Skip to main content

Advertisement

Log in

Lymphangioleiomyomatosis: New Treatment Perspectives

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Lymphangioleiomyomatosis (LAM) is a rare multisystem disease, occurs in women, usually premenopausal, caused by the proliferation of neoplastic smooth muscle-derived cells. Mutations in the tuberous sclerosis complex genes, lead to the activation of mammalian target of rapamycin kinase (mTOR), results in proliferation of LAM cells, its increasing motility, and survival. Polycystic lung destruction, extensive involvement of lymphatic channels, chylothorax, chyloperitoneum, and renal angiomyolipomas can develop in LAM patients. The new, promising treatment strategies have been recently introduced due to discovery of the genetic and molecular mechanisms of LAM. Comprehension of the disease pathogenesis has resulted in the implementation of other therapeutic agents such as mTOR inhibitors, VEGF-D inhibitors, statins, interferon, chloroquine analogs, cyclin-dependent kinase inhibitors, matrix metalloproteinase inhibitors, aromatase inhibitors, and their combinations. The mTOR inhibitors appear to be the most important, and the efficacy of sirolimus in LAM treatment has been proved. The article discussed the new control studies with mTOR inhibitors, doxycycline, simvastatin, and combination of them in LAM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ryu JH, Moss J, Beck GJ et al (2006) The NHLBI lymphangioleiomyomatosis registry. Characteristics of 230 patients at enrolment. Am J Respir Crit Care Med 173:105–111. doi:10.1164/rccm.200409-1298OC

    Article  PubMed Central  PubMed  Google Scholar 

  2. Oprescu N, McCormack FX, Byrnes S, Kinder BW (2013) Clinical predictors of mortality and cause of death in lymphangioleiomyomatosis: a population-based registry. Lung 191:35–42. doi:10.1007/s00408-012-9419-3

    Article  CAS  PubMed  Google Scholar 

  3. Jonhson SR, Cordier J-F, Lazor R et al (2010) Review panel of the ERS LAM Task Force. European Respiratory Society guidelines for the diagnosis and management of lymphangioleiomyomatosis. Eur Respir J 35:14–26. doi:10.1183/09031936.00076209

    Article  Google Scholar 

  4. Northrup H, Krueger DA, On behalf of International Tuberous Sclerosis Complex Consensus Group (2013) Tuberous sclerosis complex consensus diagnostic criteria update: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol 49:243–254. doi:10.1016/j.pediatrneurol.2013.08.001

    Article  PubMed Central  PubMed  Google Scholar 

  5. Franz DN, Bissler JJ, McCormack FX (2010) Tuberous sclerosis complex: neurological, renal and pulmonary manifestations. Neuropediatrics 41:199–208. doi:10.1055/s-0030-1269906

    Article  CAS  PubMed  Google Scholar 

  6. Costello LC, Hartman TE, Ryu JH (2000) High frequency of pulmonary lymphangioleiomyomatosis in women with tuberous sclerosis complex. Mayo Clin Proc 75:591–594

    Article  CAS  PubMed  Google Scholar 

  7. Ryu JH, Hartman TE, Torres VE, Decker PA (2012) Frequency of undiagnosed cystic lung disease in patients with sporadic renal angiomyolipomas. Chest 14:163–168. doi:10.1378/chest.11-0669

    Article  Google Scholar 

  8. Cudziło CJ, Szczesniak RD, Brody AS et al (2013) Lymphangioleiomyomatosis screening in women with tuberous sclerosis. Chest 144:578–585. doi:10.1378/chest.12-2813

    Article  PubMed  Google Scholar 

  9. Avila NA, Chen CC, Chu SC et al (2000) Pulmonary lymphangioleiomyomatosis: correlation of ventilation-perfusion scintigraphy, chest radiography, and CT with pulmonary function tests. Radiology 214:441–446

    Article  CAS  PubMed  Google Scholar 

  10. Issaka RB, Oommen S, Gupta SK et al (2009) Vascular endothelial growth factors C and D induce proliferation of lymphangioleiomyomatosis cells through autocrine crosstalk with endothelium. Am J Pathol 175:1410–1420. doi:10.2353/ajpath.2009.080830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Seyama K, Kumasaka T, Souma S et al (2006) Vascular endothelial growth factor-D is increased in serum of patients with lymphangioleiomyomatosis. Lymphat Res Biol 4:143–152. doi:10.1089/lrb.2006.4.143

    Article  CAS  PubMed  Google Scholar 

  12. Young LR, Inoue Y, McCormack FX (2008) Diagnostic potential of serum VEGF-D for lymphangioleiomyomatosis. N Eng J Med 358:199–200. doi:10.1056/NEJMc0707517

    Article  CAS  Google Scholar 

  13. Young LR, VanDyke R, Gulleman PM et al (2010) Serum vascular endothelial growth factor-D prospectively distinguishes lymphangioleiomyomatosis from other diseases. Chest 138:674–681. doi:10.1378/chest.10-0573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Glasgow CG, Avila NA, Lin JP, Stylianou MP, Moss J (2009) Serum vascular endothelial growth factor-D levels in patients with lymphangioleiomyomatosis reflect lymphatic involvement. Chest 135:1293–1300. doi:10.1378/chest.08-1160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chang WYC, Cane JL, Blakey JD, Kumaran M, Pointon KS, Johnson SR (2012) Clinical utility of diagnostic guidelines and putative biomarkers in lymphangioleiomyomatosis. Respir Res 13:34. doi:10.1186/1465-9921-13-34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Radzikowska E, Jaguś P, Skoczylas A et al (2013) Role of serum vascular endothelial growth factor D in discrimination of patients with polycystic lung diseases. Pol Arch Med Wewn 123:533–538

    CAS  PubMed  Google Scholar 

  17. Xu KF, Zhang P, Tian X et al (2013) The role of vascular endothelial growth factor-D in diagnosis of lymphangioleiomyomatosis (LAM). Respir Med 107:263–268. doi:10.1016/j.rmed.2012.10.006

    Article  PubMed  Google Scholar 

  18. Baldi BG, Araujo MS, Freitas CS et al (2014) Evaluation of the extent of pulmonary Cysts and Their association with functional variables and serum markers in lymphangioleiomyomatosis (LAM). Lung 192:967–974. doi:10.1007/s00408-014-9641-2

    Article  PubMed  Google Scholar 

  19. Astrinidis A, Khare L, Carsillo T et al (2000) Mutational analysis of tuberous sclerosis gene TSC2 in patients with pulmonary lymphangioleiomyomatosis. J Med Genet 37:55–57. doi:10.1136/jmg.37.1.55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. van Slegtenhorst M, de Hoogt R, Hermans C et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–808. doi:10.1126/science.277.5327.805

    Article  PubMed  Google Scholar 

  21. European Chromosome 16 Tuberous Sclerosis Consortium (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–1315. doi:10.1016/0092-8674(93)90618-Z

    Article  Google Scholar 

  22. Sancak O, Nellist M, Goedbloed M et al (2005) Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype: phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur J Hum Genet 13:731–741. doi:10.1038/sj.ejhg.5201402

    Article  CAS  PubMed  Google Scholar 

  23. Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412:179–190. doi:10.1042/BJ20080281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Franz DN, Brody A, Meyer C et al (2001) Mutational and radiographic analysis of pulmonary disease consistent with lymphangioleiomyomatosis and micronodular pneumocyte hyperplasia in women with tuberous sclerosis. Am J Respir Crit Care Med 164:661–668. doi:10.1164/ajrccm.164.4.2011025

    Article  CAS  PubMed  Google Scholar 

  25. Qin W, Bajaj V, Malinowska I et al (2011) Angiomyolipoma have common mutations in TSC2 but no other common genetic events. PLoS ONE 6:e24919. doi:10.1371/journal.pone.0024919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Smolarek TA, Wessner LL, McCormack FX, Mylet JC, Menon AG, Henske EP (1998) Evidence that lymphangiomyomatosis is caused by TSC2 mutations: chromosome 16p13 loss of heterozygosity in angiomyolipomas and lymph nodes from women with lymphangiomyomatosis. Am J Hum Genet 62:810–815. doi:10.1086/301804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Carsillo T, Astrinidis A, Henske EP (2000) Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci USA 97:6085–6090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Astrinidis A, Khare L, Carsillo T et al (2014) Mutational analysis of the tuberous sclerosis geneTSC2 in patients with pulmonary lymphangioleiomyomatosis. J Med Genet 37:55–57. doi:10.1136/jmg.37.1.55

    Article  Google Scholar 

  29. Badri KR, Gao L, Hyjek E et al (2013) Exonic mutations of TSC2/TSC1 are common but not seen in all sporadic pulmonary lymphangioleiomyomatosis. Am J Respir Crit Care Med 187:663–665. doi:10.1164/ajrccm.187.6.663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Henske EP, McCormack FX (2012) Lymphangioleiomyomatosis—a wolf in sheep’s clothing. J Clin Invest 122:3807–3816. doi:10.1172/JCI58709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sun Y, Gu X, Zhang E et al (2014) Estradiol promotes pentose phosphate pathway addiction and cell survival via reactivation of Akt in TORC1 hyperactive cells. Cell Death Dis. doi:10.1038/cddis.2014.204

    Google Scholar 

  32. Sun Y, Zhang E, Lao T et al (2014) Progesterone and estradiol synergistically promote the lung metastasis of tuberin-deficient cells in a preclinical model of lymphangioleiomyomatosis. Horm Cancer 5:284–298. doi:10.1007/s12672-014-0192

    Article  CAS  PubMed  Google Scholar 

  33. Li C, Zhou X, Sun Y et al (2013) Faslodex inhibits estradiol-induced extracellular matrix dynamics and lung metastasis in a model of lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 49:135–142. doi:10.1165/rcmb.2012-0476OC

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Johnson S, Tattersfield E (1999) Decline in lung function in lymphangioleiomyomatosis: relation to menopause and progesterone treatment. Am J Respir Crit Care Med 160:628–633. doi:10.1164/ajrccm.160.2.9901027

    Article  CAS  PubMed  Google Scholar 

  35. Taveira-Dasilva AM, Stylianou MP, Hedin CJ et al (2004) Decline in lung function in patients with lymphangioleiomyomatosis treated with or without progesterone. Chest 126:1867–1874. doi:10.1378/chest.126.6.1867

    Article  CAS  PubMed  Google Scholar 

  36. Harari S, Cassandro R, Chiodini I, Taveira-DaSilva AM, Moss J (2008) Effect of a gonadotropin-releasing hormone analogue on lung function in lymphangioleiomyomatosis. Chest 133(2):448–454. Erratum in: Chest. 2009;136:653. doi:10.1378/chest.07-2277

  37. Baldi BG, Medeiros P, Junior Pimenta SP, Lopes RI, Kairalla RA, Carvalho CR (2011) Evolution of pulmonary function after treatment with goserelin in patients with lymphangioleiomyomatosis. J Bras Pneumol 37:375–379. doi:10.1590/S1806-37132011000300015

    Article  PubMed  Google Scholar 

  38. El-Chemaly S, Henske EP (2014) Towards personalised therapy for lymphangioleiomyomatosis: lessons from cancer. Eur J Respir 23:30–35. doi:10.1183/09059180.00008813

    Article  Google Scholar 

  39. Li Ch, Lee PS, Sun Y, Gu X et al (2014) Estradiol and mTORC2 cooperate to enhance prostaglandin biosynthesis and tumorigenesis in TSC2-deficient LAM cells. J Exp Med 211:15–28. doi:10.1084/jem.20131080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. McCormack FX, Inoue Y, Moss J et al (2011) Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 364:1595–1606. doi:10.1056/NEJMoa1100391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Young LR, Lee HS, Inoune Y et al (2013) Serum VEGF-D concentration as a biomarker of lymphangioleiomyomatosis severity and treatment response: a prospective analysis of Multicentre International Lymphangioleiomyomatosis Efficacy of Sirolimus (MILES) trial. Lancet Respir Med 1:445–452. doi:10.1016/S2213-2600(13)70090-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Bissler JJ, McCormack FX, Young LR et al (2008) Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358:140–151. doi:10.1056/NEJMoa063564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Davies DM, de Dries PJ, Johnson SR et al (2011) Sirolimus therapy for angiomyolipoma in tuberous sclerosis and sporadic lymphangioleiomyomatosis: a phase 2 trial. Clin Cancer Res 17:4071–4081

    Article  CAS  PubMed  Google Scholar 

  44. Taveira-DaSilva AM, Hathaway O, Stylianou M, Moss J (2011) Changes in lung function and chylous effusion in patients with lymphangioleiomyomatosis treated with sirolimus. Ann Int Med 154:797–805. doi:10.7326/0003-4819-154-12-201106210-00007

    Article  PubMed Central  PubMed  Google Scholar 

  45. Ando K, Kataoka H, Ueyama M et al (2013) The efficacy and safety of low-dose sirolimus for treatment of lymphangioleiomyomatosis. Respir Inv 51(3):175–183. doi:10.1016/j.resinv.2013.03.002

    Google Scholar 

  46. Neurohr C, Hoffmann AL, Huppmann P et al (2011) Is sirolimus a therapeutic option for patients with progressive pulmonary lymphangioleiomyomatosis. Respir Res 12:66. doi:10.1186/1465-9921-12-66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Yao J, Taveira-DaSilva AM, Jones AM, Julien-Williams P, Stylianou M, Moss J (2014) Sustained effects of sirolimus on lung function and cystic lung lesions in lymphangioleiomyomatosis. Am J Respir Crit Care Med 190(1):1273–1282. doi:10.1164/rccm.201405-0918OC

    Article  CAS  PubMed  Google Scholar 

  48. Franz DN (2011) Everolimus: an mTOR inhibitor for the treatment of tuberous sclerosis. Expert Rev Anticancer Ther 11:1181–1192. doi:10.1586/era.11.93

    Article  CAS  PubMed  Google Scholar 

  49. Franz DN, Belousova E, Sparagana S et al (2013) Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381:125–132. doi:10.1016/S0140-6736(12)61134-9

    Article  CAS  PubMed  Google Scholar 

  50. Bissler JJ, Kingswood JCh, Radzikowska E et al (2013) Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 381:817–824. doi:10.1016/S0140-6736(12)61767-X

    Article  CAS  PubMed  Google Scholar 

  51. Makovski V, Haklai R, Kloog Y (2012) Farnesylrhiosalicylic acid (salirasib) inhibits Rheb inTSC2-null ELT3 cells: a potential treatment for lymphangioleiomyomatosis. Int J Cancer 130:1420–1429. doi:10.1002/ijc.26139

    Article  CAS  PubMed  Google Scholar 

  52. Liang N, Zhang C, Dill P et al (2014) Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med. doi:10.1084/jem.20140341

    Google Scholar 

  53. Atochina-Vasserman EN, Goncharov DA, Volgina AV, Milavec M, James ML, Krymskaya VP (2013) Statins in lymphangioleiomyomatosis. Simvastatin and atorvastatin induce differential effects on tuberous sclerosis complex 2-null cell growth and signaling. Am J Respir Cell Mol Biol 49:704–709. doi:10.1165/rcmb.2013-0203RC

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. El-Chemaly S, Taveira-DaSilva A, Stylianou P, Moss J (2009) Statins in lymphangioleiomyomatosis: a word of caution. Eur Respir J 34:513–514. doi:10.1183/09031936.00012709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Lee N, Woodrum CL, Nobil AM, Raukrys AE, Messina MP, Dabora SL (2009) Rapamycin weekly maintenance dosing and the potential efficacy of combination sorafenib plus rapamycin but not atorvastatin or doxycycline in tuberous sclerosis preclinical models. BMC Pharmacol 9:8. doi:10.1186/1471-2210-9-8

    Article  PubMed Central  PubMed  Google Scholar 

  56. Taveira-DaSilva AM, Hathaway O, Stylianou M, Moss J (2011) Changes in lung function and chylous effusions in patients with lymphangioleiomyomatosis treated with sirolimus. Ann Intern Med 154:797–805. doi:10.7326/0003-4819-154-12-201106210-00007

    Article  PubMed Central  PubMed  Google Scholar 

  57. Taveira-DaSilva AM, Jones AM, Julien-Williams P, Stylianou M, Moss J (2015) Retrospective review of combined sirolimus and simvastatin therapy in lymphangioleiomyomatosis. Chest 147:180–187. doi:10.1378/chest.14-0758

    Article  PubMed  Google Scholar 

  58. Matsui K, Takeda K, Yu ZX, Travis WD, Moss J, Ferrans VJ (2000) Role for activation of matrix metalloproteinases in the pathogenesis of pulmonary lymphangioleiomyomatosis. Arch Pathol Lab Med 124:267–275

    CAS  PubMed  Google Scholar 

  59. Moir LM, Ng HY, Poniris MH et al (2011) Doxycycline inhibits matrix metalloproteinase-2 secretion from TSC2-null mouse embryonic fibroblasts and lymphangioleiomyomatosis cells. Br J Pharmacol 164:83–92. doi:10.1111/j.1476-5381.2011.01344.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Chang WY, Clements D, Johnson SR (2010) Effect of doxycycline on proliferation, MMP production, and adhesion in LAM-related cells. Am J Physiol Lung Cell Mol Physiol 299:393–400. doi:10.1152/ajplung.00437.2009

    Article  Google Scholar 

  61. Moses MA, Harper J, Folkman J (2006) Doxycycline treatment for lymphangioleiomyomatosis with urinary monitoring for MMPs. N Engl J Med 354:2621–2622. doi:10.1056/NEJMc053410

    Article  CAS  PubMed  Google Scholar 

  62. Glassberg MK, Elliot SJ, Fritz J et al (2008) Activation of the estrogen receptor contributes to the progression of pulmonary lymphangioleiomyomatosis via matrix metalloproteinase-induced cell invasiveness. J Clin Endocrinol Metab 93:1625–1633. doi:10.1210/jc.2007-1283

    Article  CAS  PubMed  Google Scholar 

  63. Pimenta SP, Baldi BG, Kairalla RA, Carvalho CRR (2013) Doxycycline use in patients with lymphangioleiomyomatosis: biomarkers and pulmonary response. J Bras Pneumol. 39:5–15

    Article  PubMed Central  PubMed  Google Scholar 

  64. Chang WY, Cane JL, Kumaran M, Lewis S, Tattersfield AE, Johnson SR (2014) A 2-year randomised placebo-controlled trial of doxycycline for lymphangioleiomyomatosis. Eur Respir J 43:1114–1123. doi:10.1183/09031936.00167413

    Article  CAS  PubMed  Google Scholar 

  65. Goncharova EA, Goncharov DA, Chisolm A et al (2008) Interferon beta augments tuberous sclerosis complex-2(TSC-2)dependent inhibition of TSC2-null ELT3 and human lymphangioleiomyomatosis-derived cell proliferation. Mol Pharmacol 73:778–788. doi:10.1124/mol.107.040824

    Article  CAS  PubMed  Google Scholar 

  66. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166. doi:10.1038/nrc2602

    Article  CAS  PubMed  Google Scholar 

  67. Canavese M, Santo L, Raje N (2012) Cyclin dependent kinases in cancer potential for therapeutic intervention. Cancer Biol Ther 13(7):451–457. doi:10.4161/cbt.19589

    Article  CAS  PubMed  Google Scholar 

  68. Yu J, Parkhitko AA, Henske EP (2010) Mammalian target of rapamycin signaling and autophagy: roles in lymphangioleiomyomatosis therapy. Proc Am Thorac Soc 7:48–53. doi:10.1513/pats.200909-104JS

    Article  PubMed Central  PubMed  Google Scholar 

  69. Klarquist J, Barfuss A, Kandala S et al (2009) Melanoma-associated antigen expression in lymphangioleiomyomatosis renders tumor cells susceptible to cytotoxic T cells. Am J Pathol 175:2463–2472. doi:10.2353/ajpath.2009.090525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Sun Y, Gallacchi D, Zhang EY et al (2014) Rapamycin-resistant PARP1 overexpression is a potential therapeutic target in lymphangioleiomyomatosis (LAM). Am J Respir Cell Mol Biol. doi:10.1165/rcmb.2104-0033OC

    Google Scholar 

  71. Banville N, Burgess JK, Jaffar J, Tjin G, Richeldi L, Cerri S, Persiani E, Black JL, Oliver BG (2014) A quantitative proteomic approach to identify significantly altered protein networks in the serum of patients with lymphangioleiomyomatosis (LAM). PLoS ONE 9(8):e105365. doi:10.1371/journal.pone.0105365

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Radzikowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radzikowska, E. Lymphangioleiomyomatosis: New Treatment Perspectives. Lung 193, 467–475 (2015). https://doi.org/10.1007/s00408-015-9742-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-015-9742-6

Keywords

Navigation