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Abstract
Background Deep learning (DL), a subset of artificial intelligence (AI), has been applied to
pneumothorax diagnosis to aid physician diagnosis, but no meta-analysis has been performed.
Methods A search of multiple electronic databases through September 2022 was performed to identify
studies that applied DL for pneumothorax diagnosis using imaging. Meta-analysis via a hierarchical model
to calculate the summary area under the curve (AUC) and pooled sensitivity and specificity for both DL
and physicians was performed. Risk of bias was assessed using a modified Prediction Model Study Risk of
Bias Assessment Tool.
Results In 56 of the 63 primary studies, pneumothorax was identified from chest radiography. The total
AUC was 0.97 (95% CI 0.96–0.98) for both DL and physicians. The total pooled sensitivity was 84% (95%
CI 79–89%) for DL and 85% (95% CI 73–92%) for physicians and the pooled specificity was 96% (95% CI
94–98%) for DL and 98% (95% CI 95–99%) for physicians. More than half of the original studies (57%) had
a high risk of bias.
Conclusions Our review found the diagnostic performance of DL models was similar to that of physicians,
although the majority of studies had a high risk of bias. Further pneumothorax AI research is needed.

Introduction
Pneumothorax is defined as the presence of air in the pleural space, i.e. the space between the lungs and
the chest wall [1, 2]. Pneumothorax is a common disease in the population, with an incidence of primary
spontaneous pneumothorax of 7.4/100 000 per year in men and 1.2/100 000 per year in women and an
incidence of secondary spontaneous pneumothorax of 6.3/100 000 per year in men and 2.0/100 000 per
year in women [3]. In contrast to the benign clinical course of primary spontaneous pneumothorax,
secondary spontaneous pneumothorax is a potentially life-threatening event [2]. Additionally, the
recurrence rate is high: ∼30% in primary spontaneous pneumothorax and ∼40% in secondary spontaneous
pneumothorax [4–7]. Pneumothorax is one of the conditions the American College of Radiology
recommends should be communicated to the physician within minutes to avoid patient decompensation [8].

Chest radiography is the simplest and most common examination [9, 10], and pneumothorax is usually
diagnosed in conjunction with the patient’s history and clinical presentation [2]. Although errors or delays
in diagnosis can harm the patient, the signs of pneumothorax on chest radiography are subtle and up to
20% of occult pneumothoraces are missed on examination [11]. One reason for this is said to be that
the workload far exceeds the number of radiologists [12, 13], and computer-based approaches have
been developed to assist physicians in their daily work and are expected to be an approach to prevent
missed cases.
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Deep learning (DL) is one of the fields of artificial intelligence (AI) and it has improved tremendously in
the field of medical imaging [14, 15], and with it, the number of certified medical devices that can be used
in clinical practice has been increasing [16]. It is formally defined as a computational model that consists
of multiple processing layers and learns representations of data with multiple levels of abstraction [17]. In
fact, given raw data, DL develops the representations needed for pattern recognition on its own and does
not require domain expertise to design data structures or feature extractors [14, 17]. This feature of DL
allows it to learn the features important for classification on its own, rather than being directed by a
human. Thus, DL requires careful bias assessment and accumulation of original articles for model training
and evaluation [18].

This study is a systematic review and meta-analysis of 63 studies on the application of DL to
pneumothorax diagnosis, comparing the diagnostic performance of DL and physicians in each modality.
Studies in which physicians’ pneumothorax diagnosis performance is supported by DL are examined
separately. At this time, there are no meta-analyses of DL diagnosis for pneumothorax.

Methods
Study registration and guidelines
This systematic review was prospectively registered with PROSPERO (CRD42022351985). Our study
followed the guidelines of the Preferred Reporting Items for a Systematic Review and Meta-analysis of
Diagnostic Test Accuracy Studies (PRISMA-DTA) [19, 20]. Two authors performed all screening, data
collection, applicability assessments and bias assessments in duplicate (T.S. and D.U.), and a third
independent reviewer was consulted in the event of a disagreement (T.M.).

Search strategy and study selection
The search strategy for identifying studies that developed and/or validated a DL model for the purposes of
pneumothorax diagnosis was developed with an information specialist. The search strategy was as follows:
original articles that included the words or variations of “artificial intelligence” or “deep learning” or
“neural networks” and also the word “pneumothorax” were included. Peer-reviewed studies in any
language from inception to September 2022 from the following databases were evaluated: MEDLINE,
Scopus, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL), and the Institute of
Electrical and Electronics Engineers and the Institution of Engineering and Technology IEEE Xplore. The
titles and abstracts were screened prior to full-text screening. Studies were included if they were: primary
research studies of pneumothorax diagnosis in humans that developed and/or validated a DL model. Any
target population, study setting or comparator group was eligible. Studies were excluded if they were:
conference abstracts or proceedings, letters to the editor, review articles, or segmentation or detection only
studies. Excluded studies, including the reason for exclusion, were recorded in a PRISMA flow diagram
(figure 1) [20].

Data extraction
We extracted information including study design, sample size, comparator groups and numerical results
into a predefined data sheet. Contingency tables were constructed using the available diagnostic
performance information for each model. These were used to calculate summary area under the curve
(AUC), sensitivity and specificity. All available contingency tables were included in the meta-analysis. The
datasets involved in the development of a model were defined as the training set (for training the model),
tuning set (for tuning hyperparameters) and validation test set (for estimating the performance of the
model) [21].

Statistical analysis
We estimated the diagnostic performance of both the DL model and physicians by carrying out a
meta-analysis with random effects of studies providing both internal and external validation contingency
tables [22]. These contingency tables were used to construct hierarchical summary receiver operating
characteristic (ROC) curves and to calculate pooled sensitivities and specificities, with the anticipation of a
high level of heterogeneity [23]. Between-study heterogeneity was represented using the 95% prediction
region of the hierarchical summary ROC curves. Statistical significance was defined as a p-value of <0.05.
All calculations were performed using R version 4.0.0 with the metafor and meta4diag libraries [24].

Quality assessment
The Prediction Model Study Risk of Bias Assessment Tool (PROBAST) was used to assess bias and
applicability of the included studies [18]. This tool evaluates bias across four domains (participants,
predictors, outcomes and analysis) and then these domains are combined into an overall assessment. Our
assessment of bias and applicability in the first domain was based on both the images used to develop the
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models and the patient population the models were tested on. We did not include domain 2 (predictors) in
the assessment of bias or applicability. Details of modifications made to PROBAST are provided in
supplementary table S1.

Publication bias
Publication bias was assessed using the effective sample size funnel plot described by EGGER et al. [25].

Results
Study selection and characteristics
We identified 532 studies, of which 255 were duplicates. After screening, 63 studies were included in the
systematic review and 32 studies were included in the meta-analysis (figure 1 and table 1). Among the 63
studies, 56 studies identified pneumothorax on chest radiography [26–81], four studies on computed
tomography [82–85], one study on ECG [86], one study used chest radiography and photography using a
smartphone [87], and one study used chest radiography and tabular data [88]. Six studies developed and
internally tuned DLs [37, 52, 63, 67, 74, 76], 25 studies also internally tested their DLs [32, 33, 35, 38,
40, 41, 43, 45, 47, 48, 50, 55, 60, 65, 69, 70, 73, 75, 79–83, 85, 86] and 32 studies externally tested the
DLs [26–31, 34, 36, 39, 42, 44, 46, 49, 51, 53, 54, 56–59, 61, 62, 64, 66, 68, 71, 72, 77, 78, 84, 87, 88].

255 duplicates removed

277 records screened

86 full-text articles assessed for eligibility

32 studies included in meta-analysis

63 studies included in systematic review

31 excluded due to insufficient information to

    allow contingency table extraction

Total 532 records identified:

    96 from MEDLINE

    250 from Scopus

    137 from Web of Science

    6 from CENTRAL

    43 from IEEE Xplore

191 excluded:

    67 conference proceedings

    26 review articles

    12 editorial comments

    2 dataset articles

    23 other types of articles

    6 no human subject

    30 no pneumothorax task

    2 no deep learning task

    15 no diagnostic task

    6 other modality

    2 not accessible

23 excluded:

    23 no pneumothorax diagnostic task 

FIGURE 1 Eligibility criteria. CENTRAL: Cochrane Central Register of Controlled Trials.
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TABLE 1 Study characteristics

Study Study type Imaging
modality

Comparison
group

Images per set, n Reference standard Meta-analysis

Development Test Training Tuning Internal
testing

External
testing

LEE, 2022 [68] External CXR Physician,
physician+DL

454 000 500/550 Expert consensus +

RUDOLPH, 2022 [39] External CXR Physician 563/6258 Expert consensus +
PARK, 2022 [77] + External CXR 12 089 1220 Expert consensus
SHIN, 2022 [58] External CXR 2273 Expert opinion +
HALLINAN, 2022 [51] + Internal/

external
CXR 80 921 4260 25 596/

24 709
525 NLP from CXR report+additional

expert opinion/NLP from CXR
report/expert consensus

+

GIPSON, 2022 [56] External CXR Report Over 500 000 1400 Expert consensus +
SHAMRAT, 2022 [69] + Internal CXR NR NR 16 000 Various
HONG, 2022 [44] External CXR Physician,

physician+DL
676 Expert consensus +

JIN, 2022 [57] External CXR Physician,
physician+DL

2536/1470/
2000

Expert consensus

KIM, 2022 [45] + Internal CXR 8000/
29 282

2000/
2000

4000 NR, NLP from CXR report/NR +

WANG, 2022 [33] + Internal CXR 10 675 1372/3205 Expert consensus +
RUDOLPH, 2022 [28] + External CXR Physician 42 942 1634 563 Expert consensus +
MANGALMURTI, 2022 [75] + Internal CXR 5250 750 1500 NLP from CXR report/NR +
KAKKAR, 2022 [67] + CXR 84 090 28 030 NLP from CXR report
IQBAL, 2022 [65] + Internal# CXR 10 675

+2592
1372
+664

664/664/
1372

NLP from CXR report+expert
consensus

FENG, 2022 [30] + Internal/
external

CXR 15 371 1952 1914/1607 9273 Expert consensus +

THIAN, 2022 [61] + External CXR 233 163 58 291 525 NLP from CXR report/additional
expert consensus

+

LEE, 2022 [86] + Internal ECG Physician 99 663 32 464/100 Pneumothorax treated invasively
TIAN, 2022 [48] + Internal CXR 107 442 1284 1684 Expert consensus+NLP from CXR

report
+

SEAH, 2021 [59] External CXR 4568 Expert consensus+NLP from CXR
report

KUO, 2021 [87] + Internal/
external

CXR+
photography

189 892/1337/1337/
189 892/248 263/
1759/1759/248 263

1759/1337 1759/1337 NLP from CXR report +

HONG, 2021 [70] + Internal CXR 8000
+45 866

2000
+2000

4000 NLP from CXR report+NR/NR +

RUECKEL, 2021 [73] + Internal CXR 75 067 3062 NLP from CXR report+expert
consensus

CHO, 2021 [71] + Internal/
external

CXR 6683 949 1902 1210 Expert consensus with CT +

Continued
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TABLE 1 Continued

Study Study type Imaging
modality

Comparison
group

Images per set, n Reference standard Meta-analysis

Development Test Training Tuning Internal
testing

External
testing

NIEHUES, 2021 [49] + Internal/
external

CXR 17 265 513 583 NR Expert consensus with CT/NLP
from CXR report

KAO, 2021 [31] + External CXR Physician 1258 314 3739 Expert consensus (technologist
+radiology resident)

+

MOSQUERA, 2021 [36] + Internal/
external

CXR 8540 2135 4376 1064 Expert consensus/NLP from CXR
report/expert opinion with CXR

report

+

WANG, 2021 [62] + External CXR 33 696 601 442 NR+NLP from CXR report/NR
NAM, 2021 [53] + Internal/

external
CXR Physician,

physician+DL
143 768 2523 190 673/202 Expert consensus/expert opinion

with CT/NLP+additional expert
consensus

+

CHOI, 2021 [64] External CXR Physician,
physician+DL

244 Expert consensus

LYU, 2021 [84] External CT 403 Expert consensus
KIM, 2021 [72] External CXR 1694/1858/

2335
Expert consensus

LI, 2021 [88] + Internal/
external

CXR+
tabular

Physician 6239 847 1715 1804 NR/NLP from CXR report

THIAN, 2021 [46] + External CXR 163 007 17 121 511/321/538/
519/517/525

NLP from CXR report/expert
consensus+NLP+additional expert

consensus

+

ABEDALLA, 2021 [37] + CXR 10 842 1205 Expert consensus
SUNG, 2021 [26] External CXR Physician,

physician+DL
228 Expert consensus with CT

DRAELOS, 2021 [82] + Internal CT 25 355 2085 7209 NLP (99% agreement with a
radiologist)

WANG, 2021 [81] + Internal CXR 86 524 26 080 NLP from CXR report
RUECKEL, 2020 [66] External CXR 6434 Consensus (medical student

+radiology resident)
CHEN, 2020 [55] + Internal CXR 2137 531 Expert consensus +
RÖHRICH, 2020 [85] + Internal CT 27 7 567 Expert opinion
WANG, 2020 [38] + Internal CXR 9329 1346 1372 Expert consensus +
YI, 2020 [34] + External CXR Physician 111 518 602 NLP from CXR report/NLP

+additional expert opinion
+

HWANG, 2020 [42] External CXR Report 488 602/314/
1055/388/170

Expert consensus+expert opinion +

KITAMURA, 2020 [76] + CXR 841 1335 Expert opinion
PARK, 2020 [47] + Internal CXR Physician 14 048 1561 200 Expert consensus+expert opinion

with CT
WANG, 2020 [79] + Internal CXR 86 524 25 596 NLP from CXR report
ELKINS, 2020 [52] + CXR 41 408 10 351 NLP from CXR report

Continued
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TABLE 1 Continued

Study Study type Imaging
modality

Comparison
group

Images per set, n Reference standard Meta-analysis

Development Test Training Tuning Internal
testing

External
testing

LAI, 2023 [78] + External CXR 2051/4379 175 NLP from CXR report/NR +
MAJKOWSKA, 2020 [35] + Internal CXR Physician 589 153

+68 801
1991
+2412

1962/1818 Expert consensus/NLP from CXR
report

+

LI, 2019 [83] + Internal CT Physician 76 4 200 Expert consensus
PARK, 2019 [27] + Internal/

external
CXR 12 230 1379 1329 Expert consensus +

LIANG, 2019 [50] + Internal CXR 86 524 25 596 Expert consensus+NLP from CXR
report

HWANG, 2019 [54] + Internal/
external

CXR Physician 87 695 1050 1089 200/245/190/
184/196

Expert consensus +

TAYLOR, 2018 [29] + Internal/
external

CXR 9309 1993 1701 112 120 Expert consensus/NLP from CXR
report

+

RAJPURKAR, 2018 [43] + Internal CXR Physician 98 637 6351 420 NLP from CXR report/NLP
+additional expert consensus

+

CICERO, 2017 [80] + Internal CXR 34 897 3204 NLP+additional expert consensus +
CHEN, 2019 [60] + Internal CXR 86 524/89 687 25 596/

22 433
NLP from CXR report

ZHOU, 2021 [40] + Internal CXR NR NR NR Expert consensus+NLP from CXR
report

LUO, 2022 [74] + CXR 2530+2530 NR
LIN, 2020 [63] + CXR 270 Various
HAQ, 2021 [41] + Internal CXR 12 000 1000 NLP from CXR report
WANG, 2020 [32] + Internal CXR 7070 1768 2213 Consensus (medical student

+radiology resident)
+

If there is more than one trial, data are expressed as n/n. CXR: chest radiography; DL: deep learning; NLP: natural language processing; CT: computed tomography; NR: not reported. #: data
overlap.
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Five studies compared the performance of DL with physicians: two studies compared DL with experts (not
a resident or technologist) [42, 83], two studies compared DL with both experts and non-experts [43, 68]
and one study compared DL with non-experts only [34]. Two studies compared the performance of DL
with radiology reports written in daily clinical practice [42, 56]. Two studies included physician
performance with and without DL assistance as a comparison group [44, 68]. Detailed physician
characteristics are shown in supplementary table S4.

As for model development, to generate a reference standard for image labelling, 18 studies used expert
consensus [27–33, 35–38, 49, 53–55, 71, 77, 83], two relied on the opinion of a single expert reader
[76, 85], 16 used pre-existing radiological reports or other imaging modalities [34, 41, 43, 45, 46, 52, 60,
61, 67, 75, 78–82, 87], one study defined their reference standard as surgical confirmation (indicated for
surgery) [86], 11 studies used mixed methods (any combination of the aforementioned) [40, 47, 48, 50, 51,
62, 63, 65, 69, 70, 73] and two studies did not report how their reference standard was generated [74, 88].
As for model testing, to generate a reference standard for image labelling, 26 studies used expert consensus
[26–28, 30–33, 38, 39, 44, 51, 54–57, 61, 64, 66, 68, 71–73, 77, 80, 83, 84], two relied on the opinion of a
single expert reader [58, 85], 11 used pre-existing radiological reports or other imaging modalities [35, 40,
41, 48, 50, 60, 79, 81, 82, 87, 88], one study defined their reference standard as surgical confirmation
(indicated for surgery) [86], 12 studies used mixed methods (any combination of the aforementioned)
[29, 34, 36, 42, 43, 46, 47, 49, 53, 59, 65, 69] and five studies did not report how their reference standard
was generated [45, 62, 70, 75, 78].

Study participants
There was large variation in the number of participants represented by each dataset (median (interquartile
range (IQR)) 5288 (516–30 805); range 100–538 390) (supplementary table S2). The proportion of
participants with pneumothorax in each dataset also ranged widely (median (IQR) 17.2% (10.8–25.0%)).
23 studies did not describe the sex of the study participants [27, 31–33, 36–38, 55, 59, 62, 65, 69–71, 73,
76–78, 81, 82, 86–88] and 24 studies did not include age information [27, 31–33, 36–38, 55, 59, 62, 65,
69–71, 73, 74, 76–78, 81, 82, 86–88]. Detailed dataset characteristics are shown in supplementary table S2.

Model development
The size of the training (median (IQR) 17 265 (8540–86 524)), tuning (median (IQR) 1598 (924–3468))
and test (median (IQR) 1684 (575–3107)) datasets at the patient level varied widely (table 1). Two out of
50 (4%) studies that developed a model did not report the size of each dataset separately [40, 69]. In
studies that performed external model validation, the median dataset size was 1137 (range 175–112 120).
17 studies included localisation of pneumothorax in model output to improve end-user interpretability
[26–28, 30–33, 36–38, 40, 47, 56, 59, 68, 84, 85]. Detailed DL characteristics are shown in supplementary
table S3.

Quality assessment
PROBAST assessment led to an overall rating of 36 (57%) studies as high risk of bias (figure 2). The
main contributing factors to this assessment were studies that did not perform external validation or
internally validated models with small sample sizes. Five (8%) studies were judged to be at high risk of
bias in the participant domain because of inclusion and exclusion criteria.

Meta-analysis
We extracted 89 contingency tables from 32 studies that provided sufficient information to calculate
contingency tables for pneumothorax classification [27–36, 38, 39, 42–46, 48, 51, 53–56, 58, 61, 68, 70, 71,
75, 78, 80, 87]. 68 contingency tables were extracted for reported DL performance and 21 contingency tables
were extracted for physician performance. Hierarchical summary ROC curves from the studies evaluating DL
or physician performance of all studies are included in figure 3. The total AUC was 0.97 (95% CI 0.96–0.98)
for DL and 0.97 (95% CI 0.96–0.98) for physicians. The total pooled sensitivity was 84% (95% CI 79–89%)
for DL and 85% (95% CI 73–92%) for physicians and the pooled specificity was 96% (95% CI 94–98%) for
DL and 98% (95% CI 95–99%) for physicians (table 2). Two studies reported physician performance with DL
assistance and one study showed no significant difference with respect to specificity, but a moderate increase in
sensitivity and an increase in accuracy. The other study showed no significant difference with respect to
sensitivity or specificity, but a slight increase in accuracy [44, 68]. Accuracy, sensitivity and specificity changed
from 92–99% to 97–99%, 67–94% to 85–96% and 100% to 99–100% before and after the use of DL,
respectively (table 3).
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Publication bias
We assessed publication bias by regression analysis of the funnel plot to quantify asymmetry
(supplementary figure S1) and it suggested a high risk of publication bias (p<0.05).

Discussion
In our meta-analysis of DL for pneumothorax diagnosis, DL and physician competence were comparable.
The total AUC was 0.97 (95% CI 0.96–0.98) for DL and 0.97 (95% CI 0.96–0.98) for physicians. The
total pooled sensitivity was 84% (95% CI 79–89%) for DL and 85% (95% CI 73–92%) for physicians and
the pooled specificity was 96% (95% CI 94–98%) for DL and 98% (95% CI 95–99%) for physicians. To
the best of our knowledge, this article is the first systematic review and meta-analysis of pneumothorax
diagnostic DL.

We found data investigating two possible clinical uses of diagnostic DL for pneumothorax during our
review: one is to use DL for triage and the other is to use DL as a second opinion. Although
pneumothorax is regularly diagnosed in patients presenting to the emergency department, it is detected in a
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relatively low number of all radiographs performed. Hence, an easy and accurate screening tool is needed
which may help prioritise patients coming to hospitals. In fact, one such study reports a reduction in the
reporting delay for pneumothorax [30] and two studies reported that reading times were shorter with AI
assisting the physician than with the physician alone [26, 53]. Additionally, in intensive care units, chest
radiographs are frequently taken and their reading is often labour intensive. The support of AI is expected
to both improve the speed of reading and reduce the total workload [89]. Two papers reported data on the
use of DL to complement physicians’ decision making [44, 68]. The small number precludes
meta-analysis, although one study showed no significant difference with respect to specificity, but a
moderate increase in sensitivity and an increase in accuracy; the other study showed no significant
difference with respect to sensitivity or specificity (table 3). Although further data related to the
performance of physicians supported with DL is required, these two works support the results obtained
from this meta-analysis. There is one AI report of chest ultrasound, which is considered more sensitive
than chest radiography, and this is an area of promising future research [90]. AI models at present are most
useful as a screening tool to determine the presence or absence of pneumothorax. It does not incorporate
individual patient’s circumstances and other medical conditions in the making of management decisions,
especially regarding treatment and follow-up, as physicians currently have to do. Whether additional AIs to
measure detailed features (e.g. size, evidence of tension, etc.) of the pneumothorax are warranted, and how
they could best integrate patients’ clinical details, will be subjects for future studies.

Confounding factors in images can create bias in diagnostic imaging DL. About 10% (six out of 63) of the
articles included in this study mentioned chest tubes as a confounding factor, indicating that DL can
recognise tubes and that this can be a strong bias. In other words, a DL may recognise a chest drain as a
therapeutic intervention for pneumothorax and diagnose pneumothorax. Although physicians may also use
such medical device information to suspect the presence of pneumothorax, a DL with such biases may
have poor performance for diagnosing pneumothorax prior to the intervention. Although the impact of
such confounding factors may be small or large, their impact should be taken into account when evaluating
the model for clinical use to prevent any detriment to the patient. There is a study which reported that the
influence of such confounding factors can be avoided when training DL by using annotation of the
pneumothorax cavity [73]. External devices (e.g. chest tubes, central lines or indwelling pleural catheters)
and patient features (e.g. skin folds and thickened pleura) may impact the results. These aspects need to be
investigated in future research.

In this study, we found that the majority of the included articles were at high risk of bias according to
PROBAST [18]. One reason for this is that medical DL research is at the intersection between medicine
and engineering, each with different concepts. There were both medical and engineering papers in our
included articles. PROBAST is only one method of evaluating bias from a medical perspective. Of course,
for medical researchers, medical DL must first adhere to the “do no harm” principle for patients [91].
Therefore, it is important to evaluate medical DL in various validation settings and this should be an

TABLE 2 Pooled metrics in meta-analysis

Sensitivity,
% (95% CI)

Specificity,
% (95% CI)

AUC
(95% CI)

Contingency
tables, n

Deep learning, all studies 84 (79–89) 96 (94–98) 0.97 (0.96–0.98) 68
Physician, all studies 85 (73–92) 98 (95–99) 0.97 (0.96–0.98) 21

AUC: area under the curve.

TABLE 3 Performance summary of the study physicians with deep learning (DL)

Study Sensitivity, % (95% CI) Specificity, % (95% CI) Accuracy, % (95% CI)

LEE, 2022 [68]
Alone 94.3 (91.4–96.4) 99.5 (99.1–99.7) 98.8 (98.3–99.1)
With DL 95.6 (93.0–97.5) 99.7 (99.4–99.9) 99.2 (98.8–99.5)

HONG, 2022 [44]
Alone 67.1 (59.6–74.6) 99.6 (99.1–100.0) 92.3 (90.3–94.3)
With DL 85.4 (79.1–91.6) 99.3 (98.6–100.0) 96.8 (95.4–98.1)
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important factor to prevent bias. On the other hand, DL, which benefits not only medicine but also many
other fields, is a product of the accumulated knowledge of engineering researchers. For engineering
researchers, one of the key factors is that the DL must perform better relative to prior research and the
ingenuity to achieve this can be the novelty. From this aspect, it is reasonable to develop and validate the
DL using the same open dataset as prior studies to demonstrate improved performance. Open datasets have
contributed greatly to the development of DL because of their ease of use, the results are highly
reproducible and comparisons with previous studies are easy to make even if there is bias in a clinical
sense. In addition, patient privacy issues may make it difficult to access each hospital’s data. In order to
better use DL created by engineering research in medical practice, medical researchers must verify biases
from various perspectives, understand the characteristics of DL, and conduct research that will benefit
patients and reduce the daily clinical burden on physicians. Medical and engineering researchers should
cooperate and share roles to advance medical care. About half (32 out of 63) of the papers included in this
study were externally validated, which is the most important factor in the evaluation of AI. The high risk
of bias in this study was largely influenced by the fact that 35 out of the 63 papers included risks of bias
in the analysis portion of the study. It is likely that a more refined design of the analysis would allow for a
low risk of bias study and also a better understanding of the pneumothorax diagnosis AI model.

The present study has several limitations. More than half (57%) of the included studies were classified as
high risk of bias by PROBAST, limiting the conclusions that could be drawn from the meta-analysis. In
addition, some papers lacked training and validation details, which contributed to the high risk of bias.
Also, in terms of comparing model performance, it is reasonable that multiple studies used the same large
open database for training and validation, but actual clinical practice will have a variety of different
cohorts, which reduces the applicability of our conclusions to significantly different cohorts. Furthermore,
publication bias also affected the results of this study.

In order to provide better medical care to patients and reduce the burden on physicians, pneumothorax
diagnosis DL and physicians may complement each other to improve the accuracy of pneumothorax
diagnosis in clinical practice. DL will be used in various medical fields in the future. Therefore, it is
important to build up evidence by integrating individual original research and capturing overall
characteristics through systematic review and meta-analysis.

Points for clinical practice

• Use of AI as an adjunct to physicians’ diagnosis of pneumothorax may have potential benefits and
deserves further exploration.

Questions for future research

• How much improvement has been made in the performance of pneumothorax diagnosis by physicians
with AI assistance?

• To what extent do confounding factors inherent in chest radiographs impact pneumothorax diagnostic AIs?

Provenance: Submitted article, peer reviewed.

Data availability: Study protocol and metadata are available from the corresponding author.
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