Skip to main content

Advertisement

Log in

Systemic inflammation in heart failure – The whys and wherefores

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Patients with chronic heart failure (HF) are characterized by systemic inflammation, as evident by raised circulating levels of several inflammatory cytokines with increasing levels according to the degree of disease severity. In addition to the myocardium itself, several tissues and cells can contribute to this inflammation, including leukocytes, platelets, tissue macrophages and endothelial cells. Although the mechanisms for the systemic inflammation is unknown, both infectious (e.g., endotoxins) and non-infectious (e.g., oxidative stress and hemodynamic overload) events could be operating, also including activation of Toll-like receptors as well as interaction with the neurohormone system. A growing body of evidence suggests that this systemic inflammation in chronic HF may play a role in the development and progression of this disorder, not only by promoting myocardial dysfunction, but also by inducing pathogenic consequences in other organs and tissues, thereby contributing to additional aspects of the HF syndrome such as cachexia, endothelial dysfunction and anemia. Although this inappropriate immune activation and inflammation could represent a new target for therapy in patients with chronic HF, the anti-tumor necrosis factor trials have been disappointing, and future research in this area will have to more precisely identify the most important mechanisms and actors in the immunopathogenesis of chronic HF in order to develop better immunomodulating agents for this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jessup M, Brozena S. Heart failure. N Engl J Med 2003;348:2007–18

    Article  PubMed  Google Scholar 

  2. Mann DL, Deswal A, Bozkurt B, Torre-Amione G. New therapeutics for chronic heart failure. Annu Rev Med. 2002;53:59–74

    Article  PubMed  CAS  Google Scholar 

  3. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990;323:236–241

    Article  PubMed  CAS  Google Scholar 

  4. Adamopoulos S, Parissis JT, Kremastinos DT. A glossary of circulating cytokines in chronic heart failure. Eur J Heart Fail 2001;3:517–26

    Article  PubMed  CAS  Google Scholar 

  5. Aukrust P, Ueland T, Lien E, et al. Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1999;83:376–82

    Article  PubMed  CAS  Google Scholar 

  6. Aukrust P, Ueland T, Müller F, et al. Elevated circulating levels of C-C chemokines in patients with congestive heart failure. Circulation 1998;97:1136–43

    PubMed  CAS  Google Scholar 

  7. Damås JK, Gullestad L, Ueland T, et al. CXC-chemokines, a new group of cytokines in congestive heart failure—possible role of platelets and monocytes. Cardiovasc Res 2000;45:428–36

    Article  PubMed  Google Scholar 

  8. Testa M, Yeh M, Lee P, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 1996;28:964–71

    Article  PubMed  CAS  Google Scholar 

  9. Torre-Amione G, Kapadia S, Benedict C, et al. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 1996;27:1201–6

    Article  PubMed  CAS  Google Scholar 

  10. Deswal A, Petersen NJ, Feldman AM, et al. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 2001;103:2055–59

    PubMed  CAS  Google Scholar 

  11. Ueland T, Kjekshus J, Froland SS, et al. Plasma levels of soluble tumor necrosis factor receptor type I during the acute phase following complicated myocardial infarction predicts survival in high-risk patients. J Am Coll Cardiol 2005;46:2018–21

    Article  PubMed  CAS  Google Scholar 

  12. Torre-Amione G, Kapadia S, Lee J, et al. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 1996;93:704–11

    PubMed  CAS  Google Scholar 

  13. Eiken HG, Øie E, Damås JK, et al. Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in end-stage human heart failure. Eur J Clin Invest 2001;31:389–97

    Article  PubMed  CAS  Google Scholar 

  14. Damås JK, Eiken HG, Øie E, et al. Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc Res 2000;47:778–87

    Article  PubMed  Google Scholar 

  15. Valen G, Yan ZQ, Hansson GK. Nuclear factor kappa-B and the heart. J Am Coll Cardiol 2001;38:307–14

    Article  PubMed  CAS  Google Scholar 

  16. Deliargyris EN, Raymond RJ, Theoharides TC, et al. Sites of interleukin-6 release in patients with acute coronary syndromes and in patients with congestive heart failure. Am J Cardiol 2000;86:913–18

    Article  PubMed  CAS  Google Scholar 

  17. Tsutamoto T, Wada A, Ohnishi M, et al. Transcardiac increase in tumor necrosis factor-alpha and left ventricular end-diastolic volume in patients with dilated cardiomyopathy. Eur J Heart Fail 2004;6:173–80

    Article  PubMed  CAS  Google Scholar 

  18. Ueland T, Aukrust P, Yndestad A, et al. Soluble CD40 ligand in acute and chronic heart failure. Eur Heart J 2005;26:1101–7

    Article  PubMed  CAS  Google Scholar 

  19. Damås JK, Gullestad L, Aass H, et al. Enhanced gene expression of chemokines and their corresponding receptors in mononuclear blood cells in chronic heart failure—modulatory effect of intravenous immunoglobulin. J Am Coll Cardiol 2001;38:187–93

    Article  PubMed  Google Scholar 

  20. Yndestad A, Damås JK, Eiken HG, et al. Increased gene expression of tumor necrosis factor superfamily ligands in peripheral blood mononuclear cells during chronic heart failure. Cardiovasc Res 2002;54:175–82

    Article  PubMed  CAS  Google Scholar 

  21. Zhao SP, Xu TD. Elevated tumor necrosis factor alpha of blood mononuclear cells in patients with congestive heart failure. Int J Cardiol 1999;71:257–61

    Article  PubMed  CAS  Google Scholar 

  22. Conraads VM, Bosmans JM, Schuerwegh AJ, et al. Intracellular monocyte cytokine production and CD 14 expression are up-regulated in severe vs mild chronic heart failure. J Heart Lung Transplant 2005;24:854–59

    Article  PubMed  Google Scholar 

  23. Yndestad A, Holm AM, Müller F, et al. Enhanced expression of inflammatory cytokines and activation markers in T-cells from patients with chronic heart failure. Cardiovasc Res2003;60:141–46

    Article  PubMed  CAS  Google Scholar 

  24. Ueland T, Yndestad A, Øie E, et al. Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation 2005;111:2461–68

    Article  PubMed  CAS  Google Scholar 

  25. Weber C. Platelets and chemokines in atherosclerosis: partners in crime. Circ Res 2005;96:612–16

    Article  PubMed  CAS  Google Scholar 

  26. Tousoulis D, Charakida M, Stefanadis C. Inflammation and endothelial dysfunction as therapeutic targets in patients with heart failure. Int J Cardiol 2005;100:347–53

    Article  PubMed  Google Scholar 

  27. Colombo PC, Banchs JE, Celaj S, et al. Endothelial cell activation in patients with decompensated heart failure. Circulation 2005;111:58–62

    Article  PubMed  CAS  Google Scholar 

  28. Mabuchi N, Tsutamoto T, Wada A, et al. Relationship between interleukin-6 production in the lungs and pulmonary vascular resistance in patients with congestive heart failure. Chest 2002;121:1195–202

    Article  PubMed  CAS  Google Scholar 

  29. TØnnessen T, Florholmen G, Henriksen UL, Christensen G. Cardiopulmonary alterations in mRNA expression for interleukin-1beta, the interleukin-6 superfamily and CXC-chemokines during development of postischaemic heart failure in the rat. Clin Physiol Funct Imaging 2003;23:263–8

    Article  PubMed  Google Scholar 

  30. Gaertner R, Lepailleur-Enouf D, Gonzalez W, et al. Pulmonary endothelium as a site of synthesis and storage of interleukin-6 in experimental congestive heart failure. Eur J Heart Fail 2003;5:435–42

    Article  PubMed  CAS  Google Scholar 

  31. Aker S, Belosjorow S, Konietzka I, et al. Serum but not myocardial TNF-alpha concentration is increased in pacing-induced heart failure in rabbits. Am J Physiol Regul Integr Comp Physiol 2003;285:R463–9

    PubMed  CAS  Google Scholar 

  32. Francis J, Chu Y, Johnson AK, Weiss RM, Felder RB. Acute myocardial infarction induces hypothalamic cytokine synthesis. Am J Physiol Heart Circ Physiol 2004;286:H2264–71

    Article  PubMed  CAS  Google Scholar 

  33. Francis J, Weiss RM, Johnson AK, Felder RB. Central mineralocorticoid receptor blockade decreases plasma TNF-alpha after coronary artery ligation in rats. Am J Physiol Regul Integr Comp Physiol 2003;284:R328–35

    PubMed  CAS  Google Scholar 

  34. Zittermann A, Schleithoff SS, Koerfer R. Markers of bone metabolism in congestive heart failure. Clin Chim Acta 2006;366:27–36

    Article  PubMed  CAS  Google Scholar 

  35. Shioi T, Matsumori A, Kihara Y, et al. Increased expression of interleukin-1 beta and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res 1997;81:664–71

    PubMed  CAS  Google Scholar 

  36. Okada M, Matsumori A, Ono K, et al. Cyclic stretch upregulates production of interleukin-8 and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in human endothelial cells. Arterioscler Thromb Vasc Biol 1998;18:894–901

    PubMed  CAS  Google Scholar 

  37. Singal PK, Khaper N, Palace V, Kumar D. The role of oxidative stress in the genesis of heart disease. Cardiovasc Res 1998;40:426–32

    Article  PubMed  CAS  Google Scholar 

  38. Li N, Karin M. Is NF-KB the sensor of oxidative stress? FASEB J. 1999;13:1137–43

    PubMed  CAS  Google Scholar 

  39. Janabi M, Yamashita S, Hirano K, et al. Oxidized LDL-induced NF-kappa B activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from CD36-deficient patients. Arterioscler Thromb Vasc Biol 2000;20:1953–60

    PubMed  CAS  Google Scholar 

  40. Knuefermann P, Vallejo J, Mann DL. The role of innate immune responses in the heart in health and disease. Trends Cardiovasc Med 2004;14:1–147

    Article  PubMed  Google Scholar 

  41. Satoh M, Shimoda Y, Maesawa C, et al. Activated toll-like receptor 4 in monocytes is associated with heart failure after acute myocardial infarction. Int J Cardiol 2005

  42. Eriksson U, Ricci R, Hunziker L, et al. Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med 2003;9:1484–90

    Article  PubMed  CAS  Google Scholar 

  43. Dunzendorfer S, Lee HK, Soldau K, Tobias PS. Toll-like receptor 4 functions intracellularly in human coronary artery endothelial cells: roles of LBP and sCD14 in mediating LPS responses. Faseb J 2004;18:1117–9

    PubMed  CAS  Google Scholar 

  44. Calabrese F, Thiene G. Myocarditis and inflammatory cardiomyopathy: microbiological and molecular biological aspects. Cardiovasc Res 2003;60:11–25

    Article  PubMed  CAS  Google Scholar 

  45. Becker AE, de Boer OJ, van Der Wal AC. The role of inflammation and infection in coronary artery disease. Annu Rev Med 2001;52:289–97

    Article  PubMed  CAS  Google Scholar 

  46. Penninger JM, Bachmaier K. Review of microbial infections and the immune response to cardiac antigens. J Infect Dis 2000;181 Suppl 3:S498–504

    Article  PubMed  CAS  Google Scholar 

  47. Niebauer J, Volk H-D, Kemp M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 1999;353:1838–42

    Article  PubMed  CAS  Google Scholar 

  48. Conraads VM, Jorens PG, De Clerck LS, et al. Selective intestinal decontamination in advanced chronic heart failure: a pilot trial. Eur J Heart Fail 2004;6:483–91

    Article  PubMed  CAS  Google Scholar 

  49. Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev 2003;16:379–414

    Article  PubMed  CAS  Google Scholar 

  50. Prabhu SD, Chandrasekar B, Murray DR, Freeman GL. Beta-Adrenergic Blockade in Developing Heart Failure: Effects on Myocardial Inflammatory Cytokines, Nitric Oxide, and Remodeling. Circulation 2000;101:2103–1209

    PubMed  CAS  Google Scholar 

  51. Wei GC, Sirois MG, Qu R, Liu P, Rouleau JL. Subacute and chronic effects of quinapril on cardiac cytokine expression, remodeling, and function after myocardial infarction in the rat. J Cardiovasc Pharmacol 2002;39:842–50

    Article  PubMed  CAS  Google Scholar 

  52. Brasier AR, Recinos A, 3rd, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol 2002;22:1257–66

    Article  PubMed  CAS  Google Scholar 

  53. Joffe HV, Adler GK. Effect of aldosterone and mineralocorticoid receptor blockade on vascular inflammation. Heart Fail Rev 2005;10:31–7

    Article  PubMed  CAS  Google Scholar 

  54. Ahokas RA, Sun Y, Bhattacharya SK, Gerling IC, Weber KT. Aldosteronism and a proinflammatory vascular phenotype: role of Mg2+, Ca2+, and H2O2 in peripheral blood mononuclear cells. Circulation 2005;111:51–7

    Article  PubMed  CAS  Google Scholar 

  55. Ahokas RA, Warrington KJ, Gerling IC, et al. Aldosteronism and peripheral blood mononuclear cell activation: a neuroendocrine-immune interface. Circ Res 2003;93:e124–35

    Article  PubMed  CAS  Google Scholar 

  56. Hansen PR, Rieneck K, Bendtzen K. Spironolactone inhibits production of proinflammatory cytokines by human mononuclear cells. Immunol Lett 2004;91:87–91

    Article  PubMed  CAS  Google Scholar 

  57. Sonder SU, Mikkelsen M, Rieneck K, Hedegaard CJ, Bendtzen K. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction. Br J Pharmacol 2006

  58. Werner C, Werdan K, Ponicke K, Brodde OE. Impaired beta-adrenergic control of immune function in patients with chronic heart failure: reversal by beta1-blocker treatment. Basic Res Cardiol 2001;96:290–8

    Article  PubMed  CAS  Google Scholar 

  59. Mann DL. Inflammatory Mediators and the Failing Heart: Past, Present, and the Foreseeable Future. Circ Res 2002;91:988–98

    Article  PubMed  CAS  Google Scholar 

  60. Aukrust P, Gullestad L, Ueland T, Damås JK, Yndestad A. Inflammatory and anti-inflammatory cytokines in chronic heart failure: potential therapeutic implications. Ann Med 2005;37:74–85

    Article  PubMed  CAS  Google Scholar 

  61. Mann DL. Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol 2003;65:81–101

    Article  PubMed  CAS  Google Scholar 

  62. Agnoletti L, Curello S, Bachetti T, et al. Serum from patients with severe heart failure downregulates eNOS and is proapoptotic: role of tumor necrosis factor-alpha. Circulation 1999;100:1983–91

    PubMed  CAS  Google Scholar 

  63. Li JH, Kirkiles-Smith NC, McNiff JM, Pober JS. TRAIL induces apoptosis and inflammatory gene expression in human endothelial cells. J Immunol 2003;171:1526–33

    PubMed  CAS  Google Scholar 

  64. Anker SD, Sharma R. The syndrome of cardiac cachexia. Int J Cardiol 2002;85:51–66

    Article  PubMed  Google Scholar 

  65. Sharma R, Anker SD. Cytokines, apoptosis and cachexia: the potential for TNF antagonism. Int J Cardiol 2002;85:161–71

    Article  PubMed  Google Scholar 

  66. Sarraf P, Frederich RC, Turner EM, et al. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J Exp Med 1997;185:171–5

    Article  PubMed  CAS  Google Scholar 

  67. Okonko DO, Anker SD. Anemia in chronic heart failure: pathogenetic mechanisms. J Card Fail 2004;10:S5–9

    Article  PubMed  CAS  Google Scholar 

  68. Iversen PO, Woldbaek PR, TØnnessen T, Christensen G. Decreased hematopoiesis in bone marrow of mice with congestive heart failure. Am J Physiol Regul Integr Comp Physiol 2002;282:R166–72

    PubMed  CAS  Google Scholar 

  69. Ganz T. Hepcidin in iron metabolism. Curr Opin Hematol 2004;11:251–4

    Article  PubMed  CAS  Google Scholar 

  70. Sano M, Fukuda K, Kodama H, et al. Interleukin-6 family of cytokines mediate angiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes. J Biol Chem 2000;275:29717–23

    Article  PubMed  CAS  Google Scholar 

  71. Gullestad L, Aukrust P, Ueland T, et al. Effect of high- versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. J Am Coll Cardiol 1999;34:2061–7

    Article  PubMed  CAS  Google Scholar 

  72. Ueland T, Jemtland R, Godang K, et al. Prognostic value of osteoprotegerin in heart failure after acute myocardial infarction. J Am Coll Cardiol 2004;44:1970–6

    Article  PubMed  CAS  Google Scholar 

  73. Gerling IC, Sun Y, Ahokas RA, et al. Aldosteronism: an immunostimulatory state precedes proinflammatory/fibrogenic cardiac phenotype. Am J Physiol Heart Circ Physiol 2003;285:H813–21

    PubMed  CAS  Google Scholar 

  74. Sun Y, Zhang J, Lu L, et al. Aldosterone-induced inflammation in the rat heart: role of oxidative stress. Am J Pathol 2002;161:1773–81

    PubMed  CAS  Google Scholar 

  75. Bendtzen K, Hansen PR, Rieneck K. Spironolactone inhibits production of proinflammatory cytokines, including tumour necrosis factor-alpha and interferon-gamma, and has potential in the treatment of arthritis. Clin Exp Immunol 2003;134:151–8

    Article  PubMed  CAS  Google Scholar 

  76. Gullestad L, Ueland T, Brunsvig A, et al. Effect of metoprolol on cytokine levels in chronic heart failure—A substudy in the Metoprolol Controlled-Release Randomised Intervention Trial in Heart Failure (MERIT-HF). Am Heart J 2001;141:418–21

    Article  PubMed  CAS  Google Scholar 

  77. Deswal A, Bozkurt B, Seta Y, et al. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation 1999;99:3224–6

    PubMed  CAS  Google Scholar 

  78. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT. Randomized, Double-Blind, Placebo-Controlled, Pilot Trial of Infliximab, a Chimeric Monoclonal Antibody to Tumor Necrosis Factor-alpha, in Patients With Moderate-to-Severe Heart Failure: Results of the Anti-TNF Therapy Against Congestive Heart failure (ATTACH) Trial. Circulation 2003;107:3133–40

    Article  PubMed  CAS  Google Scholar 

  79. Mann DL, McMurray JJV, Packer M, et al. Targeted Anticytokine Therapy in Patients With Chronic Heart Failure: Results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004;109:1594–602

    Article  PubMed  CAS  Google Scholar 

  80. Cunningham-Rundles S, McNeeley DF, Moon A. Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol 2005;115:1119–28; quiz 29

    Article  PubMed  CAS  Google Scholar 

  81. Gorelik O, Almoznino-Sarafian D, Feder I, et al. Dietary intake of various nutrients in older patients with congestive heart failure. Cardiology 2003;99:177–81

    Article  PubMed  CAS  Google Scholar 

  82. Cailleret M, Amadou A, Andrieu-Abadie N, et al. N-acetylcysteine prevents the deleterious effect of tumor necrosis factor-(alpha) on calcium transients and contraction in adult rat cardiomyocytes. Circulation 2004;109:406–11

    Article  PubMed  CAS  Google Scholar 

  83. Lopez Farre A, Casado S. Heart failure, redox alterations, and endothelial dysfunction. Hypertension 2001;38:1400–5

    PubMed  CAS  Google Scholar 

  84. Aukrust P, Berge RK, Ueland T, et al. Interaction between chemokines and oxidative stress: possible pathogenic role in acute coronary syndromes. J Am Coll Cardiol 2001;37:485–91

    Article  PubMed  CAS  Google Scholar 

  85. Green JM. The B7/CD28/CTLA4 T-Cell Activation Pathway. Implications for Inflammatory Lung Disease. Am. J. Respir. Cell Mol. Biol. 2000;22:261–4

    PubMed  CAS  Google Scholar 

  86. Salomon B, Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 2001;19:225–52

    Article  PubMed  CAS  Google Scholar 

  87. Kremer JM, Westhovens R, Leon M, et al. Treatment of Rheumatoid Arthritis by Selective Inhibition of T-Cell Activation with Fusion Protein CTLA4 Ig. N Engl J Med 2003;349:1907–15

    Article  PubMed  CAS  Google Scholar 

  88. Hayashidani S, Tsutsui H, Shiomi T, et al. Anti-Monocyte Chemoattractant Protein-1 Gene Therapy Attenuates Left Ventricular Remodeling and Failure After Experimental Myocardial Infarction. Circulation 2003;108:2134–40

    Article  PubMed  CAS  Google Scholar 

  89. Nishio R, Matsumori A, Shioi T, Ishida H, Sasayama S. Treatment of experimental viral myocarditis with interleukin-10. Circulation 1999;100:1102–8

    PubMed  CAS  Google Scholar 

  90. Suzuki K, Murtuza B, Smolenski RT, et al. Overexpression of Interleukin-1 Receptor Antagonist Provides Cardioprotection Against Ischemia-Reperfusion Injury Associated With Reduction in Apoptosis. Circulation 2001;104:308I–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pål Aukrust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yndestad, A., Kristian Damås, J., Øie, E. et al. Systemic inflammation in heart failure – The whys and wherefores. Heart Fail Rev 11, 83–92 (2006). https://doi.org/10.1007/s10741-006-9196-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-006-9196-2

Keywords

Navigation