Skip to main content
Log in

The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Right ventricular hypertrophy (RVH) and RV failure contribute to morbidity and mortality in pulmonary arterial hypertension (PAH). The cause of RV dysfunction and the feasibility of therapeutically targeting the RV are uncertain. We hypothesized that RV dysfunction and electrical remodeling in RVH result, in part, from a glycolytic shift in the myocyte, caused by activation of pyruvate dehydrogenase kinase (PDK). We studied two complementary rat models: RVH + PAH (induced by monocrotaline) and RVH + without PAH (induced by pulmonary artery banding (PAB)). Monocrotaline RVH reduced RV O2-consumption and enhanced glycolysis. RV 2-fluoro-2-deoxy-glucose uptake, Glut-1 expression, and pyruvate dehydrogenase phosphorylation increased in monocrotaline RVH. The RV monophasic action potential duration and QTc interval were prolonged due to decreased expression of repolarizing voltage-gated K+ channels (Kv1.5, Kv4.2). In the RV working heart model, the PDK inhibitor, dichloroacetate, acutely increased glucose oxidation and cardiac work in monocrotaline RVH. Chronic dichloroacetate therapy improved RV repolarization and RV function in vivo and in the RV Langendorff model. In PAB-induced RVH, a similar reduction in cardiac output and glycolytic shift occurred and it too improved with dichloroacetate. In PAB-RVH, the benefit of dichloroacetate on cardiac output was approximately 1/3 that in monocrotaline RVH. The larger effects in monocrotaline RVH likely reflect dichloroacetate’s dual metabolic benefits in that model: regression of vascular disease and direct effects on the RV. Reduction in RV function and electrical remodeling in two models of RVH relevant to human disease (PAH and pulmonic stenosis) result, in part, from a PDK-mediated glycolytic shift in the RV. PDK inhibition partially restores RV function and regresses RVH by restoring RV repolarization and enhancing glucose oxidation. Recognition that a PDK-mediated metabolic shift contributes to contractile and ionic dysfunction in RVH offers insight into the pathophysiology and treatment of RVH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–2641

    Article  CAS  PubMed  Google Scholar 

  2. van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, Postmus PE, Vonk-Noordegraaf A (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28:1250–1257

    Article  PubMed  Google Scholar 

  3. Hessel MH, Steendijk P, den Adel B, Schutte CI, van der Laarse A (2006) Characterization of right ventricular function after monocrotaline-induced pulmonary hypertension in the intact rat. Am J Physiol Heart Circ Physiol 291:H2424–H2430

    Article  CAS  PubMed  Google Scholar 

  4. Lamberts RR, Caldenhoven E, Lansink M, Witte G, Vaessen RJ, St Cyr JA, Stienen GJ (2007) Preservation of diastolic function in monocrotaline-induced right ventricular hypertrophy in rats. Am J Physiol Heart Circ Physiol 293:H1869–H1876

    Article  CAS  PubMed  Google Scholar 

  5. Lee JK, Kodama I, Honjo H, Anno T, Kamiya K, Toyama J (1997) Stage-dependent changes in membrane currents in rats with monocrotaline-induced right ventricular hypertrophy. Am J Physiol 272:H2833–H2842

    CAS  PubMed  Google Scholar 

  6. Lee JK, Nishiyama A, Kambe F, Seo H, Takeuchi S, Kamiya K, Kodama I, Toyama J (1999) Downregulation of voltage-gated K(+) channels in rat heart with right ventricular hypertrophy. Am J Physiol 277:H1725–H1731

    CAS  PubMed  Google Scholar 

  7. Zhang TT, Cui B, Dai DZ (2004) Downregulation of Kv4.2 and Kv4.3 channel gene expression in right ventricular hypertrophy induced by monocrotaline in rat. Acta Pharmacol Sin 25:226–230

    CAS  PubMed  Google Scholar 

  8. Hlaing T, Guo D, Zhao X, DiMino T, Greenspon L, Kowey PR, Yan GX (2005) The QT and Tp-e intervals in left and right chest leads: comparison between patients with systemic and pulmonary hypertension. J Electrocardiol 38:154–158

    Article  PubMed  Google Scholar 

  9. De Ambroggi L, Francia P, De Ambroggi G (2007) Repolarization abnormalities and arrhythmogenesis in hypertrophic myocardium. Anadolu Kardiyol Derg 7(Suppl 1):71–72

    PubMed  Google Scholar 

  10. Kaprielian R, Wickenden AD, Kassiri Z, Parker TG, Liu PP, Backx PH (1999) Relationship between K + channel down-regulation and [Ca2+]i in rat ventricular myocytes following myocardial infarction. J Physiol 517(Pt 1):229–245

    Article  CAS  PubMed  Google Scholar 

  11. Wood EH (2000) Action potential control of cardiac contractility. Ann Biomed Eng 28:860–870

    Article  CAS  PubMed  Google Scholar 

  12. Harris DM, Mills GD, Chen X, Kubo H, Berretta RM, Votaw VS, Santana LF, Houser SR (2005) Alterations in early action potential repolarization causes localized failure of sarcoplasmic reticulum Ca2+ release. Circ Res 96:543–550

    Article  CAS  PubMed  Google Scholar 

  13. Oikawa M, Kagaya Y, Otani H, Sakuma M, Demachi J, Suzuki J, Takahashi T, Nawata J, Ido T, Watanabe J, Shirato K (2005) Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol 45:1849–1855

    Article  CAS  PubMed  Google Scholar 

  14. Basu S, Alzeair S, Li G, Dadparvar S, Alavi A (2007) Etiopathologies associated with intercostal muscle hypermetabolism and prominent right ventricle visualization on 2-deoxy-2[F-18]fluoro-D-glucose-positron emission tomography: significance of an incidental finding and in the setting of a known pulmonary disease. Mol Imaging Biol 9:333–339

    Article  PubMed  Google Scholar 

  15. Hill NS, Jederlinic P, Gagnon J (1989) Supplemental oxygen reduces right ventricular hypertrophy in monocrotaline-injected rats. J Appl Physiol 66:1642–1648

    CAS  PubMed  Google Scholar 

  16. Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, Janocha AJ, Masri FA, Arroliga AC, Jennings C, Dweik RA, Tuder RM, Stuehr DJ, Erzurum SC (2007) Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci U S A 104:1342–1347

    Article  CAS  PubMed  Google Scholar 

  17. Knoechel TR, Tucker AD, Robinson CM, Phillips C, Taylor W, Bungay PJ, Kasten SA, Roche TE, Brown DG (2006) Regulatory roles of the N-terminal domain based on crystal structures of human pyruvate dehydrogenase kinase 2 containing physiological and synthetic ligands. Biochemistry 45:402–415

    Article  CAS  PubMed  Google Scholar 

  18. Michelakis ED, McMurtry MS, Wu XC, Dyck JR, Moudgil R, Hopkins TA, Lopaschuk GD, Puttagunta L, Waite R, Archer SL (2002) Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 105:244–250

    Article  CAS  PubMed  Google Scholar 

  19. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    Article  CAS  PubMed  Google Scholar 

  20. Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267:H742–H750

    CAS  PubMed  Google Scholar 

  21. Wambolt RB, Lopaschuk GD, Brownsey RW, Allard MF (2000) Dichloroacetate improves postischemic function of hypertrophied rat hearts. J Am Coll Cardiol 36:1378–1385

    Article  CAS  PubMed  Google Scholar 

  22. Rozanski GJ, Xu Z, Zhang K, Patel KP (1998) Altered K + current of ventricular myocytes in rats with chronic myocardial infarction. Am J Physiol 274:H259–H265

    CAS  PubMed  Google Scholar 

  23. Knollmann BC, Katchman AN, Franz MR (2001) Monophasic action potential recordings from intact mouse heart: validation, regional heterogeneity, and relation to refractoriness. J Cardiovasc Electrophysiol 12:1286–1294

    Article  CAS  PubMed  Google Scholar 

  24. Liu B, Clanachan AS, Schulz R, Lopaschuk GD (1996) Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res 79:940–948

    CAS  PubMed  Google Scholar 

  25. Barr RL, Lopaschuk GD (2000) Methodology for measuring in vitro/ex vivo cardiac energy metabolism. J Pharmacol Toxicol Methods 43:141–152

    Article  CAS  PubMed  Google Scholar 

  26. Abel ED (2004) Glucose transport in the heart. Front Biosci 9:201–215

    Article  CAS  PubMed  Google Scholar 

  27. Sharma S, Taegtmeyer H, Adrogue J, Razeghi P, Sen S, Ngumbela K, Essop MF (2004) Dynamic changes of gene expression in hypoxia-induced right ventricular hypertrophy. Am J Physiol Heart Circ Physiol 286:H1185–H1192

    Article  CAS  PubMed  Google Scholar 

  28. Kleiman RB, Houser SR (1989) Outward currents in normal and hypertrophied feline ventricular myocytes. Am J Physiol 256:H1450–H1461

    CAS  PubMed  Google Scholar 

  29. Nagendran J, Gurtu V, Fu DZ, Dyck JR, Haromy A, Ross DB, Rebeyka IM, Michelakis ED (2008) A dynamic and chamber-specific mitochondrial remodeling in right ventricular hypertrophy can be therapeutically targeted. J Thorac Cardiovasc Surg 136:168–178 178 e161-163

    Article  PubMed  Google Scholar 

  30. Sugden MC, Langdown ML, Harris RA, Holness MJ (2000) Expression and regulation of pyruvate dehydrogenase kinase isoforms in the developing rat heart and in adulthood: role of thyroid hormone status and lipid supply. Biochem J 352(Pt 3):731–738

    Article  CAS  PubMed  Google Scholar 

  31. Clarke B, Wyatt KM, McCormack JG (1996) Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism. J Mol Cell Cardiol 28:341–350

    Article  CAS  PubMed  Google Scholar 

  32. Schott P, Singer SS, Kogler H, Neddermeier D, Leineweber K, Brodde OE, Regitz-Zagrosek V, Schmidt B, Dihazi H, Hasenfuss G (2005) Pressure overload and neurohumoral activation differentially affect the myocardial proteome. Proteomics 5:1372–1381

    Article  CAS  PubMed  Google Scholar 

  33. Lydell CP, Chan A, Wambolt RB, Sambandam N, Parsons H, Bondy GP, Rodrigues B, Popov KM, Harris RA, Brownsey RW, Allard MF (2002) Pyruvate dehydrogenase and the regulation of glucose oxidation in hypertrophied rat hearts. Cardiovasc Res 53:841–851

    Article  CAS  PubMed  Google Scholar 

  34. Swynghedauw B, Baillard C, Milliez P (2003) The long QT interval is not only inherited but is also linked to cardiac hypertrophy. J Mol Med 81:336–345

    PubMed  Google Scholar 

  35. Saito D, Shiraki T, Inoue K, Kajiyama A, Takemoto S, Hori S, Takamura T, Kono H (1996) Reduced vasodilator response of the right coronary artery to myocardial ischemia in the hypertrophied right ventricle. Jpn Circ J 60:247–253

    Article  CAS  PubMed  Google Scholar 

  36. Stacpoole PW, Kerr DS, Barnes C, Bunch ST, Carney PR, Fennell EM, Felitsyn NM, Gilmore RL, Greer M, Henderson GN, Hutson AD, Neiberger RE, O’Brien RG, Perkins LA, Quisling RG, Shroads AL, Shuster JJ, Silverstein JH, Theriaque DW, Valenstein E (2006) Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics 117:1519–1531

    Article  PubMed  Google Scholar 

  37. Bakerman PR, Stenmark KR, Fisher JH (1990) Alpha-skeletal actin messenger RNA increases in acute right ventricular hypertrophy. Am J Physiol 258:L173–L178

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Dr. Archer is supported by The Harold Hines Jr. Chair in Department of Medicine in University of Chicago and NIH-RO1-HL071115. We appreciate the assistance of Dr. William Green and his PhD student Ning Zheng in the immunoblotting studies and Judy U. Earley in the preparation of H&E staining.

Disclosures

The authors have no conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Archer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary 1

(PDF 616 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piao, L., Fang, YH., Cadete, V.J.J. et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle . J Mol Med 88, 47–60 (2010). https://doi.org/10.1007/s00109-009-0524-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0524-6

Keywords

Navigation