Skip to main content
Log in

Review of Evidence for Measuring Drug Concentrations of First-Line Antitubercular Agents in Adults

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Measurement of drug concentrations and performing therapeutic drug monitoring (TDM) are widely used to optimize efficacy and safety of many commonly used drugs today. Although TDM of first-line antitubercular drugs is used during the treatment of tuberculosis, the extent of any benefit achieved is currently unknown. This review summarizes the available literature describing TDM of first-line treatment agents in patients with tuberculosis and describes clinical associations with achievement of target drug concentrations, including data from special populations. A literature review was conducted for articles describing drug concentration and TDM outcomes for first-line tuberculosis agents in adults. A total of 40 studies were included in the review. Studies were a mixture of controlled trials, observational studies, cross-sectional studies, and case reports. The majority of the studies showed standard dosing does not consistently achieve target concentrations for the first-line antitubercular drugs; however, the clinical implications of this finding are still unclear. Presence of HIV and diabetes mellitus appeared to indicate achievement of lower than target concentrations and this warrants further study in prospective studies. Current published data neither prove nor disprove the utility of TDM for general tuberculosis populations but evidence does not currently support routine measurement of drug concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO. The top 10 causes of death. World Health Organization; 2013. http://www.who.int/mediacentre/factsheets/fs310/en/. Accessed 6 April 2014.

  2. Global tuberculosis control: epidemiology, strategy, financing: WHO report 2009 (Publication no. WHO/HTM/TB/2009.411). Geneva: World Health Organization; 2009.

  3. WHO. 2008 Tuberculosis facts. World Health Organization; 2008. http://www.who.int/tb/publications/2008/factsheet_april08.pdf. Accessed 10 August 2014.

  4. Zumla A, Raviglione M, Hafner R, von Reyn CF. Tuberculosis. N Eng J Med. 2013;368:745–55.

    Article  CAS  Google Scholar 

  5. WHO. Global tuberculosis report 2013. World Health Organization; 2013. http://www.who.int/tb/publications/global_report/en/. Accessed 10 August 2014.

  6. Cheymol G. Effects of obesity on pharmacokinetics: implications for drug therapy. Clin Pharmacokinet. 2000;39:215–31.

    Article  PubMed  CAS  Google Scholar 

  7. Gwilt PR, Nahas R, Tracewell WG. The effects of diabetes mellitus on pharmacokinetics and pharmacodynamics in humans. Clin Pharmacokinet. 1991;20:477–90.

    Article  PubMed  CAS  Google Scholar 

  8. Kang J, Lee M. Overview of therapeutic drug monitoring. Korean J Intern Med. 2009;24(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62(15):2169–83.

    Article  PubMed  CAS  Google Scholar 

  10. Begg EJ, Barclay ML, Kirkpatrick CJM. The therapeutic monitoring of antimicrobial agents. Br J Clin Pharmacol. 1999;47:23–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Touw DJ, Neef C, Thomson AH, Vinks AA. Cost-effectiveness of therapeutic drug monitoring: a systematic review. Ther Drug Monit. 2005;27:10–7.

    Article  PubMed  CAS  Google Scholar 

  12. Schumacher GE, Barr JT. Economic and outcome issues for therapeutic drug monitoring in medicine. Ther Drug Monit. 1998;20:539–42.

    Article  PubMed  CAS  Google Scholar 

  13. Peloquin CA. Use of therapeutic drug monitoring in tuberculosis patients. Chest. 2004;126:1722–4.

    Article  PubMed  Google Scholar 

  14. Peloquin CA. Tuberculosis drug serum levels. Clin Infect Dis. 2001;33:584–5.

    Article  PubMed  CAS  Google Scholar 

  15. Peloquin A. Using therapeutic drug monitoring to dose the antimycobacterial drugs. Clin Chest Med. 1997;18:79–87.

    Article  PubMed  CAS  Google Scholar 

  16. Ruslami R, Nijland HM, Alisjahbana B, Parwati I, van Crevel R, Aarnoutse RE. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2007;51(7):2546–51.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Ruslami R, Ganiem AR, Dian S, Apriani L, Achmad TH, van der Ven AJ, et al. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: an open-label, randomised controlled phase 2 trial. Lancet Infect Dis. 2013;13(1):27–35.

    Article  PubMed  Google Scholar 

  18. Ruslami R, Nijland HM, Adhiarta IG, Kariadi SH, Alisjahbana B, Aarnoutse RE, et al. Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob Agents Chemother. 2010;54(3):1068–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Barroso EC, Pinheiro VG, Facanha MC, Carvalho MR, Moura ME, Campelo CL, et al. Serum concentrations of rifampin, isoniazid, and intestinal absorption, permeability in patients with multidrug resistant tuberculosis. Am J Trop Med Hyg. 2009;81(2):322–9.

    PubMed  CAS  Google Scholar 

  20. Kimerling ME, Phillips P, Patterson P, Hall M, Robinson CA, Dunlap NE. Low serum antimycobacterial drug levels in non-HIV-infected tuberculosis patients. Chest. 1998;113(5):1178–83.

    Article  PubMed  CAS  Google Scholar 

  21. van Crevel R, Alisjahbana B, de Lange WC, Borst F, Danusantoso H, van der Meer JW, et al. Low plasma concentrations of rifampicin in tuberculosis patients in Indonesia. Int J Tuberc Lung Dis. 2002;6(6):497–502.

    PubMed  Google Scholar 

  22. Chang KC, Leung CC, Yew WW, Kam KM, Yip CW, Ma CH, et al. Peak plasma rifampicin level in tuberculosis patients with slow culture conversion. Eur J Clin Microbiol Infect Dis. 2008;27(6):467–72.

    Article  PubMed  CAS  Google Scholar 

  23. Babalik A, Mannix S, Francis D, Menzies D. Therapeutic drug monitoring in the treatment of active tuberculosis. Can Respir J. 2011;18(4):225–9.

    PubMed  PubMed Central  Google Scholar 

  24. Li J, Burzynski JN, Lee YA, Berg D, Driver CR, Ridzon R, et al. Use of therapeutic drug monitoring for multidrug-resistant tuberculosis patients. Chest. 2004;126(6):1770–6. doi:10.1378/chest.126.6.1770.

    Article  PubMed  Google Scholar 

  25. Heysell SK, Mtabho C, Mpagama S, Mwaigwisya S, Pholwat S, Ndusilo N, et al. Plasma drug activity assay for treatment optimization in tuberculosis patients. Antimicrob Agents Chemother. 2011;55(12):5819–25.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Gurumurthy P, Ramachandran G, Hemanth Kumar AK, Rajasekaran S, Padmapriyadarsini C, Swaminathan S, et al. Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human immunodeficiency virus disease. Antimicrob Agents Chemother. 2004;48(11):4473–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Chideya S, Winston CA, Peloquin CA, Bradford WZ, Hopewell PC, Wells CD, et al. Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from Botswana. Clin Infect Dis. 2009;48(12):1685–94.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Tappero JW, Bradford WZ, Agerton TB, Hopewell P, Reingold AL, Lockman S, et al. Serum concentrations of antimycobacterial drugs in patients with pulmonary tuberculosis in Botswana. Clin Infect Dis. 2005;41(4):461–9.

    Article  PubMed  CAS  Google Scholar 

  29. Saleri N, Dembele SM, Villani P, Carvalho AC, Cusato M, Bonkoungou V, et al. Systemic exposure to rifampicin in patients with tuberculosis and advanced HIV disease during highly active antiretroviral therapy in Burkina Faso. J Antimicrob Chemother. 2012;67(2):469–72.

    Article  PubMed  CAS  Google Scholar 

  30. Van Tongeren L, Nolan S, Cook VJ, FitzGerald JM, Johnston JC. Therapeutic drug monitoring in the treatment of tuberculosis: a retrospective analysis. Int J Tuberc Lung Dis. 2013;17(2):221–4.

    Article  PubMed  Google Scholar 

  31. Heysell SK, Moore JL, Keller SJ, Houpt ER. Therapeutic drug monitoring for slow response to tuberculosis treatment in a state control program, Virginia, USA. Emerg Infect Dis. 2010;16(10):1546–53.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heysell SK, Moore JL, Staley D, Dodge D, Houpt ER. Early therapeutic drug monitoring for isoniazid and rifampin among diabetics with newly diagnosed tuberculosis in Virginia, USA. Tuberc Res Treat. 2013;2013:129723. doi:10.1155/2013/129723 (Epub 2013 Nov 17).

    PubMed  PubMed Central  Google Scholar 

  33. Requena-Mendez A, Davies G, Ardrey A, Jave O, Lopez-Romero SL, Ward SA, et al. Pharmacokinetics of rifampin in Peruvian tuberculosis patients with and without comorbid diabetes or HIV. Antimicrob Agents Chemother. 2012;56(5):2357–63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Babalik A, Ulus IH, Bakirci N, Kuyucu T, Arpag H, Dagyildiz L, et al. Pharmacokinetics and serum concentrations of antimycobacterial drugs in adult Turkish patients. Int J Tuberc Lung Dis. 2013;17(11):1442–7.

    Article  PubMed  CAS  Google Scholar 

  35. Zhu M, Burman WJ, Starke JR, Stambaugh JJ, Steiner P, Bulpitt AE, et al. Pharmacokinetics of ethambutol in children and adults with tuberculosis. Int J Tuberc Lung Dis. 2004;8(11):1360–7.

    PubMed  CAS  Google Scholar 

  36. Zhu M, Starke JR, Burman WJ, Steiner P, Stambaugh JJ, Ashkin D, et al. Population pharmacokinetic modeling of pyrazinamide in children and adults with tuberculosis. Pharmacotherapy. 2002;22(6):686–95.

    Article  PubMed  CAS  Google Scholar 

  37. Nijland HM, Ruslami R, Stalenhoef JE, Nelwan EJ, Alisjahbana B, Nelwan RH, et al. Exposure to rifampicin is strongly reduced in patients with tuberculosis and type 2 diabetes. Clin Infect Dis. 2006;43(7):848–54.

    Article  PubMed  CAS  Google Scholar 

  38. Narita M, Hisada M, Thimmappa B, Stambaugh J, Ibrahim E, Hollender E, et al. Tuberculosis recurrence: multivariate analysis of serum levels of tuberculosis drugs, human immunodeficiency virus status, and other risk factors. Clin Infect Dis. 2001;32(3):515–7.

    Article  PubMed  CAS  Google Scholar 

  39. Weiner M, Burman W, Vernon A, Benator D, Peloquin CA, Khan A, et al. Low isoniazid concentrations and outcome of tuberculosis treatment with once-weekly isoniazid and rifapentine. Am J Respir Crit Care Med. 2003;167(10):1341–7.

    Article  PubMed  Google Scholar 

  40. Mehta JB, Shantaveerapa H, Byrd RP Jr, Morton SE, Fountain F, Roy TM. Utility of rifampin blood levels in the treatment and follow-up of active pulmonary tuberculosis in patients who were slow to respond to routine directly observed therapy. Chest. 2001;120(5):1520–4.

    Article  PubMed  CAS  Google Scholar 

  41. Ray J, Gardiner I, Marriott D. Managing antituberculosis drug therapy by therapeutic drug monitoring of rifampicin and isoniazid. Intern Med. 2003;33(5–6):229–34.

    Article  CAS  Google Scholar 

  42. Holland DP, Hamilton CD, Weintrob AC, Engemann JJ, Fortenberry ER, Peloquin CA, et al. Therapeutic drug monitoring of antimycobacterial drugs in patients with both tuberculosis and advanced human immunodeficiency virus infection. Pharmacotherapy. 2009;29(5):503–10.

    Article  PubMed  CAS  Google Scholar 

  43. McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50(4):1170–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Um SW, Lee SW, Kwon SY, Yoon HI, Park KU, Song J, et al. Low serum concentrations of anti-tuberculosis drugs and determinants of their serum levels. Int J Tuberc Lung Dis. 2007;11(9):972–8.

    PubMed  Google Scholar 

  45. Ahmed R, Cooper R, Foisy M, Der E, Kunimoto D. Factors associated with reduced antituberculous serum drug concentrations in patients with HIV-TB coinfection. J Int Assoc Provid AIDS Care. 2012;11(5):273–6.

    Article  Google Scholar 

  46. Pea F, Milaneschi R, Baraldo M, Talmassons G, Furlanut M. Isoniazid and its hydrazine metabolite in patients with tuberculosis. Clin Drug Invest. 1999;17(2):145–54.

    Article  CAS  Google Scholar 

  47. Perlman DC, Segal Y, Rosenkranz S, Rainey PM, Remmel RP, Salomon N, et al. The clinical pharmacokinetics of rifampin and ethambutol in HIV-infected persons with tuberculosis. Clin Infect Dis. 2005;41(11):1638–47.

    Article  PubMed  CAS  Google Scholar 

  48. Fahimi F, Kobarfard F, Tabarsi P, Hemmati S, Salamzadeh J, Baniasadi S. Isoniazid blood levels in patients with pulmonary tuberculosis at a tuberculosis referral center. Chemother. 2011;57(1):7–11.

    Article  CAS  Google Scholar 

  49. Tostmann A, Mtabho CM, Semvua HH, van den Boogaard J, Kibiki GS, Boeree MJ, et al. Pharmacokinetics of first-line tuberculosis drugs in Tanzanian patients. Antimicrob Agents Chemother. 2013;57(7):3208–13.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Magis-Escurra C, van den Boogaard J, Ijdema D, Boeree M, Aarnoutse R. Therapeutic drug monitoring in the treatment of tuberculosis patients. Pulm Pharmacol Ther. 2012;25(1):83–6.

    Article  PubMed  CAS  Google Scholar 

  51. Berning SE, Huitt GA, Iseman MD, Peloquin CA. Malabsorption of antituberculosis medications by a patient with AIDS. N Eng J Med. 1992;327(25):1817–8.

    Article  CAS  Google Scholar 

  52. Patel KB, Belmonte R, Crowe HM. Drug malabsorption and resistant tuberculosis in HIV-infected patients. New Eng J Med. 1995;332(5):336–7.

    Article  PubMed  CAS  Google Scholar 

  53. Fahimi F, Tabarsi P, Kobarfard F, Bozorg BD, Goodarzi A, Dastan F, et al. Isoniazid, rifampicin and pyrazinamide plasma concentrations 2 and 6 h post dose in patients with pulmonary tuberculosis. Int J Tuberc Lung Dis. 2013;17:1602–6.

    Article  PubMed  CAS  Google Scholar 

  54. Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Tawanda G. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208:1464–73.

    Article  PubMed  CAS  Google Scholar 

  55. Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lonnroth K, et al. The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med. 2011;9:81.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Geiseler PJ, Manis RD Jr, Maddux MS. Dosage of antituberculosis drugs in obese patients. Am Rev Respir Dis. 1985;131:944–6.

    PubMed  CAS  Google Scholar 

  57. de Vittorio SG, Antonio D, Alessio S, Lorena B, Malincarne L, Giovanni DP, Franco B. Tuberculosis after gastrectomy, plasmatic concentration of antitubercular drugs. Mediterr J Hematol Infect Dis. 2012;4:e2012007.

    Article  Google Scholar 

Download references

Acknowledgments

No sources of funding were used in the preparation of this review. Kyle John Wilby, Mary H. H. Ensom and Fawziah Marra have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle John Wilby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilby, K.J., Ensom, M.H.H. & Marra, F. Review of Evidence for Measuring Drug Concentrations of First-Line Antitubercular Agents in Adults. Clin Pharmacokinet 53, 873–890 (2014). https://doi.org/10.1007/s40262-014-0170-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0170-1

Keywords

Navigation