Skip to main content
Log in

Abnormal pulmonary arterial pressure limits exercise capacity in patients with COPD

Erhöhter pulmonalarterieller Druck limitiert Leistungsfähigkeit bei Patienten mit COPD

  • Original Article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

ZIELE: Das Vorliegen einer pulmonalen Hypertension ist häufig bei Patienten mit chronisch obstruktiver Lungenerkrankung (COPD) anzutreffen. Der mittlere pulmonalarterielle Druck (mPAP) ist in Ruhe oft nur gering erhöht, zeigt aber einen pathologischen Anstieg unter Belastung. Das Ziel dieser Studie ist es, die Leistungsfähigkeit und den pulmonalen Gasaustausch bei COPD Patienten mit und ohne pulmonalarterieller Hypertension zu untersuchen. PATIENTEN UND METHODEN: Bei 42 Patienten mit COPD Grad II-IV (28 Männer, 14 Frauen) wurden eine Bodyplethysmographie, eine symptomlimitierte Fahrradergospirometrie sowie eine Rechtsherzkatheteruntersuchung durchgeführt. RESULTATE: 32 von 42 Patienten (76%) zeigten einen erhöhten mPAP in Ruhe (PH mPAP = 26,8 ± 5,9 mmHg), bei 10 Patienten war der mPAP in Ruhe im Normbereich (NPH, mPAP = 16,8 ± 2 mmHg). Es gab keinen signifikanten Unterschied hinsichtlich der lungenfunktionellen Parameter in beiden Gruppen. Die maximale Sauerstoffaufnahme (VO2max) war signifikant niedriger in der PH Gruppe (785 ± 244 ml/min) im Vergleich zur NPH Gruppe (1052 ± 207 ml/min, p = 0,004). Es zeigte sich in der PH Gruppe eine erhöhte Totraumventilation mit signifikant erhöhtem Atemäquivalent für CO2 (VECO2 47,3 ± 10 vs 38,6 ± 3,5, p = 0,025) und signifikant höherem arterio-endtidalen CO2 Partialdruck [p(a-ET)CO2]. Der pulmonalarterielle Widerstand (PVR) in Ruhe zeigte eine negative Korrelation hinsichtlich der VO2max, VE/VCO2 und dem arterio-endtidalen CO2 Partialdruck [p(a-ET)CO2]. ZUSAMMENFASSUNG: Patienten mit COPD und erhöhter pulmonalarterieller Druckwerte in Ruhe zeigen eine Verschlechterung des pulmonalen Gasaustausches unter Belastung, eine Beeinträchtigung der maximalen Sauerstoffaufnahme und somit eine limitierte Leistungsfähigkeit.

Summary

OBJECTIVE: Pulmonary hypertension (PH) is common in patients with chronic obstructive pulmonary disease (COPD). Mean pulmonary artery pressure (mPAP) is often only slightly elevated at rest but is increased by exercise. The purpose of this study was to determine whether abnormal pulmonary artery pressure impairs exercise capacity in patients with COPD. PATIENTS AND METHODS: 42 patients with moderate-to-very-severe COPD (28 men, 14 women) underwent symptom-limited incremental cardiopulmonary exercise testing and also right-heart catheterization at rest. Abnormal pulmonary artery pressure was defined as mPAP > 20 mmHg at rest. RESULTS: Resting mPAP was elevated in 32 patients (PH, mPAP = 26.8 ± 5.9 mmHg) and normal in 10 non-hypertensive (NPH) patients (NPH, mPAP = 16.8 ± 2 mmHg). There were no significant differences in lung function between the PH and NPH groups. Maximum oxygen uptake during exercise (VO2max) was significantly lower in PH (785 ± 244 ml/min) than in NPH (1052 ± 207 ml/min, P = 0.004). Dead-space ventilation (Vd/Vt) was greater in PH (P = 0.05) with higher VE/VCO2 (ratio of minute ventilation to carbon dioxide output = 47.3 ± 10 vs 38.6 ± 3.5, P = 0.025) and significantly higher arterial-end-tidal pCO2 difference [p(a-ET)CO2]. Pulmonary vascular resistance measured at rest correlated significantly with VO2max, VE/VCO2 and p(a-ET)CO2. CONCLUSIONS: In patients with COPD, abnormal pulmonary artery pressure impairs gas exchange, decreases maximum oxygen uptake during exercise and impairs exercise capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Celli BR, MacNee W, Agusti A, Anzueto A, Berg B, Calverley PMA, et al (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23: 932–946

    Article  PubMed  CAS  Google Scholar 

  • Gerardi DA, Lovett L, Benoit-Connors ML, Reardon JZ, ZuWallack RL (1996) Variables related to increased mortality following out-patient pulmonary rehabilitation. Eur Respir J 9: 431–435

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Anto JM (2006) Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease: a population-based cohort study. Thorax 61: 772–778

    Article  PubMed  CAS  Google Scholar 

  • Killian KJ, Leblanc P, Martin DH, Summers E, Jones NL, Campbell EJ (1992) Exercise capacity and ventilatory, circulatory, and symptom limitation in patients with chronic airflow limitation. Am Rev Respir Dis 146: 935–940

    PubMed  CAS  Google Scholar 

  • Grove A, Lipworth BJ, Reid P, Smith RP, Ramage L, Ingram CG, et al (1996) Effects of regular salmeterol on lung function and exercise capacity in patients with chronic obstructive pulmonary disease. Thorax 51: 689–693

    Article  PubMed  CAS  Google Scholar 

  • O'Donnell DE (2006) Hyperinflation, dyspnea, and exercise intolerance in chronic obstructive disease. Proc Am Thorac Soc 3: 180–184

    Article  PubMed  Google Scholar 

  • Gosselink R, Decramer M (1998) Peripheral skeletal muscles and exercise performance in patients with chronic obstructive disease. Monaldi Arch Chest Dis 53: 419–423

    PubMed  CAS  Google Scholar 

  • Serres I, Hayot M, Prefaut C, Mercier J (1998) Skeletal muscle abnormalities in patients with COPD: contribution to exercise intolerance. Med Sci Sports Exerc 30: 1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Schols AM, Wouters EF, Soeters PB, Westerterp KR (1991) Body composition by bioelectrical impedance analysis compared to deuterium dilution and skinfold anthropometry in patients with chronic obstructive pulmonary disease. Am J Clin Nutr 53: 421–424

    PubMed  CAS  Google Scholar 

  • O'Donnell DE (2001) Ventilatory limitations in chronic obstructive pulmonary disease. Med Sci Sports Exerc 33: 647–655

    Article  Google Scholar 

  • Dinh-Xuan AT, Humbert M, Naeije R (2003) Pulmonary hypertension in chronic obstructive disease. Eur Respir J 21: 892–905

    Article  Google Scholar 

  • Oswald-Mammosser M, Weitzenblum E, Quoix E, Moser G, Chaouat A, Charpentier C, et al (1995) Prognostic factors in COPD patients receiving long-term oxygen therapy. Importance of pulmonary artery pressure. Chest 107: 1193–1198

    Article  PubMed  CAS  Google Scholar 

  • Weitzenblum E, Sautegeau A, Ehrhart M, Mammosser M, Hirth C, Roegel E (1984) Long-term course of pulmonary arterial pressure in chronic obstructive pulmonary disease. Am Rev Respir Dis 130: 993–998

    PubMed  CAS  Google Scholar 

  • Scharf SM, Iqbal M, Keller C, Criner G, Lee S, Fessler HE (2002) Hemodynamic characterization of patients with severe emphysema. Am J Respir Crit Care Med 166: 314–322

    Article  PubMed  Google Scholar 

  • Joppa P, Petrasova D, Stancak B, Dorkova Z, Tkacova R (2007) Oxidative stress in patients with COPD and pulmonary hypertension. Wien Klin Wochenschr 119: 428–434

    Article  PubMed  CAS  Google Scholar 

  • Holverda S, Rietema H, Bogaard HJ, Westerhof N, Postmus PE, Boonstra A, et al (2008) Acute effects of sildenafil on exercise pulmonary hemodynamics and capacity in patients with COPD. Pulm Pharmacol Ther 21: 558–564

    Article  PubMed  CAS  Google Scholar 

  • Rietema H, Holverda S, Bogaard HJ, Marcus JT, Smit HJ, Westerhof N, et al (2008) Sildenafil treatment in COPD does not effect stroke volume or exercise capacity. Eur Respir J 31: 759–764

    Article  PubMed  CAS  Google Scholar 

  • Holverda S, Boogard HJ, Groupenhoff H, Postmus PE, Boonstra A, Vonk-Nordegraaf A (2007) Cardiopulmonary exercise test characteristics in patients with chronic obstructive pulmonary disease and associated pulmonary hypertension. Respiration 76 (2): 160–167

    Article  PubMed  Google Scholar 

  • Agusti AG, Rodriguez-Roisin R (1993) Effect of pulmonary hypertension on gas exchange. Eur Respir J 6: 1371–1377

    PubMed  CAS  Google Scholar 

  • Sun XG, Hansen J, Oudiz RJ, Wasserman K (2001) Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation 104: 429–435

    Article  PubMed  CAS  Google Scholar 

  • Ziesche R (2003) Consensus recommendations of the pulmonary arterial hypertension study group of the Austrian Society of lung diseases and tuberculosis. Wien Klin Wochenschr 115: 351–365

    Article  PubMed  Google Scholar 

  • Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J (2007) Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 176: 532–555

    Article  PubMed  Google Scholar 

  • Österreichische Gesellschaft für Lungenerkrankungen und Tuberkulose, Arbeitskreis für klinische Atemphysiologie (1986) Prax Klin Pneumol 40: 356–364

    Google Scholar 

  • Measurement of lung volumes in humans: review and recommendations from an ATS/ERS workshop (1997) Eur Respir J 10: 1415–1427

  • Arstila M, Impivaara O, Maki (1990) New ergometric reference values for clinical exercise tests. Scand J Clin Lab Invest 50: 545–552

    Article  Google Scholar 

  • Ting H, Sun XG, Chuang ML, Lewis DA, Hansen JE, Wasserman K (2001) A noninvasive assessment of pulmonary perfusion abnormality in patients with primary pulmonary hypertension. Chest 119: 824–832

    Article  PubMed  CAS  Google Scholar 

  • Raeside DA, Smith A, Brown A, Patel KR, Madhok R, Cleland J, et al (2000) Pulmonary artery pressure measurement during exercise testing in patients with suspected pulmonary hypertension. Eur Respir J 16: 282–287

    Article  PubMed  CAS  Google Scholar 

  • Fujii T, Kurihara N, Fujimoto S, Hirata K, Yoshikawa J (1996) Role of pulmonary vascular disorder in determining exercise capacity in patients with severe chronic obstructive pulmonary disease. Clinical Physiology 16: 521–533

    Article  PubMed  CAS  Google Scholar 

  • Stenmark K, Durmowicz AG, Dempsey EC (1995) Modulation of vascular wall cell phenotype in pulmonary hypertension. In: Bishop JE, Reeves JT, Laurent GJ (eds) Pulmonary vascular remodeling. Portland Press, London, pp 171–212

    Google Scholar 

  • Barbera JA, Riverola A, Roca J (1994) Pulmonary vascular abnormalities and ventilation-perfusion relationships in mild chronic obstructive pulmonary disease. Am J Respir Crit Care Med 149: 423–429

    PubMed  CAS  Google Scholar 

  • Wright JL, Churg A (1991) Effect of long-term cigarette smoke exposure on pulmonary vascular structure and function in the guinea pig. Exp Lung Res 17: 997–1009

    Article  PubMed  CAS  Google Scholar 

  • Merelez D, Ehlken N, Kreuscher S, Ghofrani S, Hoeper MM, Halank M, et al (2006) Exercise and respiratory training improves exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation 114: 1482–1489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Vonbank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vonbank, K., Funk, G., Marzluf, B. et al. Abnormal pulmonary arterial pressure limits exercise capacity in patients with COPD. Wien Klin Wochenschr 120, 749–755 (2008). https://doi.org/10.1007/s00508-008-1103-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-008-1103-5

Keywords

Navigation