Skip to main content

Advertisement

Log in

Airway hydration and COPD

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (1) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (2) ciliary beating; and (3) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mathers CD, Loncar D (2011) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11): e442. doi:10.1371/journal.pmed.0030442

    Article  Google Scholar 

  2. Global strategy for the diagnosis, management and prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) (2014) The COPD guidelines per GOLD. Available from: www.goldcopd.org

  3. Barnes PJ (2014) Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med 35(1):71–86

    Article  PubMed  Google Scholar 

  4. DeMeo DL, Silverman EK (2004) Alpha1-antitrypsin deficiency. 2: genetic aspects of alpha(1)-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk. Thorax 59(3):259–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kim V, Criner GJ (2012) Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 187(3):228–237

    Article  PubMed  CAS  Google Scholar 

  6. Hogg JC et al (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350(26):2645–2653

    Article  CAS  PubMed  Google Scholar 

  7. Tsui LC (1992) The spectrum of cystic fibrosis mutations. Trends Genet 8(11):392–398

    Article  CAS  PubMed  Google Scholar 

  8. Harris A, Argent BE (1993) The cystic fibrosis gene and its product CFTR. Semin Cell Biol 4(1):37–44

    Article  CAS  PubMed  Google Scholar 

  9. Chmiel JF, Davis PB (2003) State of the art: why do the lungs of patients with cystic fibrosis become infected and why can’t they clear the infection? Respir Res 4:8

    Article  PubMed Central  PubMed  Google Scholar 

  10. Collawn JF, Matalon S (2014) CFTR and lung homeostasis. Am J Physiol Lung Cell Mol Physiol 307(12):L917–L923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rab A et al (2013) Cigarette smoke and CFTR: implications in the pathogenesis of COPD. Am J Physiol Lung Cell Mol Physiol 305(8):L530–L541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Chambers LA, Rollins BM, Tarran R (2007) Liquid movement across the surface epithelium of large airways. Respir Physiol Neurobiol 159(3):256–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ehre C, Ridley C, Thornton DJ (2014) Cystic fibrosis: an inherited disease affecting mucin-producing organs. Int J Biochem Cell Biol 52:136–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Boucher RC (2004) Relationship of airway epithelial ion transport to chronic bronchitis. Proc Am Thorac Soc 1(1):66–70

    Article  CAS  PubMed  Google Scholar 

  15. Clunes LA et al (2012) Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J 26(2):533–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lundback B et al (2003) Not 15 but 50% of smokers develop COPD?—report from the obstructive lung disease in Northern Sweden studies. Respir Med 97(2):115–122

    Article  CAS  PubMed  Google Scholar 

  17. Mannino DM et al (2002) Chronic obstructive pulmonary disease surveillance—United States, 1971–2000. Respir Care 47(10):1184–1199

    PubMed  Google Scholar 

  18. Peacock JL et al (2011) Outdoor air pollution and respiratory health in patients with COPD. Thorax 66(7):591–596

    Article  PubMed  Google Scholar 

  19. Sunyer J (2001) Urban air pollution and chronic obstructive pulmonary disease: a review. Eur Respir J 17(5):1024–1033

    Article  CAS  PubMed  Google Scholar 

  20. Kurmi OP et al (2010) COPD and chronic bronchitis risk of indoor air pollution from solid fuel: a systematic review and meta-analysis. Thorax 65(3):221–228

    Article  PubMed  Google Scholar 

  21. Schikowski T et al (2013) Ambient air pollution: a cause of COPD? Eur Respir J 43(1):250–263

    Article  PubMed  Google Scholar 

  22. Mannino DM, Buist AS (2007) Global burden of COPD: risk factors, prevalence, and future trends. Lancet 370(9589):765–773

    Article  PubMed  Google Scholar 

  23. Salvi SS, Barnes PJ (2009) Chronic obstructive pulmonary disease in non-smokers. Lancet 374(9691):733–743

    Article  PubMed  Google Scholar 

  24. Laurell CB, Eriksson S (2013) The electrophoretic alpha1-globulin pattern of serum in alpha1-antitrypsin deficiency. 1963. COPD 10(Suppl 1):3–8

    Article  PubMed  Google Scholar 

  25. Zorzetto M et al (2008) SERPINA1 gene variants in individuals from the general population with reduced alpha1-antitrypsin concentrations. Clin Chem 54(8):1331–1338

    Article  CAS  PubMed  Google Scholar 

  26. Stoller JK, Aboussouan LS (2005) Alpha1-antitrypsin deficiency. Lancet 365(9478):2225–2236

    Article  CAS  PubMed  Google Scholar 

  27. Cox DW, Levison H (1988) Emphysema of early onset associated with a complete deficiency of alpha-1-antitrypsin (null homozygotes). Am Rev Respir Dis 137(2):371–375

    Article  CAS  PubMed  Google Scholar 

  28. Brantly ML et al (1988) Clinical features and history of the destructive lung disease associated with alpha-1-antitrypsin deficiency of adults with pulmonary symptoms. Am Rev Respir Dis 138(2):327–336

    Article  CAS  PubMed  Google Scholar 

  29. Dowson LJ, Guest PJ, Stockley RA (2001) Longitudinal changes in physiological, radiological, and health status measurements in alpha(1)-antitrypsin deficiency and factors associated with decline. Am J Respir Crit Care Med 164(10 Pt 1):1805–1809

    Article  CAS  PubMed  Google Scholar 

  30. Boucher RC (2007) Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med 58:157–170

    Article  CAS  PubMed  Google Scholar 

  31. Mall MA, Hartl D (2014) CFTR: cystic fibrosis and beyond. Eur Respir J 44(4):1042–1054

    Article  CAS  PubMed  Google Scholar 

  32. Smith A (1997) Pathogenesis of bacterial bronchitis in cystic fibrosis. Pediatr Infect Dis J 16(1):91–95 (discussion 95–96, 123–126)

    Article  CAS  PubMed  Google Scholar 

  33. Maestrelli P et al (2001) Remodeling in response to infection and injury. Airway inflammation and hypersecretion of mucus in smoking subjects with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 164(10):S76–S80

    Article  CAS  PubMed  Google Scholar 

  34. Thompson AB et al (1989) Intraluminal airway inflammation in chronic bronchitis. Characterization and correlation with clinical parameters. Am Rev Respir Dis 140(6):1527–1537

    Article  CAS  PubMed  Google Scholar 

  35. Worlitzsch D et al (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109(3):317–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hogg JC (2004) Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364(9435):709–721

    Article  PubMed  Google Scholar 

  37. Hogg JC, Macklem PT, Thurlbeck WM (1968) Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med 278(25):1355–1360

    Article  CAS  PubMed  Google Scholar 

  38. Knowles MR, Boucher RC (2002) Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 109(5):571–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Antunes MB, Cohen NA (2007) Mucociliary clearance—a critical upper airway host defense mechanism and methods of assessment. Curr Opin Allergy Clin Immunol 7(1):5–10

    Article  PubMed  Google Scholar 

  40. Ali M et al (2011) Analysis of the proteome of human airway epithelial secretions. Proteome Sci 9:4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Pennington JE (1984) Respiratory tract infections: intrinsic risk factors. Am J Med 76(5A):34–41

    Article  CAS  PubMed  Google Scholar 

  42. Rogan MP et al (2006) Antimicrobial proteins and polypeptides in pulmonary innate defence. Respir Res 7:29

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Puchelle E et al (2006) Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease. Proc Am Thorac Soc 3(8):726–733

    Article  CAS  PubMed  Google Scholar 

  44. Thornton DJ, Rousseau K, McGuckin MA (2008) Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol 70:459–486

    Article  CAS  PubMed  Google Scholar 

  45. Randell SH, Boucher RC (2006) Effective mucus clearance is essential for respiratory health. Am J Respir Cell Mol Biol 35(1):20–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Fahy JV, Dickey BF (2010) Airway mucus function and dysfunction. N Engl J Med 363(23):2233–2247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Nadel JA, Davis B, Phipps RJ (1979) Control of mucus secretion and ion transport in airways. Annu Rev Physiol 41:369–381

    Article  CAS  PubMed  Google Scholar 

  48. Tarran R et al (2001) The relative roles of passive surface forces and active ion transport in the modulation of airway surface liquid volume and composition. J Gen Physiol 118(2):223–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Tarran R et al (2001) The CF salt controversy: in vivo observations and therapeutic approaches. Mol Cell 8(1):149–158

    Article  CAS  PubMed  Google Scholar 

  50. Kilburn KH (1967) Cilia and mucus transport as determinants of the response of lung to air pollutants. Arch Environ Health 14(1):77–91

    Article  CAS  PubMed  Google Scholar 

  51. Schlesinger RB (1990) The interaction of inhaled toxicants with respiratory tract clearance mechanisms. Crit Rev Toxicol 20(4):257–286

    Article  CAS  PubMed  Google Scholar 

  52. Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61(2):75–85

    Article  CAS  PubMed  Google Scholar 

  53. Grotberg JB (2001) Respiratory fluid mechanics and transport processes. Annu Rev Biomed Eng 3:421–457

    Article  CAS  PubMed  Google Scholar 

  54. Tarran R, Button B, Boucher RC (2006) Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu Rev Physiol 68:543–561

    Article  CAS  PubMed  Google Scholar 

  55. Button B et al (2012) A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337(6097):937–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Cao R et al (2012) Mapping the protein domain structures of the respiratory mucins: a mucin proteome coverage study. J Proteome Res 11(8):4013–4023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Kesimer M et al (2013) Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways. Mucosal Immunol 6(2):379–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Henderson AG et al (2014) Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure. J Clin Invest 124(7):3047–3060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Prescott E, Lange P, Vestbo J (1995) Chronic mucus hypersecretion in COPD and death from pulmonary infection. Eur Respir J 8(8):1333–1338

    Article  CAS  PubMed  Google Scholar 

  60. Rogers DF (1994) Airway goblet cells: responsive and adaptable front-line defenders. Eur Respir J 7(9):1690–1706

    Article  CAS  PubMed  Google Scholar 

  61. Cohn L (2006) Mucus in chronic airway diseases: sorting out the sticky details. J Clin Invest 116(2):306–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Tyner JW et al (2006) Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. J Clin Invest 116(2):309–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Atherton H et al (2003) Preliminary pharmacological characterisation of an interleukin-13-enhanced calcium-activated chloride conductance in the human airway epithelium. Naunyn Schmiedebergs Arch Pharmacol 367(2):214–217

    Article  CAS  PubMed  Google Scholar 

  64. Roy MG et al (2014) Muc5b is required for airway defence. Nature 505(7483):412–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4(1):45–60

    Article  CAS  PubMed  Google Scholar 

  66. Davis CW, Dickey BF (2008) Regulated airway goblet cell mucin secretion. Annu Rev Physiol 70:487–512

    Article  CAS  PubMed  Google Scholar 

  67. Forstner G (1995) Signal transduction, packaging and secretion of mucins. Annu Rev Physiol 57:585–605

    Article  CAS  PubMed  Google Scholar 

  68. Hattrup CL, Gendler SJ (2008) Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol 70:431–457

    Article  CAS  PubMed  Google Scholar 

  69. Rose MC, Voynow JA (2006) Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 86(1):245–278

    Article  CAS  PubMed  Google Scholar 

  70. Abdullah LH et al (1996) P2u purinoceptor regulation of mucin secretion in SPOC1 cells, a goblet cell line from the airways. Biochem J 316(Pt 3):943–951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Abdullah LH et al (1997) Protein kinase C and Ca2+ activation of mucin secretion in airway goblet cells. Am J Physiol 273(1 Pt 1):L201–L210

    CAS  PubMed  Google Scholar 

  72. Quinton PM (2010) Role of epithelial HCO3(−) transport in mucin secretion: lessons from cystic fibrosis. Am J Physiol Cell Physiol 299(6):C1222–C1233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Verdugo P (1990) Goblet cells secretion and mucogenesis. Annu Rev Physiol 52:157–176

    Article  CAS  PubMed  Google Scholar 

  74. Livraghi A, Randell SH (2007) Cystic fibrosis and other respiratory diseases of impaired mucus clearance. Toxicol Pathol 35(1):116–129

    Article  CAS  PubMed  Google Scholar 

  75. Vladar EK, Antic D, Axelrod JD (2009) Planar cell polarity signaling: the developing cell’s compass. Cold Spring Harb Perspect Biol 1(3):a002964

    Article  PubMed Central  PubMed  Google Scholar 

  76. You Y et al (2004) Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 286(4):L650–L657

    Article  CAS  PubMed  Google Scholar 

  77. Gomperts BN, Gong-Cooper X, Hackett BP (2004) Foxj1 regulates basal body anchoring to the cytoskeleton of ciliated pulmonary epithelial cells. J Cell Sci 117(Pt 8):1329–1337

    Article  CAS  PubMed  Google Scholar 

  78. Ostrowski LE et al (2002) A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 1(6):451–465

    Article  CAS  PubMed  Google Scholar 

  79. Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400

    Article  CAS  PubMed  Google Scholar 

  80. Davis CW, Lazarowski E (2008) Coupling of airway ciliary activity and mucin secretion to mechanical stresses by purinergic signaling. Respir Physiol Neurobiol 163(1–3):208–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Hayashi T et al (2005) ATP regulation of ciliary beat frequency in rat tracheal and distal airway epithelium. Exp Physiol 90(4):535–544

    Article  CAS  PubMed  Google Scholar 

  82. Korngreen A, Priel Z (1996) Purinergic stimulation of rabbit ciliated airway epithelia: control by multiple calcium sources. J Physiol 497(Pt 1):53–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Lazarowski ER, Boucher RC (2009) Purinergic receptors in airway epithelia. Curr Opin Pharmacol 9(3):262–267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Lieb T et al (2002) Prolonged increase in ciliary beat frequency after short-term purinergic stimulation in human airway epithelial cells. J Physiol 538(Pt 2):633–646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Jain B et al (1993) Modulation of airway epithelial cell ciliary beat frequency by nitric oxide. Biochem Biophys Res Commun 191(1):83–88

    Article  CAS  PubMed  Google Scholar 

  86. Jiao J et al (2011) Regulation of ciliary beat frequency by the nitric oxide signaling pathway in mouse nasal and tracheal epithelial cells. Exp Cell Res 317(17):2548–2553

    Article  CAS  PubMed  Google Scholar 

  87. Li D et al (2000) Regulation of ciliary beat frequency by the nitric oxide-cyclic guanosine monophosphate signaling pathway in rat airway epithelial cells. Am J Respir Cell Mol Biol 23(2):175–181

    Article  CAS  PubMed  Google Scholar 

  88. Yang B, Schlosser RJ, McCaffrey TV (1996) Dual signal transduction mechanisms modulate ciliary beat frequency in upper airway epithelium. Am J Physiol 270(5 Pt 1):L745–L751

    CAS  PubMed  Google Scholar 

  89. Schmid A et al (2011) Nucleotide-mediated airway clearance. Subcell Biochem 55:95–138

    Article  CAS  PubMed  Google Scholar 

  90. Salathe M (2007) Regulation of mammalian ciliary beating. Annu Rev Physiol 69:401–422

    Article  CAS  PubMed  Google Scholar 

  91. Wyatt TA et al (2010) Sequential activation of protein kinase C isoforms by organic dust is mediated by tumor necrosis factor. Am J Respir Cell Mol Biol 42(6):706–715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Frizzell RA (1988) Role of absorptive and secretory processes in hydration of the airway surface. Am Rev Respir Dis 138(6 Pt 2):S3–S6

    Article  CAS  PubMed  Google Scholar 

  93. Donaldson SH, Boucher RC (2007) Sodium channels and cystic fibrosis. Chest 132(5):1631–1636

    Article  CAS  PubMed  Google Scholar 

  94. Thibodeau PH, Butterworth MB (2013) Proteases, cystic fibrosis and the epithelial sodium channel (ENaC). Cell Tissue Res 351(2):309–323

    Article  CAS  PubMed  Google Scholar 

  95. Com G, Clancy JP (2009) Adenosine receptors, cystic fibrosis, and airway hydration. Handb Exp Pharmacol 193:363–381

    Article  CAS  PubMed  Google Scholar 

  96. Blouquit-Laye S, Chinet T (2007) Ion and liquid transport across the bronchiolar epithelium. Respir Physiol Neurobiol 159(3):278–282

    Article  CAS  PubMed  Google Scholar 

  97. Ferrera L, Zegarra-Moran O, Galietta LJ (2011) Ca2+ -activated Cl channels. Compr Physiol 1(4):2155–2174

    PubMed  Google Scholar 

  98. Riordan JR (2005) Assembly of functional CFTR chloride channels. Annu Rev Physiol 67:701–718

    Article  CAS  PubMed  Google Scholar 

  99. Bear CE et al (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68(4):809–818

    Article  CAS  PubMed  Google Scholar 

  100. Tabcharani JA et al (1991) Phosphorylation-regulated Cl channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352(6336):628–631

    Article  CAS  PubMed  Google Scholar 

  101. Gray MA, Greenwell JR, Argent BE (1988) Secretin-regulated chloride channel on the apical plasma membrane of pancreatic duct cells. J Membr Biol 105(2):131–142

    Article  CAS  PubMed  Google Scholar 

  102. Cheng SH et al (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66(5):1027–1036

    Article  CAS  PubMed  Google Scholar 

  103. Hollenstein K, Dawson RJ, Locher KP (2007) Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 17(4):412–418

    Article  CAS  PubMed  Google Scholar 

  104. Canessa CM et al (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367(6462):463–467

    Article  CAS  PubMed  Google Scholar 

  105. Jasti J et al (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449(7160):316–323

    Article  CAS  PubMed  Google Scholar 

  106. Hughey RP et al (2003) Maturation of the epithelial Na+ channel involves proteolytic processing of the alpha- and gamma-subunits. J Biol Chem 278(39):37073–37082

    Article  CAS  PubMed  Google Scholar 

  107. Kleyman TR, Carattino MD, Hughey RP (2009) ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. J Biol Chem 284(31):20447–20451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Staub O et al (1997) Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. The EMBO Journal 16(21):6325–6336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Kimura T et al (2011) Deletion of the ubiquitin ligase Nedd4L in lung epithelia causes cystic fibrosis-like disease. Proc Natl Acad Sci USA 108(8):3216–3221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Guggino WB (1999) Cystic fibrosis and the salt controversy. Cell 96(5):607–610

    Article  CAS  PubMed  Google Scholar 

  111. Hobbs CA, Da Tan C, Tarran R (2013) Does epithelial sodium channel hyperactivity contribute to cystic fibrosis lung disease? J Physiol 591(Pt 18):4377–4387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Horisberger JD (2003) ENaC-CFTR interactions: the role of electrical coupling of ion fluxes explored in an epithelial cell model. Pflugers Arch 445(4):522–528

    Article  CAS  PubMed  Google Scholar 

  113. Boucher RC (1994) Human airway ion transport. Part one. Am J Respir Crit Care Med 150(1):271–281

    Article  CAS  PubMed  Google Scholar 

  114. Knowles MR et al (1997) Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and disease-control subjects. J Clin Invest 100(10):2588–2595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Coakley RD, Boucher RC (2001) Regulation and functional significance of airway surface liquid pH. Jop 2(4 Suppl):294–300

    CAS  PubMed  Google Scholar 

  116. Garcia-Caballero A et al (2009) SPLUNC1 regulates airway surface liquid volume by protecting ENaC from proteolytic cleavage. Proc Natl Acad Sci USA 106(27):11412–11417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Lazarowski ER et al (2004) Nucleotide release provides a mechanism for airway surface liquid homeostasis. J Biol Chem 279(35):36855–36864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Button B et al (2013) Mechanosensitive ATP release maintains proper mucus hydration of airways. Sci Signa 6(279):ra46

    Google Scholar 

  119. Button B, Boucher RC (2008) Role of mechanical stress in regulating airway surface hydration and mucus clearance rates. Respir Physiol Neurobiol 163(1–3):189–201

    Article  PubMed Central  PubMed  Google Scholar 

  120. Gaillard EA et al (2010) Regulation of the epithelial Na+ channel and airway surface liquid volume by serine proteases. Pflugers Arch 460(1):1–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Matsui H et al (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95(7):1005–1015

    Article  CAS  PubMed  Google Scholar 

  122. Kunzelmann K et al (2005) Purinergic inhibition of the epithelial Na+ transport via hydrolysis of PIP2. FASEB J 19(1):142–143

    CAS  PubMed  Google Scholar 

  123. Pochynyuk O, Bugaj V, Stockand JD (2008) Physiologic regulation of the epithelial sodium channel by phosphatidylinositides. Curr Opin Nephrol Hypertens 17(5):533–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Yue G, Malik B, Eaton DC (2002) Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates epithelial sodium channel activity in A6 cells. J Biol Chem 277(14):11965–11969

    Article  CAS  PubMed  Google Scholar 

  125. Hobbs CA et al (2013) Identification of SPLUNC1’s ENaC-Inhibitory Domain Yields Novel Strategies to Treat Sodium Hyperabsorption in Cystic Fibrosis Airway Cultures. Am J Physiol Lung Cell Mol Physiol

  126. Rollins BM et al (2010) SPLUNC1 expression reduces surface levels of the epithelial sodium channel (ENaC) in Xenopus laevis oocytes. Channels (Austin) 4(4):255–259

    Article  CAS  Google Scholar 

  127. Garland AL et al (2013) Molecular basis for pH-dependent mucosal dehydration in cystic fibrosis airways. Proc Natl Acad Sci USA 110(40):15973–15978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Cho DY et al (2011) Acid and base secretion in freshly excised nasal tissue from cystic fibrosis patients with DeltaF508 mutation. Int Forum Allergy Rhinol 1(2):123–127

    Article  PubMed Central  PubMed  Google Scholar 

  129. Tarran R, Redinbo MR (2014) Mammalian short palate lung and nasal epithelial clone 1 (SPLUNC1) in pH-dependent airway hydration. Int J Biochem Cell Biol 52:130–135

    Article  CAS  PubMed  Google Scholar 

  130. Di YP et al (2003) Molecular cloning and characterization of spurt, a human novel gene that is retinoic acid-inducible and encodes a secretory protein specific in upper respiratory tracts. J Biol Chem 278(2):1165–1173

    Article  CAS  PubMed  Google Scholar 

  131. Berdiev BK, Qadri YJ, Benos DJ (2009) Assessment of the CFTR and ENaC association. Mol BioSyst 5(2):123–127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Kunzelmann K, Schreiber R (2012) Airway epithelial cells—hyperabsorption in CF? Int J Biochem Cell Biol 44(8):1232–1235

    Article  CAS  PubMed  Google Scholar 

  133. Boucher RC et al (1986) Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest 78(5):1245–1252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Kunzelmann K et al (1997) Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator. FEBS Lett 400(3):341–344

    Article  CAS  PubMed  Google Scholar 

  135. Stutts MJ et al (1995) CFTR as a cAMP-dependent regulator of sodium channels. Science 269(5225):847–850

    Article  CAS  PubMed  Google Scholar 

  136. Lazrak A et al (2011) Enhancement of alveolar epithelial sodium channel activity with decreased cystic fibrosis transmembrane conductance regulator expression in mouse lung. Am J Physiol Lung Cell Mol Physiol 301(4):L557–L567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Dransfield MT et al (2013) Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD. Chest 144(2):498–506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Vallet V et al (1997) An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389(6651):607–610

    Article  CAS  PubMed  Google Scholar 

  139. Caldwell RA, Boucher RC, Stutts MJ (2005) Neutrophil elastase activates near-silent epithelial Na+ channels and increases airway epithelial Na+ transport. Am J Physiol Lung Cell Mol Physiol 288(5):L813–L819

    Article  CAS  PubMed  Google Scholar 

  140. Tan CD et al (2014) Cathepsin B contributes to Na+ hyperabsorption in cystic fibrosis airway epithelial cultures. J Physiol 592(Pt 23):5251–5268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Alli AA et al (2012) Cathepsin B is secreted apically from Xenopus 2F3 cells and cleaves the epithelial sodium channel (ENaC) to increase its activity. J Biol Chem 287(36):30073–30083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Butterworth MB et al (2012) Activation of the epithelial sodium channel (ENaC) by the alkaline protease from Pseudomonas aeruginosa. J Biol Chem 287(39):32556–32565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Hoenderdos K, Condliffe A (2013) The neutrophil in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 48(5):531–539

    Article  CAS  PubMed  Google Scholar 

  144. Borgerding M, Klus H (2005) Analysis of complex mixtures–cigarette smoke. Exp Toxicol Pathol 57(Suppl 1):43–73

    Article  CAS  PubMed  Google Scholar 

  145. Hoffmann D, Djordjevic MV, Hoffmann I (1997) The changing cigarette. Prev Med 26(4):427–434

    Article  CAS  PubMed  Google Scholar 

  146. Talhout R et al (2011) Hazardous compounds in tobacco smoke. Int J Environ Res Public Health 8(2):613–628

    Article  PubMed Central  PubMed  Google Scholar 

  147. Scian MJ et al (2009) Chemical analysis of cigarette smoke particulate generated in the MSB-01 in vitro whole smoke exposure system. Inhal Toxicol 21(12):1040–1052

    Article  CAS  PubMed  Google Scholar 

  148. Fowles J, Dybing E (2003) Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob Control 12(4):424–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Dye JA, Adler KB (1994) Effects of cigarette smoke on epithelial cells of the respiratory tract. Thorax 49(8):825–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Yaghi A et al (2012) Ciliary beating is depressed in nasal cilia from chronic obstructive pulmonary disease subjects. Respir Med 106(8):1139–1147

    Article  PubMed  Google Scholar 

  151. Agius AM, Smallman LA, Pahor AL (1998) Age, smoking and nasal ciliary beat frequency. Clin Otolaryngol Allied Sci 23(3):227–230

    Article  CAS  PubMed  Google Scholar 

  152. Wyatt TA et al (2000) Acetaldehyde-stimulated PKC activity in airway epithelial cells treated with smoke extract from normal and smokeless cigarettes. Proc Soc Exp Biol Med 225(1):91–97

    Article  CAS  PubMed  Google Scholar 

  153. Tamashiro E et al (2009) Cigarette smoke exposure impairs respiratory epithelial ciliogenesis. Am J Rhinol Allergy 23(2):117–122

    Article  PubMed  Google Scholar 

  154. Lam HC et al (2013) Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction. J Clin Invest 123(12):5212–5230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Verra F et al (1995) Ciliary abnormalities in bronchial epithelium of smokers, ex-smokers, and nonsmokers. Am J Respir Crit Care Med 151(3 Pt 1):630–634

    Article  CAS  PubMed  Google Scholar 

  156. Auerbach O, Hammond EC, Garfinkel L (1979) Changes in bronchial epithelium in relation to cigarette smoking, 1955–1960 vs. 1970–1977. N Engl J Med 300(8):381–385

    Article  CAS  PubMed  Google Scholar 

  157. Leopold PL et al (2009) Smoking is associated with shortened airway cilia. PLoS One 4(12):e8157

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  158. Lungarella G, Fonzi L, Ermini G (1983) Abnormalities of bronchial cilia in patients with chronic bronchitis: an ultrastructural and quantitative analysis. Lung 161(3):147–156

    Article  CAS  PubMed  Google Scholar 

  159. Sisson JH et al (1994) Smoke and viral infection cause cilia loss detectable by bronchoalveolar lavage cytology and dynein ELISA. Am J Respir Crit Care Med 149(1):205–213

    Article  CAS  PubMed  Google Scholar 

  160. Kensler CJ, Battista SP (1963) Components of cigarette smoke with ciliary-depressant activity. Their selective removal by filters containing activated charcoal granules. N Engl J Med 269:1161–1166

    Article  CAS  PubMed  Google Scholar 

  161. Cantin AM et al (2006) Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am J Respir Crit Care Med 173(10):1139–1144

    Article  CAS  PubMed  Google Scholar 

  162. Xu X et al (2015) Cigarette smoke exposure reveals a novel role for the MEK/ERK1/2 MAPK pathway in regulation of CFTR. Biochim Biophys Acta 1850(6):1224–1232. doi:10.1016/j.bbagen.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  163. Rasmussen JE et al (2014) Cigarette smoke-induced Ca2+ release leads to cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. J Biol Chem 289(11):7671–7681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Gelman MS, Kannegaard ES, Kopito RR (2002) A principal role for the proteasome in endoplasmic reticulum-associated degradation of misfolded intracellular cystic fibrosis transmembrane conductance regulator. J Biol Chem 277(14):11709–11714

    Article  CAS  PubMed  Google Scholar 

  165. Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143(7):1883–1898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Sharma M et al (2004) Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J Cell Biol 164(6):923–933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Okiyoneda T et al (2010) Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 329(5993):805–810

    Article  CAS  PubMed  Google Scholar 

  168. Younger JM et al (2006) Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126(3):571–582

    Article  CAS  PubMed  Google Scholar 

  169. Stevens JF, Maier CS (2008) Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res 52(1):7–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  170. Wang HT et al (2009) Mutagenicity and sequence specificity of acrolein-DNA adducts. Chem Res Toxicol 22(3):511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Phillips DH (2002) Smoking-related DNA and protein adducts in human tissues. Carcinogenesis 23(12):1979–2004

    Article  CAS  PubMed  Google Scholar 

  172. Raju SV et al (2013) Cigarette smoke induces systemic defects in cystic fibrosis transmembrane conductance regulator function. Am J Respir Crit Care Med 188(11):1321–1330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Moran AR et al (2014) Aqueous cigarette smoke extract induces a voltage-dependent inhibition of CFTR expressed in Xenopus oocytes. Am J Physiol Lung Cell Mol Physiol 306(3):L284–L291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  174. Ballard ST et al (1999) CFTR involvement in chloride, bicarbonate, and liquid secretion by airway submucosal glands. Am J Physiol 277(4 Pt 1):L694–L699

    CAS  PubMed  Google Scholar 

  175. Hug MJ, Tamada T, Bridges RJ (2003) CFTR and bicarbonate secretion by [correction of to] epithelial cells. News Physiol Sci 18:38–42

    CAS  PubMed  Google Scholar 

  176. Pryor WA, Prier DG, Church DF (1983) Electron-spin resonance study of mainstream and sidestream cigarette smoke: nature of the free radicals in gas-phase smoke and in cigarette tar. Environ Health Perspect 47:345–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Cantin AM et al (2006) Oxidant stress suppresses CFTR expression. Am J Physiol Cell Physiol 290(1):C262–C270

    Article  CAS  PubMed  Google Scholar 

  178. Hassan F et al (2012) MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung. PLoS One 7(11):e50837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Hassan F et al (2014) Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels. Respir Res 15:69

    Article  PubMed Central  PubMed  Google Scholar 

  180. Sloane PA et al (2012) A pharmacologic approach to acquired cystic fibrosis transmembrane conductance regulator dysfunction in smoking related lung disease. PLoS One 7(6):e39809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Astrand AB et al (2015) Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition. Am J Physiol Lung Cell Mol Physiol 308(1):L22–L32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Tyrrell J et al (2015) Roflumilast combined with adenosine increases mucosal hydration in human airway epithelial cultures after cigarette smoke exposure. Am J Physiol Lung Cell Mol Physiol 308:L10068–L11077

    Article  CAS  Google Scholar 

  183. Andersen I et al (1974) Nasal clearance in monozygotic twins. Am Rev Respir Dis 110(3):301–305

    Article  CAS  PubMed  Google Scholar 

  184. Stanley PJ et al (1986) Effect of cigarette smoking on nasal mucociliary clearance and ciliary beat frequency. Thorax 41(7):519–523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Rubin BK et al (1992) Respiratory mucus from asymptomatic smokers is better hydrated and more easily cleared by mucociliary action. Am Rev Respir Dis 145(3):545–547

    Article  CAS  PubMed  Google Scholar 

  186. Hill DB et al (2014) A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease. PLoS One 9(2):e87681

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  187. Baltimore RS, Christie CD, Smith GJ (1989) Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. Am Rev Respir Dis 140(6):1650–1661

    Article  CAS  PubMed  Google Scholar 

  188. Matsui H et al (2006) A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 103(48):18131–18136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Coles SJ, Levine LR, Reid L (1979) Hypersecretion of mucus glycoproteins in rat airways induced by tobacco smoke. Am J Pathol 94(3):459–472

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Lamb D, Reid L (1969) Goblet cell increase in rat bronchial epithelium after exposure to cigarette and cigar tobacco smoke. Br Med J 1(5635):33–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. Basbaum C et al (1999) Control of mucin transcription by diverse injury-induced signaling pathways. Am J Respir Crit Care Med 160(5 Pt 2):S44–S48

    Article  CAS  PubMed  Google Scholar 

  192. Borchers MT, Carty MP, Leikauf GD (1999) Regulation of human airway mucins by acrolein and inflammatory mediators. Am J Physiol 276(4 Pt 1):L549–L555

    CAS  PubMed  Google Scholar 

  193. Borchers MT, Wert SE, Leikauf GD (1998) Acrolein-induced MUC5ac expression in rat airways. Am J Physiol 274(4 Pt 1):L573–L581

    CAS  PubMed  Google Scholar 

  194. Churg A, Cosio M, Wright JL (2008) Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol Physiol 294(4):L612–L631

    Article  CAS  PubMed  Google Scholar 

  195. Hughes JR (2007) Effects of abstinence from tobacco: etiology, animal models, epidemiology, and significance: a subjective review. Nicotine Tob Res 9(3):329–339

    Article  PubMed  Google Scholar 

  196. Johnson JD et al (1990) Effects of mainstream and environmental tobacco smoke on the immune system in animals and humans: a review. Crit Rev Toxicol 20(5):369–395

    Article  CAS  PubMed  Google Scholar 

  197. Liu C, Russell RM, Wang XD (2003) Exposing ferrets to cigarette smoke and a pharmacological dose of beta-carotene supplementation enhance in vitro retinoic acid catabolism in lungs via induction of cytochrome P450 enzymes. J Nutr 133(1):173–179

    CAS  PubMed  Google Scholar 

  198. Hautamaki RD et al (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277(5334):2002–2004

    Article  CAS  PubMed  Google Scholar 

  199. Clarke LL et al (1994) Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(−/−) mice. Proc Natl Acad Sci USA 91(2):479–483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  200. Snouwaert JN et al (1992) An animal model for cystic fibrosis made by gene targeting. Science 257(5073):1083–1088

    Article  CAS  PubMed  Google Scholar 

  201. Majima Y et al (1983) Mucociliary clearance in chronic sinusitis: related human nasal clearance and in vitro bullfrog palate clearance. Biorheology 20(2):251–262

    CAS  PubMed  Google Scholar 

  202. Mall MA (2008) Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models. J Aerosol Med Pulm Drug Deliv 21(1):13–24

    Article  CAS  PubMed  Google Scholar 

  203. Mall M et al (2004) Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 10(5):487–493

    Article  CAS  PubMed  Google Scholar 

  204. Donaldson SH et al (2006) Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 354(3):241–250

    Article  CAS  PubMed  Google Scholar 

  205. Elkins MR et al (2006) A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 354(3):229–240

    Article  CAS  PubMed  Google Scholar 

  206. Taube C et al (2001) Airway response to inhaled hypertonic saline in patients with moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 164(10 Pt 1):1810–1815

    Article  CAS  PubMed  Google Scholar 

  207. Angle N et al (1998) Hypertonic saline resuscitation diminishes lung injury by suppressing neutrophil activation after hemorrhagic shock. Shock 9(3):164–170

    Article  CAS  PubMed  Google Scholar 

  208. Lansdell KA et al (1998) Regulation of murine cystic fibrosis transmembrane conductance regulator Cl− channels expressed in Chinese hamster ovary cells. J Physiol 512(Pt 3):751–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  209. Gray MA et al (1990) Anion selectivity and block of the small-conductance chloride channel on pancreatic duct cells. Am J Physiol 259(5 Pt 1):C752–C761

    CAS  PubMed  Google Scholar 

  210. Illek B et al (1999) Defective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein. Am J Physiol 277(4 Pt 1):C833–C839

    CAS  PubMed  Google Scholar 

  211. Van Goor F et al (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA 106(44):18825–18830

    Article  PubMed Central  PubMed  Google Scholar 

  212. Dalemans W et al (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354(6354):526–528

    Article  CAS  PubMed  Google Scholar 

  213. Van Goor F et al (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA 108(46):18843–18848

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  214. Cholon DM et al (2014) Potentiator ivacaftor abrogates pharmacological correction of DeltaF508 CFTR in cystic fibrosis. Sci Transl Med 6(246):246ra96

    Article  PubMed Central  PubMed  Google Scholar 

  215. Lambert JA et al (2013) Cystic fibrosis transmembrane conductance regulator activation by roflumilast contributes to therapeutic benefit in chronic bronchitis. Am J Respir Cell Mol Biol 50(3):549–558

    Article  CAS  Google Scholar 

  216. Kew KM, Dias S, Cates CJ (2014) Long-acting inhaled therapy (beta-agonists, anticholinergics and steroids) for COPD: a network meta-analysis. Cochrane Database Syst Rev 3:CD010844

    PubMed  Google Scholar 

  217. Boucher RC et al (1989) Chloride secretory response of cystic fibrosis human airway epithelia. Preservation of calcium but not protein kinase C− and A-dependent mechanisms. J Clin Invest 84(5):1424–1431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  218. O’Riordan TG et al (2014) Acute hyperkalemia associated with inhalation of a potent ENaC antagonist: phase 1 trial of GS-9411. J Aerosol Med Pulm Drug Deliv 27(3):200–208

    Article  PubMed  CAS  Google Scholar 

  219. Kleyman TR, Cragoe EJ Jr (1988) The mechanism of action of amiloride. Semin Nephrol 8(3):242–248

    CAS  PubMed  Google Scholar 

  220. Grasemann H, Ratjen F (2010) Emerging therapies for cystic fibrosis lung disease. Expert Opin Emerg Drugs 15(4):653–659

    Article  CAS  PubMed  Google Scholar 

  221. Chiu TF et al (1997) Rapid life-threatening hyperkalemia after addition of amiloride HCl/hydrochlorothiazide to angiotensin-converting enzyme inhibitor therapy. Ann Emerg Med 30(5):612–615

    Article  CAS  PubMed  Google Scholar 

  222. O’Riordan TG et al (2013) GS-5737, A novel epithelial sodium channel (ENaC) inhibitor: results of a Phase 1 Safety and pharmacodynamic (PK) Study. Pediatr Pulmonol S36:290

    Google Scholar 

  223. Terryah s et al (2014) A SPLUNC1-derived peptide reduces lung disease in scnn1b mice. Pediatr Pulmonol S38:285

    Google Scholar 

  224. Lee YO et al (2014) Multiple tobacco product use among adults in the United States: cigarettes, cigars, electronic cigarettes, hookah, smokeless tobacco, and snus. Prev Med 62:14–19

    Article  PubMed  Google Scholar 

  225. Benowitz NL, Goniewicz ML (2013) The regulatory challenge of electronic cigarettes. JAMA 310(7):685–686

    Article  CAS  PubMed  Google Scholar 

  226. McAuley TR et al (2012) Comparison of the effects of e-cigarette vapor and cigarette smoke on indoor air quality. Inhal Toxicol 24(12):850–857

    Article  CAS  PubMed  Google Scholar 

  227. Wu Q et al (2014) Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells. PLoS One 9(9):e108342

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  228. Chen Y et al (2003) Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem 278(19):17036–17043

    Article  CAS  PubMed  Google Scholar 

  229. Jensen RP et al (2015) Hidden formaldehyde in e-cigarette aerosols. N Engl J Med 372(4):392–394

    Article  CAS  PubMed  Google Scholar 

  230. Brown JE et al (2014) Candy flavorings in tobacco. N Engl J Med 370(23):2250–2252

    Article  CAS  PubMed  Google Scholar 

  231. Carpenter CM et al (2005) New cigarette brands with flavors that appeal to youth: tobacco marketing strategies. Health Aff (Millwood) 24(6):1601–1610

    Article  Google Scholar 

  232. Regan AK, Dube SR, Arrazola R (2012) Smokeless and flavored tobacco products in the US: 2009 Styles survey results. Am J Prev Med 42(1):29–36

    Article  PubMed  Google Scholar 

  233. Willis DN et al (2011) Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants. FASEB J 25(12):4434–4444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  234. Uhl GR et al (2011) Menthol preference among smokers: association with TRPA1 variants. Nicotine Tob Res 13(12):1311–1315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  235. Shibamoto T (2014) Diacetyl: occurrence, analysis, and toxicity. J Agric Food Chem 62(18):4048–4053

    Article  CAS  PubMed  Google Scholar 

  236. Kreiss K et al (2002) Clinical bronchiolitis obliterans in workers at a microwave-popcorn plant. N Engl J Med 347(5):330–338

    Article  PubMed  Google Scholar 

  237. McMillen R, Maduka J, Winickoff J (2012) Use of emerging tobacco products in the United States. J Environ Public Health 2012:989474

    Article  PubMed Central  PubMed  Google Scholar 

  238. Rath JM et al (2012) Patterns of tobacco use and dual use in US young adults: the missing link between youth prevention and adult cessation. J Environ Public Health 2012:679134

    Article  PubMed Central  PubMed  Google Scholar 

  239. Terchek JJ et al (2009) Measuring cigar use in adolescents: inclusion of a brand-specific item. Nicotine Tob Res 11(7):842–846

    Article  PubMed  Google Scholar 

  240. Hentschel J et al (2014) Dynamics of soluble and cellular inflammatory markers in nasal lavage obtained from cystic fibrosis patients during intravenous antibiotic treatment. BMC Pulm Med 14:82

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  241. Tsoumakidou M, Tzanakis N, Siafakas NM (2003) Induced sputum in the investigation of airway inflammation of COPD. Respir Med 97(8):863–871

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Temperance Rowell and Mr. Shawn Terrayah for critical reading of this manuscript, and our colleagues in the Marsico Lung Institute for their insight and useful discussion into CF/COPD over the years. This work was funded by NIH HL108927, HL1108723 and HL120100. Research reported in this publication was in part supported by NIH and the FDA Center for Tobacco Products (CTP). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Food and Drug Administration.

Conflict of interest

A Ghosh has no conflict to declare, R. Tarran is a founder of Spyryx Biosciences and R.C. Boucher is a founder of Parion Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tarran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Boucher, R.C. & Tarran, R. Airway hydration and COPD. Cell. Mol. Life Sci. 72, 3637–3652 (2015). https://doi.org/10.1007/s00018-015-1946-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1946-7

Keywords

Navigation