Skip to main content

Advertisement

Log in

Lung surfactant metabolism: early in life, early in disease and target in cell therapy

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Lung surfactant is a complex mixture of lipids and proteins lining the alveolar epithelium. At the air–liquid interface, surfactant lowers surface tension, avoiding alveolar collapse and reducing the work of breathing. The essential role of lung surfactant in breathing and therefore in life, is highlighted by surfactant deficiency in premature neonates, which causes neonatal respiratory distress syndrome and results in early death after birth. In addition, defects in surfactant metabolism alter lung homeostasis and lead to disease. Special attention should be paid to two important key cells responsible for surfactant metabolism: alveolar epithelial type II cells (AE2C) and alveolar macrophages (AM). On the one hand, surfactant deficiency coming from abnormal AE2C function results in high surface tension, promoting alveolar collapse and mechanical stress in the epithelium. This epithelial injury contributes to tissue remodeling and lung fibrosis. On the other hand, impaired surfactant catabolism by AM leads to accumulation of surfactant in air spaces and the associated altered lung function in pulmonary alveolar proteinosis (PAP). We review here two recent cell therapies that aim to recover the activity of AE2C or AM, respectively, therefore targeting the restoring of surfactant metabolism and lung homeostasis. Applied therapies successfully show either transplantation of healthy AE2C in fibrotic lungs, to replace injured AE2C cells and surfactant, or transplantation of bone marrow-derived macrophages to counteract accumulation of surfactant lipid and proteinaceous material in the alveolar spaces leading to PAP. These therapies introduce an alternative treatment with great potential for patients suffering from lung diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe A, Hiraoka M, Wild S, Wilcoxen SE, Paine R, Shayman JA (2004) Lysosomal phospholipase A2 is selectively expressed in alveolar macrophages. J Biol Chem 279:42605–42611

    Article  CAS  PubMed  Google Scholar 

  • Agassandian M, Mallampalli RK (2013) Surfactant phospholipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 1831:612–625

    Article  CAS  Google Scholar 

  • Aono Y, Ledford JG, Mukherjee S, Ogawa H, Nishioka Y, Sone S, Beers MF, Noble PW, Wright JR (2012) Surfactant protein-D regulates effector cell function and fibrotic lung remodeling in response to bleomycin injury. Am J Respir Crit Care Med 185:525–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augusto LA, Synguelakis M, Johansson J, Pedron T, Girard R, Chaby R (2003) Interaction of pulmonary surfactant protein C with CD14 and lipopolysaccharide. Infect Immun 71:61–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker AD, Malur A, Barna BP, Ghosh S, Kavuru MS, Malur AG, Thomassen MJ (2010a) Targeted PPARγ deficiency in alveolar macrophages disrupts surfactant catabolism. J Lipid Res 51:1325–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker AD, Malur A, Barna BP, Kavuru MS, Malur AG, Thomassen MJ (2010b) PPARγ regulates the expression of cholesterol metabolism genes in alveolar macrophages. Biochem Biophys Res Commun 393:682–687

    Article  CAS  PubMed  Google Scholar 

  • Ban N, Matsumura Y, Sakai H, Takanezawa Y, Sasaki M, Arai H, Inagaki N (2007) ABCA3 as a lipid transporter in pulmonary surfactant biogenesis. J Biol Chem 282:9628–34

    Article  CAS  PubMed  Google Scholar 

  • Been JV, Zimmermann LJI (2007) What’s new in surfactant? Eur J Pediatr 166:889–899

    Article  CAS  PubMed  Google Scholar 

  • Bellingan GJ (2002) The pulmonary physician in critical care 6: the pathogenesis of ALI/ARDS. Thorax 57:540–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berclaz P-Y, Shibata Y, Whitsett JA, Trapnell BC (2002a) GM-CSF, via PU.1, regulates alveolar macrophage FcγR-mediated phagocytosis and the IL-18/IFN-γ–mediated molecular connection between innate and adaptive immunity in the lung. Blood 100:4193–4200

    Article  CAS  PubMed  Google Scholar 

  • Berclaz P-Y, Zsengellér Z, Shibata Y, Otake K, Strasbaugh S, Whitsett JA, Trapnell BC (2002b) Endocytic internalization of adenovirus, nonspecific phagocytosis, and cytoskeletal organization are coordinately regulated in alveolar macrophages by GM-CSF and PU.1. J Immunol 169:6332–6342

    Article  CAS  PubMed  Google Scholar 

  • Besnard V, Wert SE, Stahlman MT, Postle AD, Xu Y, Ikegami M, Whitsett JA (2009) Deletion of scap in alveolar type II cells influences lung lipid homeostasis and identifies a compensatory role for pulmonary lipofibroblasts. J Biol Chem 284:4018–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilek AM, Dee KC, Gaver DP (2003) Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J Appl Physiol 94:770–83

    Article  PubMed  Google Scholar 

  • Birkelbach B, Lutz D, Ruppert C, Henneke I, Lopez-Rodriguez E, Günther A, Ochs M, Mahavadi P, Knudsen L (2015) Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model. Am J Physiol Lung Cell Mol Physiol 309(1):L63–L75

    Article  CAS  PubMed  Google Scholar 

  • Bjurulf B, Spetalen S, Erichsen A, Vanier MT, Strøm EH, Strømme P (2008) Niemann-Pick disease type C2 presenting as fatal pulmonary alveolar lipoproteinosis: morphological findings in lung and nervous tissue. Med Sci Monit 14:71–75

    Google Scholar 

  • Blériot C, Dupuis T, Jouvion G, Eberl G, Disson O, Lecuit M (2015) Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42:145–158

    Article  PubMed  CAS  Google Scholar 

  • Borie R, Danel C, Debray M-P, Taille C, Dombret M-C, Aubier M, Epaud R, Crestani B (2011) Pulmonary alveolar proteinosis. Eur Respir Rev 20:98–107

    Article  CAS  PubMed  Google Scholar 

  • Bortnick AE, Favari E, Tao J-Q, Francone OL, Reilly M, Zhang Y, Rothblat GH, Bates SR (2003) Identification and characterization of rodent ABCA1 in isolated type II pneumocytes. Am J Phys Lung Cell Mol Phys 285:L869–L878

    CAS  Google Scholar 

  • Botas C, Poulain F, Akiyama J, Brown C, Allen L, Goerke J, Clements J, Carlson E, Gillespie AM, Epstein C, Hawgood S (1998) Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc Natl Acad Sci U S A 95:11869–11874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brasch F, ten Brinke A, Johnen G, Ochs M, Kapp N, Müller KM, Beers MF, Fehrenbach H, Richter J, Batenburg JJ, Bühling F (2002) Involvement of cathepsin H in the processing of the hydrophobic surfactant-associated protein C in type II pneumocytes. Am J Respir Cell Mol Biol 26:659–670

    Article  CAS  PubMed  Google Scholar 

  • Brasch F, Ochs M, Kähne T, Guttentag S, Schauer-Vukasinovic V, Derrick M, Johnen G, Kapp N, Müller K-M, Richter J, Giller T, Hawgood S, Bühling F (2003) Involvement of napsin A in the C- and N-terminal processing of surfactant protein B in type-II pneumocytes of the human lung. J Biol Chem 278:49006–49014

    Article  CAS  PubMed  Google Scholar 

  • Brasch F, Johnen G, Winn-Brasch A, Guttentag SH, Schmiedl A, Kapp N, Suzuki Y, Müller KM, Richter J, Hawgood S, Ochs M (2004) Surfactant protein B in type II pneumocytes and intra-alveolar surfactant forms of human lungs. Am J Respir Cell Mol Biol 30:449–458

    Article  CAS  PubMed  Google Scholar 

  • Brasch F, Schimanski S, Mühlfeld C, Barlage S, Langmann T, Aslanidis C, Boettcher A, Dada A, Schroten H, Mildenberger E, Prueter E, Ballmann M, Ochs M, Johnen G, Griese M, Schmitz G (2006) Alteration of the pulmonary surfactant system in full-term infants with hereditary ABCA3 deficiency. Am J Respir Crit Care Med 174:571–580

    Article  CAS  PubMed  Google Scholar 

  • Bullard JE, Wert SE, Whitsett JA, Dean M, Nogee LM (2005) ABCA3 mutations associated with pediatric interstitial lung disease. Am J Respir Crit Care Med 172:1026–1031

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabrera-Benítez NE, Parotto M, Post M, Han B, Spieth PM, Cheng W-E, Valladares F, Villar J, Liu M, Sato M, Zhang H, Slutsky AS (2012) Mechanical stress induces lung fibrosis by epithelial–mesenchymal transition. Crit Care Med 40:510–517

    Article  PubMed  PubMed Central  Google Scholar 

  • Campo I, Luisetti M, Griese M, Trapnell BC, Bonella F, Grutters JC, Nakata K, Van Moorsel CHM, Costabel U, Cottin V, Ichiwata T, Inoue Y, Braschi A, Bonizzoni G, Iotti GA, Tinelli C, Rodi G (2016) A global survey on whole lung lavage in pulmonary alveolar proteinosis. Chest 150:251–253

    Article  PubMed  Google Scholar 

  • Canton J, Neculai D, Grinstein S (2013) Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13:621–634

    Article  CAS  PubMed  Google Scholar 

  • Carey B, Trapnell BC (2010) The molecular basis of pulmonary alveolar proteinosis. Clin Immunol 135:223–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chibbar R, Shih F, Baga M, Torlakovic E, Ramlall K, Skomro R, Cockcroft DW, Lemire EG (2004) Nonspecific interstitial pneumonia and usual interstitial pneumonia with mutation in surfactant protein C in familial pulmonary fibrosis. Mod Pathol 17:973–980

    Article  CAS  PubMed  Google Scholar 

  • Chroneos ZC, Abdolrasulnia R, Whitsett JA, Rice WR, Shepherd VL (1996) Purification of a cell-surface receptor for surfactant protein A. J Biol Chem 271:16375–16383

    Article  CAS  PubMed  Google Scholar 

  • Crouch E, Persson A, Chang D, Parghi D (1991a) Surfactant protein D. Increased accumulation in silica-induced pulmonary lipoproteinosis. Am J Pathol 139:765–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crouch E, Rust K, Persson A, Mariencheck W, Moxley M, Longmore W (1991b) Primary translation products of pulmonary surfactant protein D. Am J Physiol 260:L247–53

    CAS  PubMed  Google Scholar 

  • Crouch E, Persson A, Chang D (1993) Accumulation of surfactant protein D in human pulmonary alveolar proteinosis. Am J Pathol 142:241–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crowther JE, Schlesinger LS (2006) Endocytic pathway for surfactant protein A in human macrophages: binding, clathrin-mediated uptake, and trafficking through the endolysosomal pathway. Am J Physiol Lung Cell Mol Physiol 290:L334–42

    Article  CAS  PubMed  Google Scholar 

  • Curstedt T, Halliday HL, Speer CP (2015) A unique story in neonatal research: the development of a porcine surfactant. Neonatology 107:321–329

    Article  PubMed  Google Scholar 

  • Daniels CB, Orgeig S (2003) Pulmonary surfactant: the key to the evolution of air breathing. Physiology 18:151–157

    Article  CAS  Google Scholar 

  • Dargaville PA, South M, McDougall PN (2001) Surfactant and surfactant inhibitors in meconium aspiration syndrome. J Pediatr 138:113–115

    Article  CAS  PubMed  Google Scholar 

  • Doyle IR, Jones ME, Barr HA, Orgeig S, Crockett AJ, McDonald CF, Nicholas TE (1994) Composition of human pulmonary surfactant varies with exercise and level of fitness. Am J Respir Crit Care Med 149:1619–1627

    Article  CAS  PubMed  Google Scholar 

  • Fisher AB, Dodia C (2001) Lysosomal-type PLA2 and turnover of alveolar DPPC. Am J Physiol Lung Cell Mol Physiol 280:L748–54

    CAS  PubMed  Google Scholar 

  • Fisher AB, Dodia C, Chander A (1991) Alveolar uptake of lipid and protein components of surfactant. Am J Physiol 261:L334–40

    CAS  PubMed  Google Scholar 

  • Fisher AB, Dodia C, Ruckert P, Tao J-Q, Bates SR (2010) Pathway to lamellar bodies for surfactant protein A. Am J Physiol Lung Cell Mol Physiol 299:L51–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia CK (2012) Idiopathic pulmonary fibrosis. Proc Am Thorac Soc 8:158–162

    Article  CAS  Google Scholar 

  • Glasser SW, Senft A (2009) Pulmonary surfactant homeostasis and altered macrophage function. In: Hodge S (ed) Lung macrophages in health and disease. Bentham, Ewing., pp 1–13

  • Glasser SW, Burhans MS, Korfhagen TR, Na CL, Sly PD, Ross GF, Ikegami M, Whitsett JA (2001) Altered stability of pulmonary surfactant in SP-C-deficient mice. Proc Natl Acad Sci U S A 98:6366–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glasser SW, Detmer EA, Ikegami M, Na C-L, Stahlman MT, Whitsett JA (2003) Pneumonitis and emphysema in sp-C gene targeted mice. J Biol Chem 278:14291–8

    Article  CAS  PubMed  Google Scholar 

  • Glasser SW, Senft AP, Whitsett JA, Maxfield MD, Ross GF, Richardson TR, Prows DR, Xu Y, Korfhagen TR (2008) Macrophage dysfunction and susceptibility to pulmonary pseudomonas aeruginosa infection in surfactant protein C-deficient mice. J Immunol 181:621–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glasser SW, Witt TL, Senft AP, Baatz JE, Folger D, Maxfield MD, Akinbi HT, Newton DA, Prows DR, Korfhagen TR (2009) Surfactant protein C-deficient mice are susceptible to respiratory syncytial virus infection. Am J Physiol Lung Cell Mol Physiol 297:L64–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald H-R (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551

    Article  PubMed  CAS  Google Scholar 

  • Goss V, Hunt AN, Postle AD (2013a) Regulation of lung surfactant phospholipid synthesis and metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 1831:448–458

    Article  CAS  Google Scholar 

  • Goss V, Hunt AN, Postle AD (2013b) Regulation of lung surfactant phospholipid synthesis and metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 1831:448–458

    Article  CAS  Google Scholar 

  • Griese M, Brasch F, Aldana VR, Cabrera MM, Goelnitz U, Ikonen E, Karam BJ, Liebisch G, Linder MD, Lohse P, Meyer W, Schmitz G, Pamir A, Ripper J, Rolfs A, Schams A, Lezana FJ (2010) Respiratory disease in Niemann-Pick type C2 is caused by pulmonary alveolar proteinosis. Clin Genet 77:119–130

    Article  CAS  PubMed  Google Scholar 

  • Guillamat-Prats R, Gay-Jordi G, Xaubet A, Peinado VI, Serrano-Mollar A (2014) Alveolar type II cell transplantation restores pulmonary surfactant protein levels in lung fibrosis. J Heart Lung Transplant 33:758–765

    Article  PubMed  Google Scholar 

  • Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S, Deswarte K, Malissen B, Hammad H, Lambrecht BN (2013) Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 210:1977–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillot L, Carré A, Szinnai G, Castanet M, Tron E, Jaubert F, Broutin I, Counil F, Feldmann D, Clement A, Polak M, Epaud R (2010) NKX2-1 mutations leading to surfactant protein promoter dysregulation cause interstitial lung disease in ‘Brain-Lung-Thyroid Syndrome’. Hum Mutat 31:E1146–62

    Article  PubMed  Google Scholar 

  • Gunasekara L, Schürch S, Schoel WM, Nag K, Leonenko Z, Haufs M, Amrein M (2005) Pulmonary surfactant function is abolished by an elevated proportion of cholesterol. Biochim Biophys Acta Mol Cell Biol Lipids 1737:27–35

    Article  CAS  Google Scholar 

  • Günther A, Schmidt R, Nix F, Yabut-Perez M, Guth C, Rosseau S, Siebert C, Grimminger F, Morr H, Velcovsky HG, Seeger W (1999) Surfactant abnormalities in idiopathic pulmonary fibrosis, hypersensitivity pneumonitis and sarcoidosis. Eur Respir J 14:565–573

    Article  PubMed  Google Scholar 

  • Günther A, Korfei M, Mahavadi P, von der Beck D, Ruppert C, Markart P (2012) Unravelling the progressive pathophysiology of idiopathic pulmonary fibrosis. Eur Respir Rev 21:152–160

    Article  PubMed  Google Scholar 

  • Guth AM, Janssen WJ, Bosio CM, Crouch EC, Henson PM, Dow SW (2009) Lung environment determines unique phenotype of alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 296:L936–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haller T, Ortmayr J, Friedrich F, Volkl H, Dietl P (1998) Dynamics of surfactant release in alveolar type II cells. Proc Natl Acad Sci U S A 95:1579–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haller T, Dietl P, Pfaller K, Frick M, Mair N, Paulmichl M, Hess MW, Furst J, Maly K (2001) Fusion pore expansion is a slow, discontinuous, and Ca2+-dependent process regulating secretion from alveolar type II cells. J Cell Biol 155:279–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliday HL (2005) History of surfactant from 1980. Neonatology 87:317–322

    Article  CAS  Google Scholar 

  • Hamm H, Kroegel C, Hohlfeld J (1996) Surfactant: a review of its functions and relevance in adult respiratory disorders. Respir Med 90:251–270

    Article  CAS  PubMed  Google Scholar 

  • Hamvas A, Nogee LM, White FV, Schuler P, Hackett BP, Huddleston CB, Mendeloff EN, Hsu F-F, Wert SE, Gonzales LW, Beers MF, Ballard PL (2004) Progressive lung disease and surfactant dysfunction with a deletion in surfactant protein C gene. Am J Respir Cell Mol Biol 30:771–776

    Article  CAS  PubMed  Google Scholar 

  • Hansmann G, de Jesus Perez VA, Alastalo T-P, Alvira CM, Guignabert C, Bekker JM, Schellong S, Urashima T, Wang L, Morrell NW, Rabinovitch M (2008) An antiproliferative BMP-2/PPARgamma/apoE axis in human and murine SMCs and its role in pulmonary hypertension. J Clin Invest 118:1846–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Happle C, Lachmann N, Škuljec J, Wetzke M, Ackermann M, Brennig S, Mucci A, Jirmo AC, Groos S, Mirenska A, Hennig C, Rodt T, Bankstahl JP, Schwerk N, Moritz T, Hansen G (2014) Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis. Sci Transl Med 6:250ra113

    Article  PubMed  CAS  Google Scholar 

  • Harayama T, Shindou H, Shimizu T (2009) Biosynthesis of phosphatidylcholine by human lysophosphatidylcholine acyltransferase 1. J Lipid Res 50:1824–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie WD, Hagood JS, Dave V, Perl A-KT, Whitsett JA, Korfhagen TR, Glasser S (2010) Signaling pathways in the epithelial origins of pulmonary fibrosis. Cell Cycle 9:2769–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, Greter M, Mortha A, Boyer SW, Forsberg EC, Tanaka M, van Rooijen N, García-Sastre A, Stanley ER, Ginhoux F, Frenette PS, Merad M (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804

    Article  CAS  PubMed  Google Scholar 

  • Hawgood S, Poulain FR (2001) The pulmonary collectins and surfactant metabolism. Annu Rev Physiol 63:495–519

    Article  CAS  PubMed  Google Scholar 

  • Herzog EL, Brody AR, Colby TV, Mason R, Williams MC (2008) Knowns and unknowns of the alveolus. Proc Am Thorac Soc 5:778–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt J, Yalcin E, Bresser H-G, Cinel G, Gappa M, Haghighi A, Kiper N, Khalilzadeh S, Reiter K, Sayer J, Schwerk N, Sibbersen A, Van Daele S, Nübling G, Lohse P, Griese M (2014) Characterization of CSF2RA mutation related juvenile pulmonary alveolar proteinosis. Orphanet J Rare Dis 9:1–9

    Article  Google Scholar 

  • Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P, Beaudin AE, Lum J, Low I, Forsberg EC, Poidinger M, Zolezzi F, Larbi A, Ng LG, Chan JKY, Greter M, Becher B, Samokhvalov IM, Merad M, Ginhoux F (2015) C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42:665–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppe PS, Schwarzfischer M, Loeffler D, Kokkaliaris KD, Hilsenbeck O, Moritz N, Endele M, Filipczyk A, Gambardella A, Ahmed N, Etzrodt M, Coutu DL, Rieger MA, Marr C, Strasser MK, Schauberger B, Burtscher I, Ermakova O, Bürger A, Lickert H, Nerlov C, Theis FJ, Schroeder T (2016) Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature 535:299–302

    Article  CAS  PubMed  Google Scholar 

  • Hundertmark S, Ragosch V, Schein B, Bühler H, Lorenz U, Fromm M, Weitzel HK (1994) Gestational age dependence of 11β-hydroxysteroid dehydrogenase and its relationship to the enzymes of phosphatidylcholine synthesis in lung and liver of fetal rat. Biochim Biophys Acta Lipids Lipid Metab 1210:348–354

    Article  CAS  Google Scholar 

  • Ikegami M, Lewis JF, Tabor B, Rider ED, Jobe AH (1992) Surfactant protein A metabolism in preterm ventilated lambs. Am J Physiol 262:L765–72

    CAS  PubMed  Google Scholar 

  • Ikegami M, Ueda T, Purtell J, Woods E, Jobe A (1994) Surfactant protein A labeling kinetics in newborn and adult rabbits. Am J Respir Cell Mol Biol 10:413–418

    Article  CAS  PubMed  Google Scholar 

  • Ikegami M, Korfhagen TR, Bruno MD, Whitsett JA, Jobe AH (1997) Surfactant metabolism in surfactant protein A-deficient mice. Am J Physiol 272:L479–85

    CAS  PubMed  Google Scholar 

  • Ikegami M, Whitsett JA, Jobe A, Ross G, Fisher J, Korfhagen T (2000) Surfactant metabolism in SP-D gene-targeted mice. Am J Physiol Lung Cell Mol Physiol 279:L468–76

    CAS  PubMed  Google Scholar 

  • Jain D, Dodia C, Fisher AB, Bates SR (2005) Pathways for clearance of surfactant protein A from the lung. Am J Physiol Lung Cell Mol Physiol 289:L1011–8

    Article  CAS  PubMed  Google Scholar 

  • Katzenstein AL, Myers JL (1998) Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med 157:1301–15

    Article  CAS  PubMed  Google Scholar 

  • Kennedy MA, Barrera GC, Nakamura K, Baldán Á, Tarr P, Fishbein MC, Frank J, Francone OL, Edwards PA (2005) ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 1:121–131

    Article  CAS  PubMed  Google Scholar 

  • Kent C (1997) CTP:phosphocholine cytidylyltransferase. Biochim Biophys Acta Lipids Lipid Metab 1348:79–90

    Article  CAS  Google Scholar 

  • Kim TH, Lee YH, Kim KH, Lee SH, Cha JY, Shin EK, Jung S, Jang AS, Park SW, Uh ST, Kim YH, Park JS, Sin HG, Youm W, Koh ES, Cho SY, Paik YK, Rhim TY, Park CS (2010) Role of lung apolipoprotein A-I in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 182:633–642

    Article  CAS  PubMed  Google Scholar 

  • Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R, Kamran MF, Bernal AL, Reid KBM, Madan T, Chakraborty T (2006) Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 43:1293–1315

    Article  CAS  PubMed  Google Scholar 

  • Kleff V, Sorg UR, Bury C, Suzuki T, Rattmann I, Jerabek-Willemsen M, Poremba C, Flasshove M, Opalka B, Trapnell B, Dirksen U, Moritz T (2008) Gene therapy of βc-deficient pulmonary alveolar proteinosis (βc-PAP): studies in a murine in vivo model. Mol Ther 16:757–764

    Article  CAS  Google Scholar 

  • Korfei M, Ruppert C, Mahavadi P, Henneke I, Markart P, Koch M, Lang G, Fink L, Bohle R-M, Seeger W, Weaver TE, Guenther A (2008) Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 178:838–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koth LL, Alex B, Hawgood S, Nead MA, Sheppard D, Erle DJ, Morris DG (2007) Integrin β6 mediates phospholipid and collectin homeostasis by activation of latent TGF-β1. Am J Respir Cell Mol Biol 37:651–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroki Y, Mason RJ, Voelker DR (1988) Alveolar type II cells express a high-affinity receptor for pulmonary surfactant protein A. Proc Natl Acad Sci U S A 85:5566–5570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachmann N, Happle C, Ackermann M, Lüttge D, Wetzke M, Merkert S, Hetzel M, Kensah G, Jara-Avaca M, Mucci A, Skuljec J, Dittrich A-M, Pfaff N, Brennig S, Schambach A, Steinemann D, Göhring G, Cantz T, Martin U, Schwerk N, Hansen G, Moritz T (2014) Gene correction of human induced pluripotent stem cells repairs the cellular phenotype in pulmonary alveolar proteinosis. Am J Respir Crit Care Med 189:167–82

    CAS  PubMed  Google Scholar 

  • Lands WEM, Crawford CG (1976) Enzymes of membrane phospholipid metabolism in animals. In: Martonosi A (ed) The enzymes of bioligical membranes: volume 2 biosynthesis of cell components. Springer, Boston, pp 3–85

    Chapter  Google Scholar 

  • Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson WE, Crossno PF, Polosukhin VV, Roldan J, Cheng D-S, Lane KB, Blackwell TR, Xu C, Markin C, Ware LB, Miller GG, Loyd JE, Blackwell TS (2008) Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am J Phys Lung Cell Mol Phys 294:L1119–L1126

    CAS  Google Scholar 

  • Lopez-Rodriguez E, Echaide M, Cruz A, Taeusch HW, Perez-Gil J (2011) Meconium impairs pulmonary surfactant by a combined action of cholesterol and bile acids. Biophys J 100:646–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Rodriguez E, Ospina OL, Echaide M, Taeusch HW, Pérez-Gil J (2012) Exposure to polymers reverses inhibition of pulmonary surfactant by serum, meconium, or cholesterol in the captive bubble surfactometer. Biophys J 103:1451–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Rodriguez E, Boden C, Echaide M, Perez-Gil J, Kolb M, Gauldie J, Maus UA, Ochs M, Knudsen L (2016) Surfactant dysfunction during overexpression of TGF-β1 precedes profibrotic lung remodeling in vivo. Am J Physiol Lung Cell Mol Physiol 310:L1260–71

    Article  PubMed  Google Scholar 

  • Lutz D, Gazdhar A, Lopez-Rodriguez E, Ruppert C, Mahavadi P, Günther A, Klepetko W, Bates JH, Smith B, Geiser T, Ochs M, Knudsen L (2015) Alveolar derecruitment and collapse induration as crucial mechanisms in lung injury and fibrosis. Am J Respir Cell Mol Biol 52:232–243

    Article  PubMed  Google Scholar 

  • Malur A, Baker AD, McCoy AJ, Wells G, Barna BP, Kavuru MS, Malur AG, Thomassen MJ (2011) Restoration of PPARγ reverses lipid accumulation in alveolar macrophages of GM-CSF knockout mice. Am J Physiol Lung Cell Mol Physiol 300:L73–80

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Moczygemba M, Doan ML, Elidemir O, Fan LL, Cheung SW, Lei JT, Moore JP, Tavana G, Lewis LR, Zhu Y, Muzny DM, Gibbs RA, Huston DP (2008) Pulmonary alveolar proteinosis caused by deletion of the GM-CSFRalpha gene in the X chromosome pseudoautosomal region 1. J Exp Med 205:2711–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason RJ, Lewis MC, Edeen KE, McCormick-Shannon K, Nielsen LD, Shannon JM (2002) Maintenance of surfactant protein A and D secretion by rat alveolar type II cells in vitro. Am J Physiol Lung Cell Mol Physiol 282:L249–58

    Article  CAS  PubMed  Google Scholar 

  • Meaney S, Bonfield TL, Hansson M, Babiker A, Kavuru MS, Thomassen MJ (2004) Serum cholestenoic acid as a potential marker of pulmonary cholesterol homeostasis: increased levels in patients with pulmonary alveolar proteinosis. J Lipid Res 45:2354–2360

    Article  CAS  PubMed  Google Scholar 

  • Michaud G, Reddy C, Ernst A (2009) Whole-lung lavage for pulmonary alveolar proteinosis. Chest 136:1678–1681

    Article  PubMed  Google Scholar 

  • Miles PR, Ma JY, Bowman L (1988) Degradation of pulmonary surfactant disaturated phosphatidylcholines by alveolar macrophages. J Appl Physiol 64:2474–2481

    CAS  PubMed  Google Scholar 

  • Milos S, Qua Hiansen J, Banaschewski B, Zuo YY, Yao L-J, McCaig LA, Lewis J, Yamashita CM, Veldhuizen RAW (2016) The effect of diet-induced serum hypercholesterolemia on the surfactant system and the development of lung injury. Biochem Biophys Rep 7:180–187

    Google Scholar 

  • Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, Milstone DS, Mortensen RM, Spiegelman BM, Freeman MW (2001) The role of PPAR-[gamma] in macrophage differentiation and cholesterol uptake. Nat Med 7:41–47

    Article  CAS  PubMed  Google Scholar 

  • Mulugeta S, Beers MF (2006) Surfactant protein C: its unique properties and emerging immunomodulatory role in the lung. Microbes Infect 8:2317–2323

    Article  CAS  PubMed  Google Scholar 

  • Mulugeta S, Maguire JA, Newitt JL, Russo SJ, Kotorashvili A, Beers MF (2007) Misfolded BRICHOS SP-C mutant proteins induce apoptosis via caspase-4- and cytochrome c-related mechanisms. Am J Physiol Lung Cell Mol Physiol 293:L720–9

    Article  CAS  PubMed  Google Scholar 

  • Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet J-F, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D (1999) A mechanism for regulating pulmonary inflammation and fibrosis: the integrin αvβ6 binds and activates latent TGF β1. Cell 96:319–328

    Article  CAS  PubMed  Google Scholar 

  • Nag K, Munro JG, Hearn SA, Rasmusson J, Petersen NO, Possmayer F (1999) Correlated atomic force and transmission electron microscopy of nanotubular structures in pulmonary surfactant. J Struct Biol 126:1–15

    Article  CAS  PubMed  Google Scholar 

  • Nkadi PO, Merritt TA, Pillers D-AM (2009) An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease. Mol Genet Metab 97:95–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogee LM (1998) Genetics of the hydrophobic surfactant proteins. Biochim Biophys Acta Mol Basis Dis 1408:323–333

    Article  CAS  Google Scholar 

  • Nogee LM (2004) Genetic mechanisms of surfactant deficiency. Neonatology 85:314–318

    Article  Google Scholar 

  • Nogee LM, Dunbar AE, Wert SE, Askin F, Hamvas A, Whitsett JA (2001) A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med 344:573–579

    Article  CAS  PubMed  Google Scholar 

  • Obladen M (2005) History of surfactant up to 1980. Neonatology 87:308–316

    Article  CAS  Google Scholar 

  • Orgeig S, Daniels CB (2001) The roles of cholesterol in pulmonary surfactant: insights from comparative and evolutionary studies. Comp Biochem Physiol A 129:75–89

    Article  CAS  Google Scholar 

  • Orgeig S, Barr HA, Nicholas TE (2009) Effect of hyperpnea on the cholesterol to disaturated phospholipid ratio in alveolar surfactant of rats. Exp Lung Res 21:157–174

    Article  Google Scholar 

  • Orgeig S, Morrison JL, Daniels CB (2016) Evolution, development, and function of the pulmonary surfactant system in normal and perturbed environments. Compr Physiol 6:363–422

  • Out R, Hoekstra M, Hildebrand RB, Kruit JK, Meurs I, Li Z, Kuipers F, Van Berkel TJC, Van Eck M (2006) Macrophage ABCG1 deletion disrupts lipid homeostasis in alveolar macrophages and moderately influences atherosclerotic lesion development in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 26:2295–2300

    Article  CAS  PubMed  Google Scholar 

  • Park S-W, Lee EH, Lee E-J, Kim HJ, Bae D-J, Han S, Kim D, Jang AS, Uh S-T, Kim YH, Erle DJ, Park C-S (2013) Apolipoprotein A1 potentiates lipoxin A4 synthesis and recovery of allergen-induced disrupted tight junctions in the airway epithelium. Clin Exp Allergy 43:914–27

    Article  CAS  PubMed  Google Scholar 

  • Patel AS, Reigada D, Mitchell CH, Bates SR, Margulies SS, Koval M (2005) Paracrine stimulation of surfactant secretion by extracellular ATP in response to mechanical deformation. Am J Physiol Lung Cell Mol Physiol 289:L489–96

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Gil J (2008) Structure of pulmonary surfactant membranes and films: the role of proteins and lipid–protein interactions. Biochim Biophys Acta Biomembr 1778:1676–1695

    Article  CAS  Google Scholar 

  • Perez-Gil J, Weaver TE (2010) Pulmonary surfactant pathophysiology: current models and open questions. Physiology 25:132–41

    Article  CAS  PubMed  Google Scholar 

  • Phan SH (2012) Biology of fibroblasts and myofibroblasts. Proc Am Thorac Soc 5:334–337

    Article  Google Scholar 

  • Post M, Batenburg JJ, Schuurmans EAJM, Van Golde LMG (1982) The rate-limiting step in the biosynthesis of phosphatidylcholine by alveolar type ii cells from adult rat lung. Biochim Biophys Acta Lipids Lipid Metab 712:390–394

    Article  CAS  Google Scholar 

  • Pryhuber GS (1998) Regulation and function of pulmonary surfactant protein B. Mol Genet Metab 64:217–228

    Article  CAS  PubMed  Google Scholar 

  • Rader DJ, Puré E (2005) Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell? Cell Metab 1:223–230

    Article  CAS  PubMed  Google Scholar 

  • Ravasio A, Olmeda B, Bertocchi C, Haller T, Pérez-Gil J (2010) Lamellar bodies form solid three-dimensional films at the respiratory air-liquid interface. J Biol Chem 285:28174–28182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebello CM, Jobe AH, Eisele JW, Ikegami M (1996) Alveolar and tissue surfactant pool sizes in humans. Am J Respir Crit Care Med 154:625–628

    Article  CAS  PubMed  Google Scholar 

  • Sakashita N, Miyazaki A, Takeya M, Horiuchi S, Chang CCY, Chang T-Y, Takahashi K (2000) Localization of human acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) in macrophages and in various tissues. Am J Pathol 156:227–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano H, Sohma H, Muta T, Nomura S, Voelker DR, Kuroki Y (1999) Pulmonary surfactant protein A modulates the cellular response to smooth and rough lipopolysaccharides by interaction with CD14. J Immunol 163:387–395

    CAS  PubMed  Google Scholar 

  • Sano H, Chiba H, Iwaki D, Sohma H, Voelker DR, Kuroki Y (2000) Surfactant proteins A and D bind CD14 by different mechanisms. J Biol Chem 275:22442–51

    Article  CAS  PubMed  Google Scholar 

  • Schneider C, Nobs SP, Kurrer M, Rehrauer H, Thiele C, Kopf M (2014) Induction of the nuclear receptor PPAR-[gamma] by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat Immunol 15:1026–1037

    Article  CAS  PubMed  Google Scholar 

  • Schwartz K, Lawn RM, Wade DP (2000) ABC1 gene expression and ApoA-I-mediated cholesterol efflux are regulated by LXR. Biochem Biophys Res Commun 274:794–802

    Article  CAS  PubMed  Google Scholar 

  • Scott EW, Simon MC, Anastasi J, Singh H (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265:1573–1577 (80-)

    Article  CAS  PubMed  Google Scholar 

  • Selman M, Pardo A (2006) Role of epithelial cells in idiopathic pulmonary fibrosis. Proc Am Thorac Soc 3:364–372

    Article  CAS  PubMed  Google Scholar 

  • Selman M, Pardo A (2014) Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model. Am J Respir Crit Care Med 189:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Mollar A, Nacher M, Gay-Jordi G, Closa D, Xaubet A, Bulbena O (2007) Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 176:1261–8

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Mollar A, Gay-Jordi G, Guillamat-Prats R, Closa D, Hernandez-Gonzalez F, Marin P, Burgos F, Martorell J, Sánchez M, Arguis P, Soy D, Bayas JM, Ramirez J, Tetley TD, Molins L, Puig de la Bellacasa J, Rodríguez-Villar C, Rovira I, Fiblà JJ, Xaubet A, Group PS (2016) Safety and tolerability of alveolar type II cell transplantation in idiopathic pulmonary fibrosis. Chest 150:533–543

    Article  PubMed  Google Scholar 

  • Shibata Y, Berclaz P-Y, Chroneos ZC, Yoshida M, Whitsett JA, Trapnell BC (2001) GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through pU.1. Immunity 15:557–567

    Article  CAS  PubMed  Google Scholar 

  • Shulenin S, Nogee LM, Annilo T, Wert SE, Whitsett JA, Dean M (2004) ABCA3 gene mutations in newborns with fatal surfactant deficiency. N Engl J Med 350:1296–1303

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Katyal SL, Bedrossian CWM, Rogers RM (1983) Pulmonary alveolar proteinosis: staining for surfactant apoprotein in alveolar proteinosis and in conditions simulating it. Chest 83:82–86

    Article  CAS  PubMed  Google Scholar 

  • Sisson TH, Mendez M, Choi K, Subbotina N, Courey A, Cunningham A, Dave A, Engelhardt JF, Liu X, White ES, Thannickal VJ, Moore BB, Christensen PJ, Simon RH (2010) Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med 181:254–63

    Article  CAS  PubMed  Google Scholar 

  • Soucie EL, Weng Z, Geirsdóttir L, Molawi K, Maurizio J, Fenouil R, Mossadegh-Keller N, Gimenez G, VanHille L, Beniazza M, Favret J, Berruyer C, Perrin P, Hacohen N, Andrau J-C, Ferrier P, Dubreuil P, Sidow A, Sieweke MH (2016) Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science. doi:10.1126/science.aad5510, 80-

    PubMed  PubMed Central  Google Scholar 

  • Stern N, Riklis S, Kalina M, Tietz A (1986) The catabolism of lung surfactant by alveolar macrophages. Biochim Biophys Acta Lipids Lipid Metab 877:323–333

    Article  CAS  Google Scholar 

  • Suzuki T, Trapnell BC (2016) Pulmonary alveolar proteinosis syndrome. Clin Chest Med. doi:10.1016/j.ccm.2016.04.006

    PubMed  Google Scholar 

  • Suzuki T, Sakagami T, Rubin BK, Nogee LM, Wood RE, Zimmerman SL, Smolarek T, Dishop MK, Wert SE, Whitsett JA, Grabowski G, Carey BC, Stevens C, van der Loo JCM, Trapnell BC (2008) Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA. J Exp Med 205:2703–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Maranda B, Sakagami T, Catellier P, Couture C-Y, Carey BC, Chalk C, Trapnell BC (2010) Hereditary pulmonary alveolar proteinosis caused by recessive CSF2RB mutations. Eur Respir J 37:201–204

    Article  CAS  Google Scholar 

  • Suzuki T, Arumugam P, Sakagami T, Lachmann N, Chalk C, Sallese A, Abe S, Trapnell C, Carey B, Moritz T, Malik P, Lutzko C, Wood RE, Trapnell BC (2014a) Pulmonary macrophage transplantation therapy. Nature 514:450–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Mayhew C, Sallese A, Chalk C, Carey BC, Malik P, Wood RE, Trapnell BC (2014b) Use of induced pluripotent stem cells to recapitulate pulmonary alveolar proteinosis pathogenesis. Am J Respir Crit Care Med 189:183–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taeusch HW, Ballard RA, Gleason CA, Avery ME (2005) Avery’s diseases of the newborn. Elsevier, Philadelphia

  • Takahashi K, Kimura Y, Nagata K, Yamamoto A, Matsuo M, Ueda K (2005) ABC proteins: key molecules for lipid homeostasis. Med Mol Morphol 38:2–12

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Motoi N, Tsuchihashi Y, Tazawa R, Kaneko C, Nei T, Yamamoto T, Hayashi T, Tagawa T, Nagayasu T, Kuribayashi F, Ariyoshi K, Nakata K, Morimoto K (2011) Adult-onset hereditary pulmonary alveolar proteinosis caused by a single-base deletion in CSF2RB. J Med Genet 48:205–209

    Article  PubMed  Google Scholar 

  • Taskar V, John J, Evander E, Robertson B, Jonson B (1997) Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am J Respir Crit Care Med 155:313–320

    Article  CAS  PubMed  Google Scholar 

  • Torday J, Rehan V (2011) Neutral lipid trafficking regulates alveolar type II cell surfactant phospholipid and surfactant protein expression. Exp Lung Res 37:376–86

    Article  CAS  PubMed  Google Scholar 

  • Trapnell BC, Whitsett JA (2002) GM-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu Rev Physiol 64:775–802

    Article  CAS  PubMed  Google Scholar 

  • Trapnell B, Whitsett J, Nakata K (2003) Pulmonary alveolar proteinosis. N Engl J Med 349:2527–2539

    Article  CAS  PubMed  Google Scholar 

  • Veldhuizen R, Possmayer F (2004) Phospholipid metabolism in lung surfactant. In: Quinn PJ (ed) Membrane dynamics and domains: subcellular biochemistry. Springer, Boston, pp 359–388

    Chapter  Google Scholar 

  • Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonoz P (2000) Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRα. Proc Natl Acad Sci U S A 97:12097–12102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voelker DR, Snyder F (1979) Subcellular site and mechanism of synthesis of disaturated phosphatidylcholine in alveolar type II cell adenomas. J Biol Chem 254:8628–8633

    CAS  PubMed  Google Scholar 

  • Voorhout WF, Veenendaal T, Kuroki Y, Ogasawara Y, van Golde LM, Geuze HJ (1992) Immunocytochemical localization of surfactant protein D (SP-D) in type II cells, Clara cells, and alveolar macrophages of rat lung. J Histochem Cytochem 40:1589–1597

    Article  CAS  PubMed  Google Scholar 

  • Vorbroker DK, Profitt SA, Nogee LM, Whitsett JA (1995) Aberrant processing of surfactant protein C in hereditary SP-B deficiency. Am J Physiol 268:L647–56

    CAS  PubMed  Google Scholar 

  • Voyno-Yasenetskaya TA, Dobbs LG, Williams MC (1991) Regulation of ATP-dependent surfactant secretion and activation of second-messenger systems in alveolar type II cells. Am J Phys Lung Cell Mol Phys 261:105–109

    CAS  Google Scholar 

  • Voyno-Yasenetskaya TA, Dobbs LG, Erickson SK, Hamilton RL (1993) Low density lipoprotein- and high density lipoprotein-mediated signal transduction and exocytosis in alveolar type II cells. Proc Natl Acad Sci U S A 90:4256–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Silver DL, Thiele C, Tall AR (2001) ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem 276:23742–23747

    Article  CAS  PubMed  Google Scholar 

  • Wasano K, Hirakawa Y (1994) Lamellar bodies of rat alveolar type 2 cells have late endosomal marker proteins on their limiting membranes. Histochemistry 102:329–335

    Article  CAS  PubMed  Google Scholar 

  • Weaver TE (1998) Synthesis, processing and secretion of surfactant proteins B and C. Biochim Biophys Acta Mol Basis Dis 1408:173–179

    Article  CAS  Google Scholar 

  • Williams G, Christodoulou J, Stack J, Symons P, Wert S, Murrell M, Nogee L (1999) Surfactant protein B deficiency: clinical, histological and molecular evaluation. J Paediatr Child Health 35:214–220

    Article  CAS  PubMed  Google Scholar 

  • Wilson AA, Murphy GJ, Hamakawa H, Kwok LW, Srinivasan S, Hovav A-H, Mulligan RC, Amar S, Suki B, Kotton DN (2010) Amelioration of emphysema in mice through lentiviral transduction of long-lived pulmonary alveolar macrophages. J Clin Invest 120:379–389

    Article  CAS  PubMed  Google Scholar 

  • Wissel H, Lehfeldt A, Klein P, Müller T, Stevens PA (2001) Endocytosed SP-A and surfactant lipids are sorted to different organelles in rat type II pneumocytes. Am J Physiol Lung Cell Mol Physiol 281:L345–60

    CAS  PubMed  Google Scholar 

  • Wiswell TE (2001) Advances in the treatment of the meconium aspiration syndrome. Acta Paediatr 90:28–30

    Article  CAS  Google Scholar 

  • Wright JR, Clements JA (1987) Metabolism and turnover of lung surfactant. Am Rev Respir Dis 136:426–444

    Article  CAS  PubMed  Google Scholar 

  • Wright JR, Dobbs LG (1991) Regulation of pulmonary surfactant secretion and clearance. Annu Rev Physiol 53:395–414

    Article  CAS  PubMed  Google Scholar 

  • Wright JR, Youmans DC (1995) Degradation of surfactant lipids and surfactant protein A by alveolar macrophages in vitro. Am J Physiol 268:L772–80

    CAS  PubMed  Google Scholar 

  • Wright JR, Wager RE, Hawgood S, Dobbs L, Clements JA (1987) Surfactant apoprotein Mr = 26,000–36,000 enhances uptake of liposomes by type II cells. J Biol Chem 262:2888–2894

    CAS  PubMed  Google Scholar 

  • Wynes MW, Edelman BL, Kostyk AG, Edwards MG, Coldren C, Groshong SD, Cosgrove GP, Redente EF, Bamberg A, Brown KK, Reisdorph N, Keith RC, Frankel SK, Riches DWH (2011) Increased cell surface Fas expression is necessary and sufficient to sensitize lung fibroblasts to Fas ligation-induced apoptosis: implications for fibroblast accumulation in idiopathic pulmonary fibrosis. J Immunol 187:527–537

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117:524–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamano G, Funahashi H, Kawanami O, Zhao L-X, Ban N, Uchida Y, Morohoshi T, Ogawa J, Shioda S, Inagaki N (2001) ABCA3 is a lamellar body membrane protein in human lung alveolar type II cells 1. FEBS Lett 508:221–225

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Fredriksson K, Yu Z-X, Xu X, Raghavachari N, Keeran KJ, Zywicke GJ, Kwak M, Amar MJA, Remaley AT, Levine SJ (2010) Apolipoprotein E negatively regulates house dust mite–induced asthma via a low-density lipoprotein receptor–mediated pathway. Am J Respir Crit Care Med 182:1228–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Gordon EM, Figueroa DM, Barochia AV, Levine SJ (2016) The emerging roles of apolipoprotein E and apolipoprotein A-I in the pathogenesis and treatment of lung disease. Am J Respir Cell Mol Biol. doi:10.1165/rcmb.2016-0060TR

    PubMed  Google Scholar 

  • Yayoi Y, Ohsawa Y, Koike M, Zhang G, Kominami E, Uchiyama Y (2001) Specific localization of lysosomal aminopeptidases in type II alveolar epithelial vells of the rat lung. Arch Histol Cytol 64:89–97

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Lim L, Costa RH, Whitsett JA (1996) Thyroid transcription factor-1, hepatocyte nuclear factor-3beta, surfactant protein B, C, and Clara cell secretory protein in developing mouse lung. J Histochem Cytochem 44:1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Zoz DF, Lawson WE, Blackwell TS (2011) Idiopathic pulmonary fibrosis: a disorder of epithelial cell dysfunction. Am J Med Sci 341:435–438

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo YY, Veldhuizen RAW, Neumann AW, Petersen NO, Possmayer F (2008) Current perspectives in pulmonary surfactant—inhibition, enhancement and evaluation. Biochim Biophys Acta Biomembr 1778:1947–1977

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank supporting funding from BREATH (Biomedical Research In Endstage And Obstructive Lung Disease Hannover) DZL (German Centre for Lung Research), REBIRTH Cluster of Excellence and the Alexander von Humboldt Foundation. The authors also thank Ministerio de Economía y Competitividad, Instituto de Salud Carlos III (PI13/00282). “Cofinanciado por el Fondo Europeo de Desarrollo Regional (FEDER). Unión Europea. Una manera de hacer Europa” and by Fundació la Marató de TV3 (MTV3 122410). The authors thank Thomas Moritz (Hannover Medical School) and Takuji Suzuki (Cincinnati Childrens Hospital Medical Center) for scientific comments of part of the review. Part of this work was supported by grants from the Else Kroner-Fresenius-Stiftung, the Deutsche Forschungsgemeinschaft (Cluster of Excellence REBIRTH, Exc62/1, LA 3680/2-1) and Hannover Medical School internal programs (Hochschulinterne Leistungsförderung [HiLF] and Young Academy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Lopez-Rodriguez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Rodriguez, E., Gay-Jordi, G., Mucci, A. et al. Lung surfactant metabolism: early in life, early in disease and target in cell therapy. Cell Tissue Res 367, 721–735 (2017). https://doi.org/10.1007/s00441-016-2520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2520-9

Keywords

Navigation