Skip to main content

Basic Components of Connective Tissues and Extracellular Matrix: Elastin, Fibrillin, Fibulins, Fibrinogen, Fibronectin, Laminin, Tenascins and Thrombospondins

  • Chapter
  • First Online:
Book cover Progress in Heritable Soft Connective Tissue Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 802))

Abstract

Collagens are the most abundant components of the extracellular matrix and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. Many other molecules, though lower in quantity, function as essential components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its muldomain structure plays a role of “master organizer” in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin, it also binds to a variety of compounds, particularly to various growth factors, and as such fibrinogen is a player in cardiovascular and extracellular matrix physiology. Elastin, an insoluble polymer of the monomeric soluble precursor tropoelastin, is the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of TGFβs through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Fibrillins represent the predominant core of the microfibrils in elastic as well as non-elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide a scaffold for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFβ. Increased expression of thrombospondin and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–698

    PubMed  CAS  Google Scholar 

  2. Leahy DJ, Aukhil I, Erickson HP (1996) 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84:155–164

    PubMed  CAS  Google Scholar 

  3. Potts JR, Campbell ID (1994) Fibronectin structure and assembly. Curr Opin Cell Biol 6:648–655

    PubMed  CAS  Google Scholar 

  4. Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, Mosher DF, Reinhardt DP (2009) Fibrillin assembly requires fibronectin. Mol Biol Cell 20:846–858

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Mao Y, Schwarzbauer J (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24:389–399

    PubMed  CAS  Google Scholar 

  6. Takahashi S, Leiss M, Moser M, Ohashi T, Kitao T, Heckmann D, Pfeifer A, Kessler H, Takagi J, Erickson HP, Fässler R (2007) The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol 178:167–178

    PubMed  CAS  Google Scholar 

  7. Singh P, Schwarzbauer JE (2012) Fibronectin and stem cell differentiation – lessons from chondrogenesis. J Cell Sci 125:3703–3712

    PubMed  CAS  Google Scholar 

  8. Dallas SL, Chen Q, Sivakumar P (2006) Dynamics of assembly and reorganization of extracellular matrix proteins. Curr Top Dev Biol 75:1–24

    PubMed  CAS  Google Scholar 

  9. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JCR, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki M, Patarroyo M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, von der Mark K, Wewer UM, Yamada Y, Yurchenco PD (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332

    PubMed  CAS  Google Scholar 

  10. Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 20:255–284

    PubMed  CAS  Google Scholar 

  11. Domogatskaya A, Rodin S, Tryggvason K (2012) Functional diversity of laminins. Annu Rev Cell Dev Biol 28:523–553

    PubMed  CAS  Google Scholar 

  12. MacDonald PR, Lustig A, Steinmetz MO, Kammerer RA (2010) Laminin chain assembly is regulated by specific coiled-coil interactions. J Struct Biol 170:398–405

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Grounds MD, Sorokin L, White J (2005) Strength at the extracellular matrix-muscle interface. Scand J Med Sci Sports 15:381–391

    PubMed  CAS  Google Scholar 

  14. Taylor SH, Al-Youha S, Van Agtmael T, Lu Y, Wong J, McGrouther DA, Kadler KE (2011) Tendon is covered by a basement membrane epithelium that is required for cell retention and the prevention of adhesion formation. PLoS One 6:e16337

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Molloy TJ, de Bock CE, Wang Y, Murrell GA (2006) Gene expression changes in SNAP-stimulated and iNOS-transfected tenocytes–expression of extracellular matrix genes and its implications for tendon-healing. J Orthop Res 24:1869–1882

    PubMed  CAS  Google Scholar 

  16. Sato N, Nakamura M, Chikama T, Nishida T (1999) Abnormal deposition of laminin and type IV collagen at corneal epithelial basement membrane during wound healing in diabetic rats. Jpn J Ophthalmol 43:343–347

    PubMed  CAS  Google Scholar 

  17. Della Corte A, De Santo LS, Montagnani S, Quarto C, Romano G, Amarelli C, Scardone M, De Feo M, Cotrufo M, Caianiello G (2006) Spatial patterns of matrix protein expression in dilated ascending aorta with aortic regurgitation: congenital bicuspid valve versus Marfan’s syndrome. J Heart Valve Dis 15:20–27

    PubMed  Google Scholar 

  18. Fish RJ, Neerman-Arbez M (2012) Fibrinogen gene regulation. Thromb Haemost 108:419–426

    PubMed  CAS  Google Scholar 

  19. Doolittle RF, Goldbaum DM, Doolittle LR (1978) Designation of sequences involved in the “coiled-coil” interdominal connections in fibrinogen: constructions of an atomic scale model. J Mol Biol 120:311–325

    PubMed  CAS  Google Scholar 

  20. Ariens RA, Lai TS, Weisel JW, Greenberg CS, Grant PJ (2002) Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 100:743–754

    PubMed  CAS  Google Scholar 

  21. Cilia La Corte AL, Philippou H, Ariëns RA (2011) Role of fibrin structure in thrombosis and vascular disease. Adv Protein Chem Struct Biol 83:75–127

    PubMed  Google Scholar 

  22. Sahni A, Francis CW (2000) Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 96:3772–3778

    PubMed  CAS  Google Scholar 

  23. Sahni A, Odrljin T, Francis CW (1998) Binding of basic fibroblast growth factor to fibrinogen and fibrin. J Biol Chem 273:7554–7559

    PubMed  CAS  Google Scholar 

  24. Clark RA, Lanigan JM, DellaPelle P, Manseau E, Dvorak HF, Colvin RB (1982) Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol 79:264–269

    PubMed  CAS  Google Scholar 

  25. Donaldson DJ, Mahan JT, Amrani D, Hawiger J (1989) Fibrinogen-mediated epidermal cell migration: structural correlates for fibrinogen function. J Cell Sci 94:101–108

    PubMed  CAS  Google Scholar 

  26. Armstrong PC, Peter K (2012) GPIIb/IIIa inhibitors: from bench to bedside and back to bench again. Thromb Haemost 107:808–814

    PubMed  CAS  Google Scholar 

  27. Muiznieks LD, Weiss AS, Keeley FW (2010) Structural disorder and dynamics of elastin. Biochem Cell Biol 88:239–250

    PubMed  CAS  Google Scholar 

  28. Mithieux SM, Wise SG, Weiss AS (2013) Tropoelastin – a multifaceted naturally smart material. Adv Drug Deliv Rev 65:421–428

    PubMed  CAS  Google Scholar 

  29. Kielty CM (2006) Elastic fibres in health and disease. Expert Rev Mol Med 8:1–23

    PubMed  Google Scholar 

  30. Csiszar K (2001) Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol 70:1–32

    PubMed  CAS  Google Scholar 

  31. Lee JE, Kim Y (2006) A tissue-specific variant of the human lysyl oxidase-like protein 3 (LOXL3) functions as an amine oxidase with substrate specificity. J Biol Chem 281:37282–37290

    PubMed  CAS  Google Scholar 

  32. Kim YM, Kim EC, Kim Y (2011) The human lysyl oxidase-like 2 protein functions as an amine oxidase toward collagen and elastin. Mol Biol Rep 38:145–149

    PubMed  CAS  Google Scholar 

  33. Hinek A, Rabinovitch M (1994) 67-kD elastin-binding protein is a protective “companion” of extracellular insoluble elastin and intracellular tropoelastin. J Cell Biol 126:563–574

    PubMed  CAS  Google Scholar 

  34. Yeo GC, Keeley FW, Weiss AS (2011) Coacervation of tropoelastin. Adv Colloid Interface Sci 167:94–103

    PubMed  CAS  Google Scholar 

  35. Kozel BA, Rongish BJ, Czirok A, Zach J, Little CD, Davis EC, Knutsen RH, Wagenseil JE, Levy MA, Mecham RP (2006) Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters. J Cell Physiol 207:87–96

    PubMed  CAS  Google Scholar 

  36. Berk DR, Bentley DD, Bayliss SJ, Lind A, Urban Z (2012) Cutis laxa: a review. J Am Acad Dermatol 66:842.e1–842.e17

    Google Scholar 

  37. Baccarani-Contri M, Vincenzi D, Cicchetti F, Mori G, Pasquali-Ronchetti I (1990) Immunocytochemical localization of proteoglycans within normal elastin fibers. Eur J Cell Biol 53:305–312

    PubMed  CAS  Google Scholar 

  38. Gheduzzi D, Guerra D, Bochicchio B, Pepe A, Tamburro AM, Quaglino D, Mithieux S, Weiss AS, Pasquali Ronchetti I (2005) Heparan sulphate interacts with tropoelastin, with some tropoelastin peptides and is present in human dermis elastic fibers. Matrix Biol 24:15–25

    PubMed  CAS  Google Scholar 

  39. Kozel BA, Ciliberto CH, Mecham RP (2004) Deposition of tropoelastin into the extracellular matrix requires a competent elastic fiber scaffold but not live cells. Matrix Biol 23:23–34

    PubMed  CAS  Google Scholar 

  40. Wagenseil JE, Mecham RP (2012) Elastin in large artery stiffness and hypertension. J Cardiovasc Transl Res 5:264–273

    PubMed Central  PubMed  Google Scholar 

  41. Mithieux SM, Weiss AS (2005) Elastin. Adv Protein Chem 70:437–461

    PubMed  CAS  Google Scholar 

  42. Chung MI, Miao M, Stahl RJ, Chan E, Parkinson J, Keeley FW (2006) Sequences and domain structures of mammalian, avian, amphibian, and teleost tropoelastins: clues to the evolutionary history of elastin. Matrix Biol 25:495–504

    Google Scholar 

  43. Karnik SK, Brooke BS, Bayes-Genis A, Sorensen L, Wythe JD, Schwartz RS, Keating MT, Li DY (2003) A critical role for elastin signaling in vascular morphogenesis and disease. Development 130:411–423

    PubMed  CAS  Google Scholar 

  44. Mecham RP (1998) Overview of extracellular matrix. In: Current protocols in cell biology. Wiley, New York

    Google Scholar 

  45. Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

    Google Scholar 

  46. Wagenseil JE, Mecham RP (2009) Vascular extracellular matrix and arterial mechanics. Physiol Rev 89:957–989

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Kostrominova TY, Brooks SV (2013) Age-related changes in structure and extracellular matrix protein expression levels in rat tendons. Age 35:2203–2214

    Google Scholar 

  48. Greenwald SJ (2008) Ageing of the conduit arteries. J Pathol 211:157–172

    Google Scholar 

  49. Li Z, Froehlich J, Galis ZS, Lakatta EG (1999) Increased expression of matrix metalloproteinase-2 in the thickened intima of aged rats. Hypertension 33:116–123

    PubMed  CAS  Google Scholar 

  50. Tamarina NA, McMillan WD, Shively VP, Pearce WH (1999) Expression of matrix metalloproteinases and their inhibitors in anuerysm and normal aorta. Surgery 122:264–271

    Google Scholar 

  51. Allaire E, Forough R, Clowes M, Starcher B, Clowes AW (1998) Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J Clin Invest 102:1413–1420

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Jiang L, Wang M, Zhang J, Monticone RE, Telljohann R, Spinnetti G, Pintus G, Lakatta EG (2008) Increased calpain-1 activity mediates age-associated angiotensin II signaling of vascular smooth muscle cells. PLoS One 3:e2231

    PubMed Central  PubMed  Google Scholar 

  53. Castro MM, Rizzi E, Figueiredo-Lopes L, Fernandes K, Bendhack LM, Pitol DL, Gerlach RF, Tanus-Santos JE (2008) Metalloproteinase inhibition ameliorates hypertension and prevents vascular dysfunction and remodeling in renovascular hypertensive rats. Atherosclerosis 198:320–331

    PubMed  CAS  Google Scholar 

  54. Wolinsky H (1970) Response of the rat aortic media to hypertension. Morphological and chemical studies. Circ Res 26:507–522

    PubMed  CAS  Google Scholar 

  55. Todorovich-Hunter L, Johnson D, Ranger P, Keeley F, Rabinovitch M (1988) Altered elastin and collagen synthesis associated with progressive pulmonary hypertension induced by monocrotaline. A biochemical and ultrastructural study. Lab Invest 58:184–195

    PubMed  CAS  Google Scholar 

  56. O’Connor WN, Davis JB Jr, Geissler R, Cottrill CM, Noonan JA, Todd EP (1985) Supravalvular aortic stenosis. Clinical and pathological observations in six patients. Arch Pathol Lab Med 109:179–185

    PubMed  Google Scholar 

  57. Urban Z, Michels VV, Thibodeau SN, Davis EC, Bonnefont J-P, Munnich A, Eyskens B, Gewillig M, Devriendt K, Boyd CD (2000) Isolated supravalvular aortic stenosis: functional haploinsufficiency of the elastin gene as a result of nonsense-mediated decay. Hum Genet 106:577–588

    PubMed  CAS  Google Scholar 

  58. Rodriguez-Revenga L, Iranzo P, Badenas C, Puig S, Carrio A, Mila M (2004) A novel elastin gene mutation resulting in an autosomal dominant from of cutis laxa. Arch Dermatol 149:1135–1139

    Google Scholar 

  59. Tassabehji M, Metcalfe K, Hurst J, Ashcroft GS, Kielty C, Wilmot C, Donnai D, Read AP, Jones CJP (1998) An elastin gene mutation producing abnormal tropoelastin and abnormal elastic fibres in a patient with autodomal dominant cutis laxa. Hum Mol Genet 7:1021–1028

    PubMed  CAS  Google Scholar 

  60. Li DY, Brooke D, Davis EC, Mecham RP, Sorensen LK, Boak KK, Eichwald E, Keating MT (1998) Elastin is an essential determinant of arterial morphogenesis. Nature 393:276–289

    PubMed  CAS  Google Scholar 

  61. Faury G, Pezet M, Knutsen RH, Boyle WA, Heximer SP, MacLean SE, Minkes RK, Blumer KJ, Kovacs A, Kelly DP, Li DY, Starcher B, Mecham RP (2003) Developmental adaptation of the mouse cardiovascular system to elastin haploinsufficiency. J Clin Invest 112:1419–1428

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Schwill S, Seppelt P, Grünhagen J, Ott CE, Jugold M, Ruhparwar A, Robinson PN, Karck M, Kallenbach K (2013) The fibrillin-1 hypomorphic mgR/mgR murine model of Marfan syndrome shows severe elastolysis in all segments of the aorta. J Vasc Surg 57:1628–1636

    PubMed  Google Scholar 

  63. Kielty CM, Sherratt MJ, Marson A, Baldock C (2005) Fibrillin microfibrils. Adv Protein Chem 70:405–436

    PubMed  CAS  Google Scholar 

  64. Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguineti C, Bonadio J, Mecham RP, Ramirez F (1994) Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol 124:855–863

    PubMed  CAS  Google Scholar 

  65. Charbonneau NL, Dzamba BJ, Ono RN, Keene DR, Corson GM, Reinhardt DP, Sakai LY (2003) Fibrillins can co-assemble in fibrils, but fibrillin fibril composition displays cell-specific differences. J Biol Chem 278:2740–2749

    PubMed  CAS  Google Scholar 

  66. Cain SA, Morgan A, Sherratt MJ, Ball SG, Shuttleworth CA, Kielty CM (2006) Proteomic analysis of fibrillin-rich microfibrils. Proteomics 6:111–122

    PubMed  CAS  Google Scholar 

  67. Robinson PN, Arteaga-Solis E, Baldock C, Collod-Béroud G, Booms P, De Paepe A, Dietz HC, Guo G, Handford PA, Judge DP, Kielty CM, Loeys B, Milewicz DM, Ney A, Ramirez F, Reinhardt DP, Tiedemann K, Whiteman P, Godfrey M (2006) The molecular genetics of Marfan syndrome and related disorders. J Med Genet 43:769–787

    PubMed  CAS  Google Scholar 

  68. Milewicz DM, Grossfield J, Cao SN, Kielty C, Covitz W, Jewett T (1995) A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome. J Clin Invest 95:2373–2378

    PubMed Central  PubMed  CAS  Google Scholar 

  69. Raghunath M, Putnam EA, Ritty T, Hamstra D, Park ES, Tschodrich-Rotter M, Peters P, Rehemtulla A, Milewicz DM (1999) Carboxy-terminal conversion of profibrillin to fibrillin at a basic site by PACE/furin-like activity required for incorporation in the matrix. J Cell Sci 112:1093–1100

    PubMed  CAS  Google Scholar 

  70. Hubmacher D, Sabatier L, Annis DS, Mosher DF, Reinhardt DP (2011) Homocysteine modifies structural and functional properties of fibronectin and interferes with the fibronectin-fibrillin-1 interaction. Biochemistry 50:5322–5332

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Yanagisawa H, Davis EC (2010) Unraveling the mechanism of elastic fiber assembly: the roles of short fibulins. Int J Biochem Cell Biol 42:1084–1093

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Wachi H, Nonaka R, Sato F, Shibata-Sato K, Ishida M, Iketani S, Maeda I, Okamoto K, Urban Z, Onoue S, Seyama Y (2008) Characterization of the molecular interaction between tropoelastin and DANCE/fibulin-5. J Biochem 143:633–639

    PubMed  CAS  Google Scholar 

  73. Hambleton S, Valeyev NV, Muranyi A, Knott V, Werner JM, McMichael AJ, Handford PA, Downing AK (2004) Structural and functional properties of the human notch-1 ligand binding region. Structure 12:2173–2183

    PubMed  CAS  Google Scholar 

  74. Yanagisawa H, Schluterman MK, Brekken RA (2009) Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J Cell Commun Signal 3:337–347

    PubMed Central  PubMed  Google Scholar 

  75. Zheng Q, Davis EC, Richardson JA, Starcher BC, Li T, Gerard RD, Yanagisawa H (2007) Molecular analysis of fibulin-5 function during de novo synthesis of elastic fibers. Mol Cell Biol 27:1083–1095

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Hirai M, Ohbayashi T, Horiguchi M, Okawa K, Hagiwara A, Chien KR, Kita T, Nakamura T (2007) Fibulin-5/DANCE has an elastogenic organizer activity that is abrogated by proteolytic cleavage in vivo. J Cell Biol 176:1061–1071

    PubMed  CAS  Google Scholar 

  77. Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li T (2004) Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet 36:178–182

    PubMed  CAS  Google Scholar 

  78. Horiguchi M, Inoue T, Ohbayashi T, Hirai M, Noda K, Marmorstein LY, Yabe D, Takagi K, Akama TO, Kita T, Kimura T, Nakamura T (2009) Fibulin-4 conducts proper elastogenesis via interaction with cross-linking enzyme lysyl oxidase. Proc Natl Acad Sci U S A 106:19029–19034

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Sato F, Wachi H, Ishida M, Nonaka R, Onoue S, Urban Z, Starcher BC, Seyama Y (2007) Distinct steps of cross-linking, self-association, and maturation of tropoelastin are necessary for elastic fiber formation. J Mol Biol 369:841–851

    PubMed  CAS  Google Scholar 

  80. Klenotic PA, Munier FL, Marmorstein LY, Anand-Apte B (2004) Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1): implications for macular degenerations. J Biol Chem 279:30469–30473

    PubMed  CAS  Google Scholar 

  81. Ramirez F, Dietz HC (2007) Fibrillin-rich microfibrils: structural determinants of morphogenetic and homeostatic events. J Cell Physiol 213:326–330

    PubMed  CAS  Google Scholar 

  82. DeVega A, Iwamoto T, Yamada Y (2009) Fibulins: multiple roles in matrix structures and tissue functions. Cell Mol Life Sci 66:1890–1902

    CAS  Google Scholar 

  83. Zhang HY, Timpl R, Sasaki T, Chu ML, Ekblom P (1996) Fibulin-1 and fibulin-2 expression during organogenesis in the developing mouse embryo. Dev Dyn 205:348–364

    PubMed  CAS  Google Scholar 

  84. Tsuda T, Wang H, Timpl R, Chu ML (2001) Fibulin-2 expression marks transformed mesenchymal cells in developing cardiac valves, aortic arch vessels and coronary vessels. Dev Dyn 222:89–100

    PubMed  CAS  Google Scholar 

  85. Tucker RP, Drabikowski K, Hess JF, Ferralli J, Chiquet-Ehrismann R, Adams JC (2006) Phylogenetic analysis of the tenascin gene family: evidence of origin early in the chordate lineage. BMC Evol Biol 6:60

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Tucker RP, Chiquet-Ehrismann R (2009) The regulation of tenascin expression by tissue microenvironments. Biochim Biophys Acta 1793:888–892

    PubMed  CAS  Google Scholar 

  87. Okamoto H, Imanaka-Yoshida K (2012) Matricellular proteins: new molecular targets to prevent heart failure. Cardiovasc Ther 30:e198–e209

    PubMed  CAS  Google Scholar 

  88. Chiquet-Ehrismann R, Kalla P, Pearson CA, Beck K, Chiquet M (1988) Tenascin interferes with fibronectin action. Cell 53:383–390

    PubMed  CAS  Google Scholar 

  89. Huang W, Chiquet-Ehrismann R, Moyano JV, Garcia-Pardo V, Orend G (2001) Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Cancer Res 61:8586–8594

    PubMed  CAS  Google Scholar 

  90. Midwood KS, Schwarzbauer JS (2002) Tenascin-C modulates matrix contraction via focal adhesion kinase- and Rho-mediated signaling pathways. Mol Biol Cell 13:3601–3613

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Chiquet-Ehrismann R, Chiquet M (2003) Regulation and putative functions during pathological stress. J Pathol 200:488–499

    PubMed  CAS  Google Scholar 

  92. Jones FS, Jones PL (2000) The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 218:235–259

    PubMed  CAS  Google Scholar 

  93. Kreja L, Liedert A, Schlenker H, Brenner RE, Fiedler J, Friemert B, Dürselen L, Ignatius A (2012) Effects of mechanical strain on human mesenchymal stem cells and ligament fibroblasts in a textured poly(L-lactide) scaffold for ligament tissue engineering. J Mater Sci Mater Med 23:2575–2582

    PubMed  CAS  Google Scholar 

  94. Järvinen TA, Józsa L, Kannus P, Järvinen TL, Hurme T, Kvist M, Pelto-Huikko M, Kalimo H, Järvinen M (2003) Mechanical loading regulates the expression of tenascin-C in the myotendinous junction and tendon but does not induce de novo synthesis in the skeletal muscle. J Cell Sci 116:857–866

    PubMed  Google Scholar 

  95. Mackie EJ, Scott-Burden T, Hahn AW, Kern F, Bernhardt J, Regenass S, Weller A, Bühler FR (1992) Expression of tenascin by vascular smooth muscle cells. Alterations in hypertensive rats and stimulation by angiotensin II. Am J Pathol 141:377–388

    PubMed  CAS  Google Scholar 

  96. Page TH, Charles PJ, Piccinini AM, Nicolaidou V, Taylor PC, Midwood KS (2012) Raised circulating tenascin-C in rheumatoid arthritis. Arthritis Res Ther 14:R260

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Chockalingam PS, Glasson SS, Lohmander LS (2013) Tenascin-C levels in synovial fluid are elevated after injury to the human and canine joint and correlate with markers of inflammation and matrix degradation. Osteoarthritis Cartilage 21:339–345

    PubMed  CAS  Google Scholar 

  98. Imanaka-Yoshida K (2012) Tenascin-C in cardiovascular tissue remodeling: from development to inflammation and repair. Circ J 76:2513–2520

    PubMed  CAS  Google Scholar 

  99. Midwood KS, Hussenet T, Langlois B, Orend G (2011) Advances in tenascin-C biology. Cell Mol Life Sci 68:3175–3199

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Perrotta I, Russo E, Camastra C, Filice G, Di Mizio G, Colosimo F, Ricci P, Tripepi S, Amorosi A, Triumbari F, Donato G (2011) New evidence for a critical role of elastin in calcification of native heart valves: immunohistochemical and ultrastructural study with literature review. Histopathology 59:504–513

    PubMed  Google Scholar 

  101. Flück M, Tunc-Civelek V, Chiquet M (2000) Rapid and reciprocal regulation of tenascin-C and tenascin-Y expression by loading of skeletal muscle. J Cell Sci 113:3583–3591

    PubMed  Google Scholar 

  102. Chiquet M, Gelman L, Lutz R, Maier S (2009) From mechanostransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta 1793:911–920

    PubMed  CAS  Google Scholar 

  103. Hagios C, Koch M, Spring J, Chiquet M, Chiquet-Ehrismann R (1996) Tenascin-Y: a protein of novel domain structure is secreted by differentiated fibroblasts of muscle connective tissue. J Cell Biol 134:1499–1512

    PubMed  CAS  Google Scholar 

  104. Berndt A, Kosmehl H, Katenkamp D, Tauchmann V (1994) Appearance of the myofibroblastic phenotype in Dupuytren’s disease is associated with a fibronectin, laminin, collagen type IV and tenascin extracellular matrix. Pathobiology 62:55–58

    PubMed  CAS  Google Scholar 

  105. Mackey AL, Brandstetter S, Schjerling P, Bojsen-Moller J, Qvortrup K, Pedersen MM, Doessing S, Kjaer M, Magnusson SP, Langberg H (2011) Sequences response of extracellular matrix de-adhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. FASEB J 25:1943–1959

    PubMed  CAS  Google Scholar 

  106. Flück M, Mund SI, Schittny JC, Klossner S, Durieux AC, Giraud MN (2008) Mechano-regulated tenascin-C orchestrates muscle repair. Proc Natl Acad Sci U S A 105:13662–13667

    PubMed Central  PubMed  Google Scholar 

  107. Murphy-Ullrich JE, Iozzo RV (2012) Thrombospondins in physiology and disease: new tricks for old dogs. Matrix Biol 31:152–154

    PubMed Central  PubMed  CAS  Google Scholar 

  108. Adams JC, Lawler J (2004) The thrombospondins. Int J Biochem Cell Biol 36:961–968

    PubMed Central  PubMed  CAS  Google Scholar 

  109. Adams JC, Lawler J (2011) The thrombospondins. Cold Spring Harb Perspect Biol 3:a00971

    Google Scholar 

  110. Mosher DF, Adams JC (2012) Adhesion-modulating/matricellular ECM protein families: a structural, functional and evolutionary appraisal. Matrix Biol 31:155–161

    PubMed  CAS  Google Scholar 

  111. Lu A, Miao M, Schoeb TR, Agarwal A, Murphy-Ullrich JE (2011) Blockade of TSP-1 dependent TGF-beta activity reduces renal injury and proteinuria in a murine model of diabetic nephropathy. Am J Pathol 178:2573–2586

    PubMed  CAS  Google Scholar 

  112. Belmadani S, Bernal J, Wei CC, Pallero MA, Dell’italia L, Murphy-Ullrich JE, Brecek KH (2007) A thrombospondin-1 antagonist of transforming growth factor-beta activation blocks cardiomyopathy in rats with diabetes and elevated angiotensin II. Am J Pathol 171:777–789

    PubMed  CAS  Google Scholar 

  113. Chipev CC, Simman R, Hatch G, Katz AE, Siegel DM, Simon M (2000) Myofibroblast phenotype and apoptosis in keloid and palmar fibroblasts in vitro. Cell Death Differ 7:166–176

    PubMed  CAS  Google Scholar 

  114. Mimura Y, Ihn H, Jinnin M, Assano Y, Yamane K, Tamaki K (2005) Constitutive thrombospondin-1 overexpression contributes to autocrine transforming growth factor-beta signaling in cultured scleroderma fibroblasts. Am J Pathol 166:1451–1463

    PubMed  CAS  Google Scholar 

  115. Sweetwyne MT, Murphy-Ullrich JE (2012) Thrombospondin1 in tissue repair and fibrosis: TGF-β-dependent and independent mechanisms. Matrix Biol 31:178–186

    PubMed Central  PubMed  CAS  Google Scholar 

  116. Rogers NM, Yao M, Novelli EM, Thomson AW, Roberts DD, Isenberg JS (2012) Activated CD47 regulates multiple vascular and stress responses: implications for acute kidney injury and its management. Am J Physiol Renal Physiol 303:F1117–F1125

    PubMed  CAS  Google Scholar 

  117. Agah A, Kyriakides TR, Lawler J, Bornstein P (2002) The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP/2-null mice. Am J Pathol 161:831–839

    PubMed  CAS  Google Scholar 

  118. Hohenstein B, Daniel C, Hausknecht B, Boehmer K, Riess R, Amann KU, Hugo CP (2008) Correlation of enhanced thrombospondin-1 expression, TGF-beta signalling, and proteinuria in human type-2 diabetic nephropathy. Nephrol Dial Transplant 23:3880–3887

    PubMed  CAS  Google Scholar 

  119. Chandrasekaran S, Guo NH, Rodrigues RG, Kaiser J, Roberts DD (1999) Pro-adhesive and chemotactic activities of thrombospondin-1 for breast carcinoma cells are mediated by alpha3beta1 integrin and regulated by insulin-like growth factor-1 and CD98. J Biol Chem 274:11408–11416

    PubMed  CAS  Google Scholar 

  120. Chen H, Sottile J, Strickland DK, Mosher DF (1996) Binding and degradation of thrombospondin-1 mediated through heparan sulfate proteoglucans and low-density-lipoprotein receptor-related protein: localization of the functional activity to the trimeric N-terminal heparin-binding region of thrombospondin-1. Biochem J 318:959–963

    PubMed  CAS  Google Scholar 

  121. Murphy-Ullrich JE, Poczatek M (2000) Activation of latent TGF-beta by thrombospondin-1: mechanism and physiology. Cytokine Growth Factor Rev 11:59–69

    PubMed  CAS  Google Scholar 

  122. Elzie CA, Murphy-Ullrich JE (2004) The N-terminus of thrombospondin: the domain stands apart. Int J Biochem Cell Biol 36:1090–1101

    PubMed  CAS  Google Scholar 

  123. Goldblum SE, Young BA, Wang P, Murphy-Ullrich JE (1999) Thrombospondin-1 induces tyrosine phosphorylation of adherens junction proteins and regulates an endothelial paracellular pathway. Mol Biol Cell 10:1537–1551

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Robert DD, Miller TW, Rogers NM, Yao M, Isenberg JS (2012) The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47. Matrix Biol 31:162–169

    Google Scholar 

  125. Hess D, Keusch JJ, Lesnik Oberstein SA, Hennekam RC, Hofsteenge J (2008) Peter plus syndrome is a new congenital disorder of glycosylation and involves defective O-glycosylation of thrombospondin type 1 repeats. J Biol Chem 283:7354–7360

    PubMed  CAS  Google Scholar 

  126. Heinonen TY, Maki M (2009) Peters’-plus syndrome is a congenital disorder of glycosylation caused by a defect in the beta1,3-glucosyltransferase that modifies thrombospondin type 1 repeats. Ann Med 41:2–10

    PubMed  CAS  Google Scholar 

  127. Shimizu R, Saito R, Hoshino K, Ogawa K, Negishi T, Nishimura J, Mitsui N, Osawa M, Ohashi H (2010) Severe Peters Plus syndrome-like phenotype with anterior eye staphyloma and hypoplastic left heart syndrome: proposal of a new syndrome. Congenit Anom (Kyoto) 50:197–199

    Google Scholar 

  128. Hanna NN, Eickholt K, Agamanolis D, Burnstine R, Edward DP (2010) Atypical Peters plus syndrome with new associations. J AAPOS 14:181–183

    PubMed  Google Scholar 

  129. Eberwein P, Reinhard T, Agostini H, Poloschek CM, Guthoff R, Auw-Haedrich C (2010) Intensive intracorneal keloid formation in a case of Peters plus syndrome and in Peters anomaly with maximum manifestation. Ophthalmologe 107:178–181

    PubMed  CAS  Google Scholar 

  130. Oldberg Å, Antonssen P, Lindholm K, Heinegård D (1992) COMP (cartilage oligomeric matrix protein) is structurally related to thrombospondins. J Biol Chem 267:22346–22350

    PubMed  CAS  Google Scholar 

  131. Rock MJ, Holden P, Horton WA, Cohn DH (2010) Cartilage oligometric matrix protein promotes cell attachment via two independent mechanisms involving CD47 and αVβ3 integrin. Mol Cell Biochem 338:215–224

    PubMed Central  PubMed  CAS  Google Scholar 

  132. Holden P, Meadows RS, Chapman KL, Grant ME, Kadler KE, Briggs MD (2001) Cartilage oligomeric matrix protein interacts with type IX collagen, and disruptions to these interactions identify a pathogenetic mechanism in a bone dysplasia family. J Biol Chem 276:6046–6055

    PubMed  CAS  Google Scholar 

  133. Rosenberg K, Olsson H, Mörgelin M, Heinegård D (1998) Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem 273:20397–20403

    PubMed  CAS  Google Scholar 

  134. Di Cesare P, Hauser N, Lehman D, Pasumarti S, Paulsson M (1994) Cartilage oligomeric matrix protein (COMP) is an abundant component of tendon. FEBS Lett 354:237–240

    Google Scholar 

  135. Heinegård D (2009) Proteoglycans and more – from molecules to biology. Int J Exp Path 70:575–586

    Google Scholar 

  136. Smith RKW, Zunino L, Webbon PM, Heinegård D (1997) The distribution of cartilage oligomeric matrix protein (COMP) in tendon and its variation with tendon site, age and load. Matrix Biol 16:255–271

    PubMed  CAS  Google Scholar 

  137. Södersten F, Hultenby K, Heinegård D, Johnston C, Ekman S (2013) Immunolocalization of collagens (I and III) and cartilage oligomeric matrix protein in the normal and injured equine superficial digital flexor tendon. Connect Tissue Res 54:62–69

    PubMed Central  PubMed  Google Scholar 

  138. Halasz K, Kassner A, Morgelin M, Heinegård D (2007) COMP as a catalyst in collagen fibrillogenesis. J Biol Chem 282:31166–31173

    PubMed  CAS  Google Scholar 

  139. Hesselstrand R, Kassner A, Heinegård D, Saxne T (2008) COMP: a candidate molecule in the pathogenesis of systemic sclerosis with a potential as a disease marker. Ann Rheum Dis 67:1242–1248

    PubMed  CAS  Google Scholar 

  140. Smith MR, Wright IM, Minshall GJ, Dudhia J, Verheyen K, Heinegård D, Smith RK (2011) Increased cartilage oligomeric matrix protein concentrations in equine digital flexor tendon sheath synovial fluid predicts interthecal tendon damage. Vet Surg 40:54–58

    PubMed  Google Scholar 

  141. Wang L, Wang X, Kong W (2010) ADAMTS-7, a novel proteolytic culprit in vascular remodeling. Sheng Li Xue Bao 62:285–294

    PubMed  CAS  Google Scholar 

  142. Riessen R, Fenchel M, Chen H, Axel DL, Karsch KR, Lawler J (2001) Cartilage oligomeric matrix protein (thrombospondin-5) is expressed by human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21:47–54

    PubMed  CAS  Google Scholar 

  143. Riessen R, Isner JM, Blessing E, Loushin C, Nikol S, Wight TN (1994) Regional differences in the distribution of the proteoglycans biglycan and decorin in the extracellular matrix of atherosclerotic and restenotic human coronary arteries. Am J Pathol 144:962–974

    PubMed  CAS  Google Scholar 

  144. Du Y, Wang Y, Wang L, Liu B, Tian Q, Liu CJ, Zhang T, Xu Q, Zhu Y, Ake O, Qi Y, Tang C, Kong W, Wang X (2011) Cartilage oligomeric matrix protein inhibits vascular smooth muscle calcification by interacting with bone morphogenetic protein-2. Circ Res 108:917–928

    PubMed  CAS  Google Scholar 

  145. Posey KL, Hecht JT (2008) The role of cartilage oligomeric matrix protein (COMP) in skeletal disease. Curr Drug Targets 9:869–877

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslava Halper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Halper, J., Kjaer, M. (2014). Basic Components of Connective Tissues and Extracellular Matrix: Elastin, Fibrillin, Fibulins, Fibrinogen, Fibronectin, Laminin, Tenascins and Thrombospondins. In: Halper, J. (eds) Progress in Heritable Soft Connective Tissue Diseases. Advances in Experimental Medicine and Biology, vol 802. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7893-1_3

Download citation

Publish with us

Policies and ethics