., Disney, G. H., Barnes, A. A., Emson, P., Foord, S. M., and Marshall, F. H. (1998). Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396:679–682.

    PubMed  Google Scholar 

  • Williams, D. L., Jr., Jones, K. L., Pettibone, D. J., Lis, E. V., and Clineschmidt, B. V. (1991). Sarafotoxin S6c: An agonist which distinguishes between endothelin receptor subtypes. Biochem. Biophys. Res. Commun. 175:556–561.

    PubMed  Google Scholar 

  • Yamashita, K., Niwa, M., Kataoka, Y., Shigematsu, K., Himeno, A., Tsutsumi, K., Nakano-Nakashima, M., Sakurai-Yamashita, Y., Shibata, S., and Taniyama, K. (1994). Microglia with an endothelin ETB receptor aggregate in rat hippocampus CA1 subfields following transient forebrain ischemia. J. Neurochem. 63:1042–1051.

    PubMed  Google Scholar 

  • Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., and Masaki, T. (1988).Anovel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415.

    Article  PubMed  Google Scholar 

  • Yoneyama, T., Hori, M., Tanaka, T., Matsuda, Y., and Karaki, H. (1995). Endothelin ETA and ETB receptors facilitating parasympathetic neurotransmission in the rabbit trachea. J. Pharmacol. Exp. Ther. 275:1084–1089.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, N., Himeno, A., Shigematsu, K. et al. Endothelin-1 Binding to Endothelin Receptors in the Rat Anterior Pituitary Gland: Possible Formation of an ETA–ETB Receptor Heterodimer. Cell Mol Neurobiol 22, 207–226 (2002). https://doi.org/10.1023/A:1019822107048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019822107048

Navigation