Skip to main content
Log in

Inertial deposition of nanoparticle chain aggregates: Theory and comparison with impactor data for ultrafine atmospheric aerosols

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticle chain aggregates (NCAs) are often sized and collected using instruments that rely on inertial transport mechanisms. The instruments size segregate aggregates according to the diameter of a sphere with the same aerodynamic behavior in a mechanical force field. A new method of interpreting the aerodynamic diameter of NCAs is described. The method can be used to calculate aggregate surface area or volume. This is useful since inertial instruments are normally calibrated for spheres, and the calibrations cannot be directly used to calculate aggregate properties. A linear relationship between aggregate aerodynamic diameter and primary particle diameter based on published Monte-Carlo drag calculations is derived. The relationship shows that the aggregate aerodynamic diameter is independent of the number of primary particles that compose an aggregate, hence the aggregate mass. The analysis applies to aggregates with low fractal dimension and uniform primary particle diameter. This is often a reasonable approximation for the morphology of nanoparticles generated in high temperature gases. An analogy is the use of the sphere as an approximation for compact particles. The analysis is applied to the collection of NCAs by a low-pressure impactor. Our results indicate the low-pressure impactor collects aggregates with a known surface area per unit volume on each stage. Combustion processes often produce particles with aggregate structure. For diesel exhaust aggregates, the surface area per unit volume calculated by our method was about twice that of spheres with diameter equal to the aerodynamic diameter. Measurements of aggregates collected near a major freeway and at Los Angeles International Airport (LAX) were made for two aerodynamic cutoff diameter diameters (d a,50), 50 and 75 nm. (Aerodynamic cutoff diameter refers to the diameter of particles collected with 50% efficiency on a low-pressure impactor stage.) Near-freeway aggregates were probably primarily a mixture of diesel and internal combustion engine emissions. Aggregates collected at LAX were most likely present as a result of aircraft emissions. In both measurements, the aggregate aerodynamic diameters calculated from the primary particle diameter were fairly close to the stage cutoff diameter. The number of primary particles per aggregate varied one order of magnitude for particles depositing on the same stage. The average aggregate surface area per unit volume was 2.41 × 106 cm−1 and 2.59 × 106 cm−1 (50 nm d a,50) and 1.81 × 106 cm−1 and 1.68 × 106 cm−1 (75 nm d a,50) for near-freeway and LAX measurements, respectively. These preliminary measurements are consistent with values calculated from theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barone T., 2004. The Nature of Ultrafine Atmospheric Aerosol: A Comparison of the Aerodynamic and Electrical Mobility Diameters. M.S. Thesis, University of California at Los Angeles, Los Angeles, CA

  • Bérubé K.A., Jones T.P., Williamson B.J., Winters C., Morgan A.J., Richards R.J. (1999). Physicochemical characterisation of diesel exhaust particles: Factors for assessing biological activity. Atmos. Environ. 33:1599–1614

    Article  Google Scholar 

  • Blevins L.G., G.W. Mulholland, B.A. Benner & E.B. Steel, 2002. Morphology and chemistry of aircraft engine soot. In: Proceedings of the 2002 Spring Technical Meeting of the Western States Section of the Combustion Institute, The Combustion Institute, Pittsburg, PA, MS014

  • Blevins L.G., 2003. Particulate matter emitted from aircraft engines. AIAA Paper 2003–2764

  • Brasil A.M., Farias T.L., Carvalho M.G. (2000) Evaluation of the fractal properties of cluster-cluster aggregates. Aerosol Sci. Technol. 33: 440–454

    Article  CAS  Google Scholar 

  • Cass G.R., Hughes L.S., Bhave P., Kleeman M.J., Allen J.O., Salmon L.G. (2000). The chemical composition of atmospheric ultrafine particles. Philos. Trans. Roy Soc. Lond. a Math. Phys. Eng. Sci. 358(1775):2581–2592

    Article  CAS  Google Scholar 

  • Chan P., Dahneke B. (1981) Free-molecule drag on straight chains of uniform spheres. J. Appl. Phys. 52(5):3106–3110

    Article  CAS  Google Scholar 

  • Dahneke B. (1982) Viscous resistance of straight-chain aggregates of uniform spheres. Aerosol Sci. Technol. 1: 179–185

    CAS  Google Scholar 

  • Davies C.N. (1945) Definitive equations for the fluid resistance of spheres. Proc. Phys. Soc. 57(4): 259–270

    Article  Google Scholar 

  • Dye A.L., Rhead M.M., Trier C.J. (2000) The quantitative morphology of roadside and background urban aerosol in Plymouth, UK. Atmos. Environ. 34: 3139–3148

    Article  CAS  Google Scholar 

  • Fenton D.L., E.H. Luebcke & E. Norstrom, 1979. Physical characterization of particle material from a turbine engine. ASME 79-GT-179

  • Friedlander S.K. (2000) Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics (2nd ed.). Oxford University Press, New York

    Google Scholar 

  • Fuchs, N.A., 1964. The Mechanics of Aerosols. Oxford: Pergamon. Republished by Dover, New York (1989)

  • Goschnick J., Natzeck C., & Sommer M. (2004) Depth-resolved analysis of traffic soot sampled in the vicinity of a German motorway. Surf. Interf. Anal. 36: 857–861

    Article  CAS  Google Scholar 

  • Harrison R.M., Tilling R., Romero M.S.C., Harrad S., Jarvis K. (2003) A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmos. Environ. 37(17):2391–2402

    Article  CAS  Google Scholar 

  • Hering S.V., Flagan R.C., Friedlander S.K. (1978). Design and evaluation of a new low-pressure impactor. Environ. Sci. Technol. 12(6): 667–672

    Article  CAS  Google Scholar 

  • Hering S.V., Collins J.J., Richards W.L., Friedlander S.K. (1979). Design and evaluation of a new low-pressure impactor. 2. Environ. Sci. Technol. 13(2):184–188

    Article  CAS  Google Scholar 

  • Jung H., Kittelson D.B., Zachariah M.R. (2004) Kinetics and visualization of soot oxidation using transmission electron microscopy. Combust. Flame 136: 445–456

    Article  CAS  Google Scholar 

  • Kasper G. (1982). Dynamics and measurement of smokes. 2. The aerodynamic diameter of chain aggregates in the transition regime. Aerosol Sci. Technol. 1(2):201–214

    CAS  Google Scholar 

  • Kasper G., Shaw D.T. (1983). Comparative size distribution measurements on chain aggregates. Aerosol Sci. Technol. 2:369–381

    CAS  Google Scholar 

  • Kaye B.H. (1995) Applied fractal geometry and powder technology. Chaos, Solitons Fract. 6: 245–253

    Article  Google Scholar 

  • Kendall M., Brown L., Trought K. (2004) Molecular adsorption at particle surfaces: A PM toxicity mediation mechanism. Inhal. Toxicol. 16(Suppl. 1):99–105

    Article  CAS  Google Scholar 

  • Kim S., Jaques P.A., Chang M.C., Barone T., Xiong C., Friedlander S.K., Sioutas C. (2001) Versatile aerosol concentration enrichment system (VACES) for simultaneous in vivo and in vitro evaluation of toxic effects of ultrafine, fine and coarse ambient particles. 2. Field evaluation. J. Aerosol Sci. 32:1299–1314

    Article  CAS  Google Scholar 

  • Kleeman M.J., Schauer J.J., Cass G.R. (2000). Size and composition of fine particulate matter emitted from motor vehicles. Environ. Sci. Technol. 34(7): 1132–1142

    Article  CAS  Google Scholar 

  • Kodas T.T., Hampden-Smith M. (1999). Aerosol Processing of Materials. Wiley-VCH, New York

    Google Scholar 

  • Kops J., Dibbets G., Hermans L., Van De Vate J.F. (1975). The aerodynamic diameter of branched chain-like aggregates. J. Aerosol Sci. 6: 329–333

    Article  Google Scholar 

  • Köylü ü.ö., Faeth G.M., Farias T.L., Carvalho M.G. (1995) Fractal and projected structure properties of soot aggregates. Combust. Flame 100: 621–633

    Article  Google Scholar 

  • Kütz S., 1994. In-situ Methoden zur Bestimmung von Struktureigenschaften gasgetragener Agglomerate, PhD Thesis, University of Duisburg, Duisburg

  • Lall A.A., Friedlander S.K. (2006). On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis. 1. Theoretical analysis. J. Aerosol Sci. 37(3): 260–271

    Article  CAS  Google Scholar 

  • Li X.Y., Gilmour P.S., Donaldson K., MacNee W. (1996) Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro. Thorax 51: 1216–1222

    Article  CAS  Google Scholar 

  • Liscinsky D.S., M.B. Colket, D.J. Hautman & B. True, 2001. Particle formation in gas turbine combustors. AIAA Paper 2001–3745

  • Liu B.B., S. Srinivasachar, & J.J. Helble (2000). The effect of chemical composition on the fractal-like structure of combustion-generated inorganic aerosols. Aerosol Sci. Technol. 33: 459–469

    Article  CAS  Google Scholar 

  • Marple V.A., Rubow K.L., Behm S.M. (1991) A miroorifice uniform deposition impactor (MOUDI): Description, calibration, and use. Aerosol Sci. Technol. 14: 434–445

    CAS  Google Scholar 

  • Marple V.A., Rubow K.L., Olson B.A. (2001). Inertial, gravitational, centrifugal, and thermal collection techniques. In: Willeke K., Baron P.A. (eds) Aerosol Measurement. Principles, Techniques and Applications. Van Nostrand Reinhold, New York

    Google Scholar 

  • Miguel A.H., Eiguren-Fernandez A., Sioutas C., Fine P.M., Geller M., Mayo P.R. (2005). Observations of twelve USEPA priority polycyclic aromatic hydrocarbons in the Aitken size range (10–32 nm Dp). Aerosol Sci. Technol. 39(5): 415–418

    Article  CAS  Google Scholar 

  • Oberdörster G., Gelein R., Johnston C.J., Mercer P., Corson N., Finkelstein J.N. (1998). Ambient ultrafine particles: Inducers of acute lung injury?. In: Dungworth D.L. et al (eds) Relationships between Respiratory Disease and Exposure to Air Pollution. ILSI Press, Washington

    Google Scholar 

  • Park K., Kittelson D.B., Zachariah M.R., McMurry P.H. (2004). Measurement of inherent material density of nanoparticle agglomerates. J. Nanoparticle Res. 6(2): 267–272

    Article  CAS  Google Scholar 

  • Pratsinis S.E. (1998). Flame aerosol synthesis of ceramic powders. Progress Energy Combust. Sci. 24(3): 197–219

    Article  CAS  Google Scholar 

  • Renwick L.C., Brown D., Clouter A., Donaldson K. (2005). Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup. Environ. Med. 61:442–447

    Article  CAS  Google Scholar 

  • Samson R.J., Mulholland G.W., Gentry J.W. (1987) Structural analysis of soot agglomerates. Langmuir 3: 272–281

    Article  CAS  Google Scholar 

  • Schmidt-Ott A., Baltensperger U., Gaggeler H.W., Jost D.T. (1990). Scaling behavior of physical parameters describing agglomerates. J. Aerosol Sci. 21(6): 711–717

    Article  CAS  Google Scholar 

  • Seagrave J., Knall C., McDonald J., Mauderly J. (2004). Diesel particulate material binds and concentrates a proinflammatory cytokine that causes neutrophil migration. Inhal. Toxicol. 16(Suppl. 1):93–98

    Article  CAS  Google Scholar 

  • Singh M., Jaques P.A., Sioutas C. (2002). Size distribution and diurnal characteristics of particle-bound metals in source and receptor sites of the Los Angeles Basin. Atmos. Environ. 36: 1675–1689

    Article  CAS  Google Scholar 

  • Stöber W., Berner A., Blaschke R. (1969) The aerodynamic diameter of aggregates of uniform spheres. J. Colloid Interf. Sci. 29(4): 710–719

    Article  Google Scholar 

  • Van Gulijk C., Marijnissen J.C.M., Makkee M., Moulijn J.A., Schmidt-Ott A. (2004). Measuring diesel soot with a scanning mobility particle sizer and an electrical low-pressure impactor: Performance assessment with a model for fractal like aggregates. J. Aerosol Sci. 35: 633–655

    Article  CAS  Google Scholar 

  • Wang C.S., Friedlander S.K., Mädler L. (2005). Nanoparticle aerosol science and technology: An overview. China Particuol. 3: 243–254

    Google Scholar 

  • Xiong C., Friedlander S.K. (2001). Morphological properties of atmospheric aerosol aggregates. Proc. Natl. Acad. Sci. U. S. A. 98(21): 11851–11856

    Article  CAS  Google Scholar 

  • Zhu Y.F., Hinds W.C., Kim S., Sioutas C. (2002). Concentration and size distribution of ultrafine particles near a major highway. Air Waste Manage. Assoc. 52: 1032–1042

    Google Scholar 

Download references

Acknowledgments

The authors thank Eva Schmidt for help with the image analysis. This work was supported in part by NSF grant ATM 0124590 and NIEHS grant 5 P30 ES07048-07. Support also came from the Southern California Particle Center and Supersite, funded by the USEPA through grant R82735201, and the California Air Resources Board under contract 98–316. The research has not been subjected to the USEPA peer and policy review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon K. Friedlander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barone, T.L., Lall, A.A., Zhu, Y. et al. Inertial deposition of nanoparticle chain aggregates: Theory and comparison with impactor data for ultrafine atmospheric aerosols. J Nanopart Res 8, 669–680 (2006). https://doi.org/10.1007/s11051-006-9128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9128-z

Keywords

Navigation