Skip to main content
Log in

The role of mitochondria in pulmonary vascular remodeling

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Pulmonary arterial hypertension (PAH) is characterized by a hyperproliferative and anti-apoptotic diathesis within the vascular wall of the resistance pulmonary arteries, leading to vascular lumen occlusion, right ventricular failure, and death. Most current therapies show poor efficacy due to emphasis on vasodilation (rather than proliferation/apoptosis) and a lack of specificity to the pulmonary circulation. The multiple molecular abnormalities described in PAH are diverse and seemingly unrelated, calling for therapies that attack comprehensive, integrative mechanisms. Similar abnormalities also occur in cancer where a cancer-specific metabolic switch toward a non-hypoxic glycolytic phenotype is thought to be not only a result of several primary molecular or genetic abnormalities but also underlie many aspects of its resistance to apoptosis. In this paper, we review the evidence and propose that a metabolic, mitochondria-based theory can be applied in PAH. A pulmonary artery smooth muscle cell mitochondrial remodeling could integrate a number of diverse molecular abnormalities described in PAH and respond by orchestrating a switch toward a cancer-like glycolytic phenotype that drives resistance to apoptosis; via redox and calcium signals, this mitochondrial remodeling may also regulate critical transcription factors like HIF-1 and nuclear factor of activated T cells that have been described to play an important role in PAH. Because mitochondria in pulmonary arteries are quite different from mitochondria in systemic arteries, they could form the basis of relatively selective PAH therapies. This metabolic theory of PAH could facilitate the development of novel diagnostic and selective therapeutic approaches in this disease that remains deadly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353:2042–2055

    Article  CAS  PubMed  Google Scholar 

  2. Pan JG, Mak TW (2007) Metabolic targeting as an anticancer strategy: dawn of a new era? Sci STKE 2007:pe14

    PubMed  Google Scholar 

  3. Michelakis ED, Webster L, Mackey JR (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99:989–994

    Article  CAS  PubMed  Google Scholar 

  4. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713

    Article  CAS  PubMed  Google Scholar 

  5. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  Google Scholar 

  6. Michelakis ED (2006) Spatio-temporal diversity of apoptosis within the vascular wall in pulmonary arterial hypertension: heterogeneous BMP signaling may have therapeutic implications. Circ Res 98:172–175

    Article  CAS  PubMed  Google Scholar 

  7. Jurasz P, Courtman D, Babaie S, Stewart DJ (2010) Role of apoptosis in pulmonary hypertension: from experimental models to clinical trials. Pharmacol Ther 126:1–8

    Article  CAS  PubMed  Google Scholar 

  8. Tuder RM, Cool CD, Yeager M, Taraseviciene-Stewart L, Bull TM, Voelkel NF (2001) The pathobiology of pulmonary hypertension. Endothelium. Clin Chest Med 22:405–418

    Article  CAS  PubMed  Google Scholar 

  9. Archer SL, Michelakis ED (2006) An evidence-based approach to the management of pulmonary arterial hypertension. Curr Opin Cardiol 21:385–392

    Article  PubMed  Google Scholar 

  10. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF et al (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:13S–24S

    Article  CAS  PubMed  Google Scholar 

  11. Michelakis ED, Wilkins MR, Rabinovitch M (2008) Emerging concepts and translational priorities in pulmonary arterial hypertension. Circulation 118:1486–1495

    Article  PubMed  Google Scholar 

  12. Archer SL, Weir EK, Wilkins MR (2010) Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 121:2045–2066

    Article  PubMed  Google Scholar 

  13. Newman JH, Wheeler L, Lane KB, Loyd E, Gaddipati R, Phillips JA 3rd, Loyd JE (2001) Mutation in the gene for bone morphogenetic protein receptor II as a cause of primary pulmonary hypertension in a large kindred. N Engl J Med 345:319–324

    Article  CAS  PubMed  Google Scholar 

  14. Remillard CV, Tigno DD, Platoshyn O, Burg ED, Brevnova EE, Conger D, Nicholson A, Rana BK, Channick RN, Rubin LJ et al (2007) Function of Kv1.5 channels and genetic variations of KCNA5 in patients with idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol 292:C1837–C1853

    Article  CAS  PubMed  Google Scholar 

  15. Michelakis ED, Hampl V, Nsair A, Wu X, Harry G, Haromy A, Gurtu R, Archer SL (2002) Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res 90:1307–1315

    Article  CAS  PubMed  Google Scholar 

  16. Kim JW, Dang CV (2005) Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30:142–150

    Article  CAS  PubMed  Google Scholar 

  17. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  CAS  PubMed  Google Scholar 

  18. Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2:67–71

    Article  CAS  PubMed  Google Scholar 

  19. Halestrap A (2005) Biochemistry: a pore way to die. Nature 434:578–579

    Article  CAS  PubMed  Google Scholar 

  20. Archer SL, Michelakis ED, Thebaud B, Bonnet S, Moudgil R, Wu XC, Weir EK (2006) A central role for oxygen-sensitive K+ channels and mitochondria in the specialized oxygen-sensing system. Novartis Found Symp 272:157–171, discussion 171–155, 214–157

    Article  CAS  PubMed  Google Scholar 

  21. Remillard CV, Yuan JX (2004) Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 286:L49–L67

    Article  CAS  PubMed  Google Scholar 

  22. Platoshyn O, Golovina VA, Bailey CL, Limsuwan A, Krick S, Juhaszova M, Seiden JE, Rubin LJ, Yuan JX (2000) Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation. Am J Physiol Cell Physiol 279:C1540–C1549

    CAS  PubMed  Google Scholar 

  23. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R et al (2009) Ca(2+) transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787:1342–1351

    Article  CAS  PubMed  Google Scholar 

  24. Huang LE, Arany Z, Livingston DM, Bunn HF (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271:32253–32259

    Article  CAS  PubMed  Google Scholar 

  25. MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S, Frederiksen CM, Watson DG, Gottlieb E (2007) Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol 27:3282–3289

    Article  CAS  PubMed  Google Scholar 

  26. Thompson CB (2009) Metabolic enzymes as oncogenes or tumor suppressors. N Engl J Med 360:813–815

    Article  CAS  PubMed  Google Scholar 

  27. Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109(Suppl):S67–S79

    Article  CAS  PubMed  Google Scholar 

  28. Bushdid PB, Osinska H, Waclaw RR, Molkentin JD, Yutzey KE (2003) NFATc3 and NFATc4 are required for cardiac development and mitochondrial function. Circ Res 92:1305–1313

    Article  CAS  PubMed  Google Scholar 

  29. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  PubMed  Google Scholar 

  30. Pastorino JG, Hoek JB, Shulga N (2005) Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 65:10545–10554

    Article  CAS  PubMed  Google Scholar 

  31. Pastorino JG, Hoek JB (2008) Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr 40:171–182

    Article  CAS  PubMed  Google Scholar 

  32. McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95:830–840

    Article  CAS  PubMed  Google Scholar 

  33. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK et al (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–2641

    Article  CAS  PubMed  Google Scholar 

  34. Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED (2007) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA 104:11418–11423

    Article  CAS  PubMed  Google Scholar 

  35. Dohi T, Beltrami E, Wall NR, Plescia J, Altieri DC (2004) Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J Clin Invest 114:1117–1127

    CAS  PubMed  Google Scholar 

  36. McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A, Harry G, Puttagunta L, Michelakis ED (2005) Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest 115:1479–1491

    Article  CAS  PubMed  Google Scholar 

  37. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, Maguire C, Gammer TL, Mackey JR, Fulton D et al (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31ra34

    CAS  PubMed  Google Scholar 

  38. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Harry G et al (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    Article  CAS  PubMed  Google Scholar 

  39. Quash G, Fournet G, Reichert U (2003) Anaplerotic reactions in tumour proliferation and apoptosis. Biochem Pharmacol 66:365–370

    Article  CAS  PubMed  Google Scholar 

  40. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744

    Article  CAS  PubMed  Google Scholar 

  41. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  CAS  PubMed  Google Scholar 

  42. Kim JW, Dang CV (2006) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930

    Article  CAS  PubMed  Google Scholar 

  43. Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9:691–700

    Article  CAS  PubMed  Google Scholar 

  44. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653

    Article  CAS  PubMed  Google Scholar 

  45. Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, Leigh I, Gorman P, Lamlum H, Rahman S et al (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410

    Article  CAS  PubMed  Google Scholar 

  46. Douwes Dekker PB, Hogendoorn PC, Kuipers-Dijkshoorn N, Prins FA, van Duinen SG, Taschner PE, van der Mey AG, Cornelisse CJ (2003) SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. J Pathol 201:480–486

    Article  CAS  PubMed  Google Scholar 

  47. Lodish MB, Adams KT, Huynh TT, Prodanov T, Ling A, Chen C, Shusterman S, Jimenez C, Merino M, Hughes M et al (2009) Succinate dehydrogenase gene mutations are strongly associated with paraganglioma of the organ of Zuckerkandl. Endocr Relat Cancer 17:581–588

    Article  Google Scholar 

  48. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  CAS  PubMed  Google Scholar 

  49. Michelakis ED, McMurtry MS, Wu XC, Dyck JR, Moudgil R, Hopkins TA, Lopaschuk GD, Puttagunta L, Waite R, Archer SL (2002) Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 105:244–250

    Article  CAS  PubMed  Google Scholar 

  50. Guignabert C, Tu L, Izikki M, Dewachter L, Zadigue P, Humbert M, Adnot S, Fadel E, Eddahibi S (2009) Dichloroacetate treatment partially regresses established pulmonary hypertension in mice with SM22alpha-targeted overexpression of the serotonin transporter. FASEB J 23:4135–4147

    Article  CAS  PubMed  Google Scholar 

  51. Nemenoff RA, Simpson PA, Furgeson SB, Kaplan-Albuquerque N, Crossno J, Garl PJ, Cooper J, Weiser-Evans MC (2008) Targeted deletion of PTEN in smooth muscle cells results in vascular remodeling and recruitment of progenitor cells through induction of stromal cell-derived factor-1alpha. Circ Res 102:1036–1045

    Article  CAS  PubMed  Google Scholar 

  52. Sutendra G, Bonnet S, Rochefort G, Haromy A, Folmes KD, Lopaschuck GD, Dyck JRB, Michelakis ED (2010) Fatty acid oxidation and malonyl-CoA decarboxylase in vascular remodeling of pulmonary hypertension. Sci Transl Med 2:44ra58

    PubMed  Google Scholar 

  53. Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT, Svensson EC, Dyck JR, Gomberg-Maitland M, Thebaud B, Husain AN et al (2010) Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension. A basis for excessive cell proliferation and a new therapeutic target. Circulation 121:2661–2671

    Article  CAS  PubMed  Google Scholar 

  54. Zamanian RT, Hansmann G, Snook S, Lilienfeld D, Rappaport KM, Reaven GM, Rabinovitch M, Doyle RL (2009) Insulin resistance in pulmonary arterial hypertension. Eur Respir J 33:318–324

    Article  CAS  PubMed  Google Scholar 

  55. Rabinovitch M (2010) PPARgamma and the pathobiology of pulmonary arterial hypertension. Adv Exp Med Biol 661:447–458

    Article  PubMed  Google Scholar 

  56. Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, Janocha AJ, Masri FA, Arroliga AC, Jennings C et al (2007) Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci USA 104:1342–1347

    Article  CAS  PubMed  Google Scholar 

  57. Fijalkowska I, Xu W, Comhair SA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, Erzurum SC et al (2010) Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 176:1130–1138

    Article  CAS  PubMed  Google Scholar 

  58. Sehgal PB, Mukhopadhyay S (2007) Pulmonary arterial hypertension: a disease of tethers, SNAREs and SNAPs? Am J Physiol Heart Circ Physiol 293:H77–H85

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos D. Michelakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dromparis, P., Sutendra, G. & Michelakis, E.D. The role of mitochondria in pulmonary vascular remodeling. J Mol Med 88, 1003–1010 (2010). https://doi.org/10.1007/s00109-010-0670-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0670-x

Keywords

Navigation