Skip to main content
Log in

Anti-Interleukin-5 Monoclonal Antibodies

Preclinical and Clinical Evidence in Asthma Models

  • Review Article
  • Published:
American Journal of Respiratory Medicine

Abstract

Descriptive studies have shown an association between eosinophils, interleukin (IL)-5 and pathophysiological processes in patients with atopic asthma. These observations have led to an interest in the eosinophil as the pathogenic cell responsible for many of the clinical features of asthma including symptoms of wheeze, shortness of breath and cough, along with the physiological events such as airway hyperresponsiveness (AHR) and changes in lung function.

IL-5 is one of the key cytokines responsible for eosinopoiesis in the bone marrow, along with recruitment and survival of eosinophils in the tissues. In view of this, IL-5 has been an attractive target for the development of anti-IL-5 monoclonal antibodies, inhibiting its action.

The results of preclinical studies are viewed as encouraging. Preclinical development involved studies in mice, guinea-pigs and cynomolgus monkeys, with conflicting results in terms of changes in blood and bronchoalveolar lavage eosinophils, AHR and pulmonary resistance. These may be attributed to interspecies differences and to the different models used. Monoclonal antibodies directed against IL-5 have been used in at least four studies involving patients with asthma. Those preliminary studies have shown clear reductions in both blood and sputum eosinophils but no significant changes in physiological parameters of AHR, the late asthmatic reaction or in lung function or symptoms. As in the animal studies, these results suggest a dissociation between eosinophils, AHR, lung function and symptoms of asthma, which may be explained by the multitude of cells involved in the pathogenesis of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kay AB, Corrigan CJ. Asthma: eosinophils and neutrophils. Br Med Bull 1992; 48(1): 51–64

    PubMed  CAS  Google Scholar 

  2. Rothenberg ME. Eosinophilia. N Engl J Med 1998; 338(22): 1592–600

    Article  PubMed  CAS  Google Scholar 

  3. Giembycz MA, Lindsay MA. Pharmacology of the eosinophil. Pharmacol Rev 1999; 51: 216–309

    Google Scholar 

  4. Durham SR, Kay AB. Eosinophils, bronchial hyperreactivity and late-phase asthmatic reactions. Clin Allergy 1985; 15: 411–8

    Article  PubMed  CAS  Google Scholar 

  5. Redington AE, Howarth PH. Airway wall remodelling in asthma. Thorax 1997; 52: 310–2

    Article  PubMed  CAS  Google Scholar 

  6. Gibson PG, Dolovich J, Girgis-Gabardo A, et al. The inflammatory response in asthma exacerbation: changes in circulating eosinophils, basophils and their progenitors. Clin Exp Allergy 1990; 20: 661–8

    Article  PubMed  CAS  Google Scholar 

  7. Sanderson CJ. Interleukin-5, eosinophils and disease. Blood 1992; 79: 3101–9

    PubMed  CAS  Google Scholar 

  8. Weller PF. Cytokine regulation of eosinophil function. Clin Immunopathol 1992; 62 (1 Pt 2): S55–9

    Article  CAS  Google Scholar 

  9. Lampinen M, Rak S, Venge J. The role of interleukin-5, interleukin-8 and RANTES in the chemotactic attraction of eosinophils to the allergic lung. Clin Exp Allergy 1999; 29: 314–22

    Article  PubMed  CAS  Google Scholar 

  10. Corrigan CJ, Haczku A, Gemou-Engesaeth V, et al. CD4 T-lymphocyte activation in asthma is accompanied by increased serum concentrations of interleukin-5. Am Rev Respir Dis 1993; 147: 540–7

    PubMed  CAS  Google Scholar 

  11. Humbert M, Corrigan CJ, Kimmitt P, et al. Relationship between IL-4 and IL-5 mRNA expression and disease severity in atopic asthma. Am J Respir Crit Care Med 1997; 156: 704–8

    PubMed  CAS  Google Scholar 

  12. van der Veen MJ, van Neerven RJJ, de Jong EC, et al. The late asthmatic response is associated with baseline allergen-specific proliferative responsiveness of peripheral T lymphocytes in vitro and serum interleukin-5. Clin Exp Allergy 1999; 29: 217–27

    Article  PubMed  Google Scholar 

  13. Konno S, Gonokami Y, Kurokawa M, et al. Cytokine concentrations in sputum of asthmatic patients. Int Arch Allergy Immunol 1996; 109(1): 73–8

    Article  PubMed  CAS  Google Scholar 

  14. Sur S, Gleich GJ, Swanson MC, et al. Eosinophilic inflammation is associated with elevation of interleukin-5 in the airways of patients with spontaneous symptomatic asthma. J Allergy Clin Immunol 1995; 96 (5 Pt 1): 661–8

    Article  PubMed  CAS  Google Scholar 

  15. Shi HZ, Xiao C-Q, Zhong D, et al. Effect of inhaled interleukin-5 on airway hyperreactivity and eosinophilia in asthmatics. Am J Respir Crit Care Med 1998; 157: 204–9

    PubMed  CAS  Google Scholar 

  16. McKinnon M, Banks M, Solari R, et al. Interleukin-5 and the interleukin-5 receptor: targets for drug discovery in asthma. In: Sanderson CJ, editor. Interleukin-5 from molecule to drug target for asthma: in lung biology in health and disease. New York: Marcel Dekker, 1999: 299–320

    Google Scholar 

  17. Van Oosterhout AJ, Ladenius AR, Savelkoul HF, et al. Effect of anti-IL-5 and IL-5 on airway hyperreactivity and eosinophils in guinea pigs. Am Rev Respir Dis 1993; 147(3): 548–52

    PubMed  Google Scholar 

  18. Foster PS, Hogan SP, Ramsay AJ, et al. Interleukin-5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 1996; 183: 195–201

    Article  PubMed  CAS  Google Scholar 

  19. Takatsu K, Takaki S, Hitoshi Y. Interleukin-5 and its receptor system: implications in the immune system and inflammation. Adv Immunol 1994; 57: 145–90

    Article  PubMed  CAS  Google Scholar 

  20. Hertz M, Mahalingam S, Dalum I, et al. Active vaccination against IL-5 bypasses immunological tolerance and ameliorates experimental asthma. J Immunol 2001; 167(7): 3792–9

    PubMed  CAS  Google Scholar 

  21. Uings I, McKinnon. Development of IL-5 receptor antagonists. Curr Pharm Des 2002; 8: 1837–44

    Article  PubMed  CAS  Google Scholar 

  22. Pritchard DI, Eady RP, Harper ST, et al. Laboratory infection of primates with Ascaris suum to provide a model of allergic bronchoconstriction. Clin Exp Immunol 1983; 54(2): 469–76

    PubMed  CAS  Google Scholar 

  23. Adamko DJ, Yost BL, Gleich GJ, et al. Ovalbumin sensitization changes the inflammatory response to subsequent parainfluenza infection. Eosinophils mediate airway hyperresponsiveness, m(2) muscarinic receptor dysfunction, and antiviral effects. J Exp Med 1999; 190(10): 1465–78

    Article  PubMed  CAS  Google Scholar 

  24. Hogan SP, Koskinen A, Foster PS. Interleukin-5 and eosinophils induce airway damage and bronchial hyperreactivity during allergic airway inflammation in BALB/c mice. Immunol Cell Biol 1997; 75(3): 284–8

    Article  PubMed  CAS  Google Scholar 

  25. Shardonofsky FR, Venzor III J, Barrios R, et al. Therapeutic efficacy of an anti-IL-5 monoclonal antibody delivered into the respiratory tract in a murine model of asthma. J Allergy Clin Immunol 1999; 104(1): 215–21

    Article  PubMed  CAS  Google Scholar 

  26. Buijs J, Egbers MW, Lokhorst WH, et al. Toxocara-induced eosinophilic inflammation. Airway function and effect of anti-IL-5. Am J Respir Crit Care Med 1995; 151 (3 Pt 1): 873–8

    PubMed  CAS  Google Scholar 

  27. Nagai H, Yamaguchi S, Tanaka H. The role of interleukin-5 (IL-5) in allergic airway hyperresponsiveness in mice. Ann N Y Acad Sci 1996; 796: 91–6

    Article  PubMed  CAS  Google Scholar 

  28. Cieslewicz G, Tomkinson A, Adler A, et al. The late, but not early, asthmatic response is dependent on IL-5 and correlates with eosinophil infiltration. J Clin Invest 1999; 104(3): 301–8

    Article  PubMed  CAS  Google Scholar 

  29. Chand N, Harrison JE, Rooney S, et al. Anti-IL-5 monoclonal antibody inhibits allergic late phase bronchial eosinophilia in guinea pigs: a therapeutic approach. Eur J Pharmacol 1992; 211(1): 121–3

    Article  PubMed  CAS  Google Scholar 

  30. Akutsu I, Kojima T, Kariyone A, et al. Antibody against interleukin-5 prevents antigen-induced eosinophil infiltration and bronchial hyperreactivity in the guinea pig airways. Immunol Lett 1995; 45(1-2): 109–16

    Article  PubMed  CAS  Google Scholar 

  31. Mauser PJ, Pitman A, Witt A, et al. Inhibitory effect of the TRFK-5 anti-IL-5 antibody in a guinea pig model of asthma. Am Rev Respir Dis 1993; 148: 1623–7

    Article  PubMed  CAS  Google Scholar 

  32. Van Oosterhout AJM, Van Ark I, Folkerts G, et al. Antibody to interleukin-5 inhibits virus-induced airway hyperresponsiveness to histamine in guinea pigs. Am J Respir Crit Care Med 1995; 151: 177–83

    PubMed  Google Scholar 

  33. Mauser PJ, Pitman AM, Fernandez X, et al. Effects of an antibody to interleukin-5 in a monkey model of asthma. Am J Respir Crit Care Med 1995; 152: 467–72

    PubMed  CAS  Google Scholar 

  34. Egan RW, Athwahl D, Chou CC, et al. Pulmonary biology of anti-interleukin 5 antibodies. Mem Inst Oswaldo Cruz 1997; 92 Suppl. 2: 69–73

    Article  PubMed  CAS  Google Scholar 

  35. Hart TK, Cook RM, Zia-Amirhosseini P, et al. Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys. J Allergy Clin Immunol 2001; 108(2): 250–7

    Article  PubMed  CAS  Google Scholar 

  36. Elwood W, Lötvall JO, Barnes PJ, et al. Effect of dexamethasone and cyclosporin A on allergen-induced airway hyperresponsiveness and inflammatory cell responses in sensitized Brown-Norway rats. Am Rev Respir Dis 1992; 145: 1289–94

    PubMed  CAS  Google Scholar 

  37. Hogan SP, Matthaei KI, Young JM, et al. A novel T cell-regulated mechanism modulating allergen-induced airways hyperreactivity in balb/c mice independently of IL-4 and IL-5. J Immunol 1998; 161: 1501–9

    PubMed  CAS  Google Scholar 

  38. Tanaka H, Nagai H, Maeda Y. Effect of anti-IL-4 and anti-IL-5 antibodies on allergic airway hyperresponsiveness in mice. Life Sci 1997; 62: 169–74

    Google Scholar 

  39. Egan RW, Athwal D, Bodmer MW, et al. Effect of Sch 55700, a humanized monoclonal antibody to human interleukin-5, on eosinophilic responses and bronchial hyperreactivity. Arzneimittelforschung 1999; 49(9): 779–90

    PubMed  CAS  Google Scholar 

  40. Cockcroft DW. The bronchial late response in the pathogenesis of asthma and its modulation by therapy. Ann Allergy 1985; 55(6): 857–62

    PubMed  CAS  Google Scholar 

  41. O’Byrne PM, Dolovich J, Hargreave FE. Late asthmatic responses. Am Rev Respir Dis 1987; 136(3): 740–51

    Article  PubMed  Google Scholar 

  42. Cockcroft DW, Murdock KY, Kirby J, et al. Prediction of airway responsiveness to allergen from skin sensitivity to allergen and airway responsiveness to histamine. Am Rev Respir Dis 1987; 135(1): 264–7

    PubMed  CAS  Google Scholar 

  43. Robertson DG, Kerigan AT, Hargreave FE, et al. Late asthmatic responses induced by ragweed pollen allergen. J Allergy Clin Immunol 1974; 54(4): 244–54

    Article  PubMed  CAS  Google Scholar 

  44. Sedgwick JB, Calhoun WJ, Gleich GJ, et al. Immediate and late airway response of allergic rhinitis patients to segmental antigen challenge: characterization of eosinophil and mast cell mediators. Am Rev Respir Dis 1991; 144(6): 1274–81

    PubMed  CAS  Google Scholar 

  45. Bryan SA, O’Connor BJ, Matti S, et al. Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 2000; 356: 2149–53

    Article  PubMed  CAS  Google Scholar 

  46. Gauvreau GM, Sulakvelidze I, Watson RM, et al. Effects of once daily dosing with inhaled budesonide on airway hyperresponsiveness and airway inflammation following repeated low-dose allergen challenge in atopic asthmatics. Clin Exp Allergy 2000; 30(9): 1235–43

    Article  PubMed  CAS  Google Scholar 

  47. Leckie MJ, ten Brinke A, Khan J, et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyperresponsiveness and the late asthmatic response. Lancet 2000; 356: 2144–8

    Article  PubMed  CAS  Google Scholar 

  48. Compton CO. Mepoluzimab: clinical experience [oral presentation]. American Thoracic Society Annual Meeting. 2001 May 18–23; San Francisco, CA

    Google Scholar 

  49. Flood-Page PT, Menzies-Gow AN, Kay AB, et al. Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med 2003; 167(2): 199–204

    Article  PubMed  Google Scholar 

  50. Kips JC, O’Connor BJ, Langley SJ, et al. Results of a phase 1 trial with SCH55700, a humanized anti-IL-5 antibody, in severe, persistent asthma [abstract]. Am J Respir Crit Care Med 2000; 161: A505

    Google Scholar 

  51. van der Palen J, Klein JJ, Rovers MM. Compliance with inhaled medication and self-treatment guidelines following a self-management programme in adult asthmatics. Eur Respir J 1997; 10: 652–7

    PubMed  Google Scholar 

  52. O’Byrne PM, Inman MD, Parameswaran K. The trials and tribulations of IL-5, eosinophils, and allergic asthma. J Allergy Clin Immunol 2001; 108(4): 503–8

    Article  PubMed  Google Scholar 

  53. Gundel RH, Letts LG, Gleich GJ. Human eosinophil major basic protein induces airway constriction and airway hyperresponsiveness in primates. J Clin Invest 1991; 87: 1470–3

    Article  PubMed  CAS  Google Scholar 

  54. Jacoby DB, Fryer AD. Interaction of viral infections with muscarinic receptors. Clin Exp Allergy 1999; 29 Suppl. 2: 59–64

    PubMed  CAS  Google Scholar 

  55. Inman MD, Watson RM, Cockcroft DW, et al. Reproducibility of allergen-induced early and late asthmatic responses. J Allergy Clin Immunol 1995; 95: 1191–5

    Article  PubMed  CAS  Google Scholar 

  56. Sedgwick JB, Calhoun WJ, Gleich GJ, et al. Immediate and late airway response of allergic rhinitis patients to segmental antigen challenge: characterization of eosinophil and mast cell mediators. Am Rev Respir Dis 1991; 144(6): 1274–81

    PubMed  CAS  Google Scholar 

  57. Bryan SA, O’Connor BJ, Matti S, et al. Effects of recombinant human interleukin-12 on eosinophils, airway hyperreactivity and the late asthmatic response. Lancet 2000; 356: 2149–53

    Article  PubMed  CAS  Google Scholar 

  58. Muller BA, Leick CA, Smith RM, et al. Comparisons of specific and nonspecific bronchoprovocation in subjects with asthma, rhinitis, and healthy subjects. J Allergy Clin Immunol 1993; 91(3): 758–72

    Article  PubMed  CAS  Google Scholar 

  59. Fahy JV, Fleming HE, Wong HH, et al. The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am J Respir Crit Care Med 1997; 155: 1828–34

    PubMed  CAS  Google Scholar 

  60. Fahy JV. Reducing IgE levels as a strategy for the treatment of asthma. Clin Exp Allergy 2000; 30 Suppl. 1: 16–21

    Article  PubMed  Google Scholar 

  61. Tavernier J, Van der Heyden J, Verhee A, et al. Interleukin 5 regulates the isoform expression of its own receptor alpha-subunit. Blood 2000; 95(5): 1600–7

    PubMed  CAS  Google Scholar 

  62. Crimi E, Spanvello A, Neri M, et al. Dissociation between airway inflammation and airway hyperresponsiveness in allergic asthma. Am J Respir Crit Care Med 1998; 157: 4–9

    PubMed  CAS  Google Scholar 

  63. Rosi E, Ronchi MC, Grazzini M, et al. Sputum analysis, bronchial hyperresponsiveness, and airway function in asthma: results of a factor analysis. J Allergy Clin Immunol 1999; 103: 232–7

    Article  PubMed  CAS  Google Scholar 

  64. Haselden BM, Larche M, Meng Q, et al. Late asthmatic reactions provoked by intradermal injection of T-cell peptide epitopes are not associated with bronchial mucosal infiltration of eosinophils or T(H)2-type cells or with elevated concentrations of histamine or eicosanoids in bronchoalveolar fluid. J Allergy Clin Immunol 2001; 108(3): 394–401

    Article  PubMed  CAS  Google Scholar 

  65. Gauvreau GM, Doctor J, Watson RM, et al. Effects of inhaled budesonide on allergen-induced airway responses and airway inflammation. Am J Respir Crit Care Med 1996; 154: 1267–71

    PubMed  CAS  Google Scholar 

  66. Till S, Li B, Durham S, et al. Secretion of the eosinophil-active cytokines interleukin-5, granulocyte/macrophage colony-stimulating factor and interleukin-3 by bronchoalveolar lavage CD4+ and CD8+ T cell lines in atopic asthmatics, and atopic and non-atopic controls. Eur J Immunol 1995; 25(10): 2727–31

    Article  PubMed  CAS  Google Scholar 

  67. Corrigan CJ, Hamid Q, North J, et al. Peripheral blood CD4 but not CD8 t-lymphocytes in patients with exacerbation of asthma transcribe and translate messenger RNA encoding cytokines which prolong eosinophil survival in the context of a Th2-type pattern: effect of glucocorticoid therapy. Am J Respir Cell Mol Biol 1995; 12(5): 567–78

    PubMed  CAS  Google Scholar 

  68. Sun Q, Jones K, McClure B, et al. Simultaneous antagonism of interleukin-5, granulocyte-macrophage colony-stimulating factor, and interleukin-3 stimulation of human eosinophils by targetting the common cytokine binding site of their receptors. Blood 1999; 94(6): 1943–51

    PubMed  CAS  Google Scholar 

  69. Foster PS, Mould AW, Yang M, et al. Elemental signals regulating eosinophil accumulation in the lung. Immunol Rev 2001; 179: 173–81

    Article  PubMed  CAS  Google Scholar 

  70. Wills-Karp M, Luyimbazi J, Xu X, et al. Interleukin-13: central mediator of allergic asthma. Science 1998; 282(5397): 2258–61

    Article  PubMed  CAS  Google Scholar 

  71. Webb DC, McKenzie AN, Koskinen AM, et al. Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity. J Immunol 2000; 165(1): 108–13

    PubMed  CAS  Google Scholar 

  72. Borish LC, Nelson HS, Lanz MJ, et al. Interleukin-4 receptor in moderate atopic asthma: a phase I/II randomized, placebo-controlled trial. Am J Respir Crit Care Med 1999; 160: 1816–23

    PubMed  CAS  Google Scholar 

  73. Keane-Myers A, Wysocka M, Trinchieri G, et al. Resistance to antigen-induced airway hyperresponsiveness requires endogenous production of IL-12. J Immunol 1998; 161: 919–26

    PubMed  CAS  Google Scholar 

  74. Shi HZ, Chen Y-Q, Qin S-M. Inhaled il-5 increases concentrations of soluble intracellular adhesion molecule-1 in sputum from atopic asthmatic subjects. J Allergy Clin Immunol 1999; 103: 463–7

    Article  PubMed  CAS  Google Scholar 

  75. Kanehiro A, Takeda K, Joetham A, et al. Timing of administration of anti-VLA-4 differentiates airway hyperresponsiveness in the central and peripheral airways in mice. Am J Respir Crit Care Med 2000; 162 (3 Pt 1): 1132–9

    PubMed  CAS  Google Scholar 

  76. Douglas IS, Leff AR, Sperling AI. CD4+ T cell and eosinophil adhesion is mediated by specific ICAM-3 ligation and results in eosinophil activation. J Immunol 2000; 164(6): 3385–91

    PubMed  CAS  Google Scholar 

  77. Chihara J, Kakazu T, Higashimoto I, et al. Signaling through the beta2 integrin prolongs eosinophil survival. J Allergy Clin Immunol 2000; 106 (1 Pt 2): S99–103

    Article  PubMed  CAS  Google Scholar 

  78. Jose PJ, Griffiths-Johnson DA, Collins PD, et al. Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model for allergic airways inflammation. J Exp Med 1994; 179: 881–7

    Article  PubMed  CAS  Google Scholar 

  79. Gauvreau GM, Watson RM, O’Byrne PM. Kinetics of allergen-induced airway eosinophilic cytokine production and airway inflammation. Am J Respir Crit Care Med 1999; 160(2): 640–7

    PubMed  CAS  Google Scholar 

  80. Bertrand CP, Ponath PD. CCR3 blockade as a new therapy for asthma. Expert Opin Investig Drugs 2000; 9(1): 43–52

    Article  PubMed  CAS  Google Scholar 

  81. Dabbagh K, Xiao Y, Smith C, et al. Local blockade of allergic airway hyperreactivity and inflammation by the poxvirus-derived pan-CC-chemokine inhibitor vCCI. J Immunol 2000; 165(6): 3418–22

    PubMed  CAS  Google Scholar 

  82. Milgrom H, Fick Jr RB, Su JQ, et al. Treatment of allergic asthma with monoclonal anti-IgE antibody. rhuMAb- E25 Study Group. N Engl J Med 1999; 341(26): 1966–73

    Article  PubMed  CAS  Google Scholar 

  83. Busse W, Corren J, Lanier BQ, et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol 2001; 108(2): 184–90

    Article  PubMed  CAS  Google Scholar 

  84. Chang TW. The pharmacological basis of anti-IgE therapy. Nat Biotechnol 2000; 18(2): 157–62

    Article  PubMed  CAS  Google Scholar 

  85. Larche M, Robinson DS, Kay AB. The role of T lymphocytes in the pathogenesis of asthma. J Allergy Clin Immunol 2003; 111: 450–63

    Article  PubMed  CAS  Google Scholar 

  86. Stanciu LA, Djukanovic R. The role of ICAM-1 on T-cells in the pathogenesis of asthma. Eur Respir J 1998; 11(4): 949–57

    Article  PubMed  CAS  Google Scholar 

  87. Kon OM, Sihra BS, Compton CH, et al. Randomised, dose-ranging, placebo-controlled study of chimeric antibody to CD4 (keliximab) in chronic severe asthma. Lancet 1998; 352(9134): 1109–13

    Article  PubMed  CAS  Google Scholar 

  88. Kon OM, Kay AB. Anti-T cell strategies in asthma. Inflamm Res 1999; 48(10): 516–23

    Article  PubMed  CAS  Google Scholar 

  89. Taylor IK, O’Shaughnessy KM, Fuller R, et al. Effect of cysteinyl-leukotriene receptor antagonist ICI 204.219 on allergen-induced bronchoconstriction and airway hyperreactivity in atopic subjects. Lancet 1991; 337: 690–4

    Article  PubMed  CAS  Google Scholar 

  90. Sihra BS, Kon OM, Durham SR, et al. Effect of cyclosporin A on the allergen-induced late asthmatic reaction. Thorax 1997; 52: 447–52

    Article  PubMed  CAS  Google Scholar 

  91. Viola JP, Rao A. Role of the cyclosporin-sensitive transcription factor NFAT1 in the allergic response. Mem Inst Oswaldo Cruz 1997; 92 Suppl. 2: 147–55

    Article  PubMed  CAS  Google Scholar 

  92. Charles PJ, Smeenk RJ, De Jong J, et al. Assessment of antibodies to double-stranded DNA induced in rheumatoid arthritis patients following treatment with infliximab, a monoclonal antibody to tumor necrosis factor alpha: findings in open-label and randomized placebo-controlled trials. Arthritis Rheum 2000; 43(11): 2383–90

    Article  PubMed  CAS  Google Scholar 

  93. Kato Y, Manabe T, Tanaka H, et al. Effect of orally active Th1/Th2 balance modulator, M50367, on IgE production, eosinophilia, and airway hyperresponsiveness in mice. J Immunol 1999; 162: 7470–9

    PubMed  CAS  Google Scholar 

  94. Stirling RG, van Rensen EL, Barnes PJ, et al. Interleukin-5 induces CD34(+) eosinophil progenitor mobilization and eosinophil CCR3 expression in asthma. Am J Respir Crit Care Med 2001; 164(8 Pt 1): 1403–9.

    PubMed  CAS  Google Scholar 

  95. Kon OM, Sihra BS, Loh L-C, et al. The effects of an anti-CD4 monoclonal antibody, keliximab, on peripheral blood CD4+ T-cells in asthma. Eur Respir J 2001; 18: 45–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge the help and support of Dr Trevor Hansel, Medical Director of the Clinical Studies Unit, NHLI Royal Brompton Hospital whose determination led to the publication of the clinical allergen challenge study. In addition, I would like to thank Peter Barnes, Stephen Holgate and Peter Sterk and the co-investigators of the clinical study of mepoluzimab.[47]

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leckie, M.J. Anti-Interleukin-5 Monoclonal Antibodies. Am J Respir Med 2, 245–259 (2003). https://doi.org/10.1007/BF03256653

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256653

Keywords

Navigation