Supplement to: Prevalence, imaging patterns, and risk factors of interstitial lung disease in connective tissue disease: a systematic review and meta-analysis

Greta M. Joy, Omri A. Arbiv, Carmen K. Wong, Stacey D. Lok, Nicola A. Adderley, Krzysztof M. Dobosz, Kerri A. Johannson, Christopher J. Ryerson
TABLE OF CONTENTS

SUPPLEMENTAL FIGURES

Figure S1a Prevalence of RA-ILD, study level data .. 3
Figure S1b Prevalence of SSc-ILD, study level data .. 4
Figure S1c Prevalence of IIM-ILD, study level data .. 5
Figure S1d Prevalence of pSS-ILD, study level data .. 6
Figure S1e Prevalence of MCTD-ILD, study level data ... 7
Figure S1f Prevalence of SLE-ILD, study level data .. 8
Figure S2a Study level data on RA-ILD CT patterns .. 9
Figure S2b Study level data on SSc-ILD CT patterns .. 10
Figure S2c Study level data on IIM-ILD CT patterns .. 11
Figure S2d Study level data on pSS-ILD CT patterns .. 12
Figure S2e Study level data on MCTD-ILD CT patterns .. 13
Figure S2f Study level data on SLE-ILD CT patterns ... 14
Figure S2f Study level data on UCTD-ILD CT patterns ... 15

SUPPLEMENTAL TABLES

Table S1a Embase search strategy ... 16
Table S1b Medline search strategy .. 16
Table S2 Number of studies and total sample size addressing each objective. Data are
reported as number of studies (included conference abstracts), N = total number of patients.
... 16
Table S3a Characteristics of studies addressing prevalence of RA-ILD, distribution of CT
patterns of RA-ILD, and risk factors for development of RA-ILD 19
Table S3b Characteristics of studies addressing prevalence of SSc-ILD, distribution of CT
patterns of SSc-ILD, and risk factors for development of SSc-ILD. No studies address risk
factors for specific CT patterns ... 20
Table S3c Characteristics of studies addressing prevalence of IIM-ILD, distribution of CT
patterns of IIM-ILD, and risk factors for development of IIM-ILD 21
Table S3d Characteristics of studies addressing prevalence of pSS-ILD, distribution of CT
patterns of pSS-ILD, and risk factors for development of pSS-ILD 22
Table S3e Characteristics of studies addressing prevalence of SLE-ILD, distribution of CT
patterns of SLE-ILD, and risk factors for development of SLE-ILD. No studies addressed CT
pattern risk factors .. 23
Table S3f Characteristics of studies addressing prevalence of MCTD-ILD, distribution of CT
patterns of MCTD-ILD, and risk factors for development of MCTD-ILD. No studies addressed risk factors for specific CT patterns. .. 24
Table S3g Characteristics of studies addressing prevalence of UCTD-ILD, distribution of CT
patterns of UCTD-ILD, and risk factors for development of UCTD-ILD. No studies addressed prevalence of ILD or risk factors for ILD in UCTD ... 25
Table S4 List of references, study characteristics, and quality of evidence 26
Table S5 Pooled prevalence of ILD CT patterns, by connective tissue disease. Data shown
are pooled percent (95% confidence interval). Heterogeneity is displayed as I² statistic and p
value ... 68
SUPPLEMENTAL FIGURES

Figure S1a Prevalence of RA-ILD, study level data

<table>
<thead>
<tr>
<th>Study</th>
<th>ES (95% CI)</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergulu (2021)</td>
<td>0.01 (0.01, 0.01)</td>
<td>9756</td>
</tr>
<tr>
<td>Richman (2013)</td>
<td>0.04 (0.02, 0.07)</td>
<td>274</td>
</tr>
<tr>
<td>Duane (2019)</td>
<td>0.04 (0.03, 0.05)</td>
<td>1129</td>
</tr>
<tr>
<td>Atukorala (2012)</td>
<td>0.05 (0.03, 0.09)</td>
<td>231</td>
</tr>
<tr>
<td>Chen (2013)</td>
<td>0.06 (0.03, 0.12)</td>
<td>103</td>
</tr>
<tr>
<td>Rocha Munoz (2015)</td>
<td>0.06 (0.05, 0.09)</td>
<td>660</td>
</tr>
<tr>
<td>Mori (2012)</td>
<td>0.07 (0.06, 0.10)</td>
<td>366</td>
</tr>
<tr>
<td>Almotobi (2017)</td>
<td>0.07 (0.06, 0.10)</td>
<td>419</td>
</tr>
<tr>
<td>Ong (2022)</td>
<td>0.07 (0.06, 0.10)</td>
<td>732</td>
</tr>
<tr>
<td>Panida (2011)</td>
<td>0.05 (0.05, 0.13)</td>
<td>152</td>
</tr>
<tr>
<td>Mori (2011)</td>
<td>0.05 (0.05, 0.12)</td>
<td>231</td>
</tr>
<tr>
<td>Bo (2012)</td>
<td>0.00 (0.07, 0.11)</td>
<td>565</td>
</tr>
<tr>
<td>Aubert (2011)</td>
<td>0.00 (0.06, 0.13)</td>
<td>252</td>
</tr>
<tr>
<td>Zhang (2016)</td>
<td>0.10 (0.08, 0.12)</td>
<td>636</td>
</tr>
<tr>
<td>Izuka (2021)</td>
<td>0.12 (0.11, 0.14)</td>
<td>1325</td>
</tr>
<tr>
<td>Wang (2015)</td>
<td>0.15 (0.12, 0.18)</td>
<td>544</td>
</tr>
<tr>
<td>Kloster (2019)</td>
<td>0.16 (0.11, 0.22)</td>
<td>167</td>
</tr>
<tr>
<td>Okada (2016)</td>
<td>0.17 (0.14, 0.20)</td>
<td>499</td>
</tr>
<tr>
<td>Yew (2021)</td>
<td>0.19 (0.15, 0.23)</td>
<td>403</td>
</tr>
<tr>
<td>Dawson (2001)</td>
<td>0.19 (0.13, 0.26)</td>
<td>150</td>
</tr>
<tr>
<td>Wang (2016)</td>
<td>0.25 (0.18, 0.34)</td>
<td>111</td>
</tr>
<tr>
<td>Fujita (2020)</td>
<td>0.27 (0.20, 0.35)</td>
<td>116</td>
</tr>
<tr>
<td>Chen (2015)</td>
<td>0.31 (0.24, 0.39)</td>
<td>133</td>
</tr>
<tr>
<td>Overall (I^2 = 98.1%, p = 0.000)</td>
<td>0.11 (0.07, 0.15)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ILD: interstitial lung disease, RA: rheumatoid arthritis
Figure S1b Prevalence of SSc-ILD, study level data

<table>
<thead>
<tr>
<th>Study</th>
<th>ES (95% CI)</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martins Rocha (2016)</td>
<td>0.22 (0.15, 0.31)</td>
<td>198</td>
</tr>
<tr>
<td>Volfinkaya (2016)</td>
<td>0.26 (0.16, 0.36)</td>
<td>72</td>
</tr>
<tr>
<td>Cahenri (2018)</td>
<td>0.27 (0.20, 0.35)</td>
<td>120</td>
</tr>
<tr>
<td>Prudhom (2018)</td>
<td>0.38 (0.29, 0.47)</td>
<td>1,233</td>
</tr>
<tr>
<td>Delliere (2019)</td>
<td>0.32 (0.20, 0.45)</td>
<td>97</td>
</tr>
<tr>
<td>Zenotta (2012)</td>
<td>0.32 (0.20, 0.45)</td>
<td>37</td>
</tr>
<tr>
<td>Cezzi (2012)</td>
<td>0.32 (0.20, 0.45)</td>
<td>103</td>
</tr>
<tr>
<td>Scuss (2016)</td>
<td>0.33 (0.21, 0.46)</td>
<td>45</td>
</tr>
<tr>
<td>Flamot (2012)</td>
<td>0.33 (0.21, 0.46)</td>
<td>722</td>
</tr>
<tr>
<td>Vandenbroek (2021)</td>
<td>0.34 (0.30, 0.38)</td>
<td>110</td>
</tr>
<tr>
<td>Cen (2021)</td>
<td>0.54 (0.50, 0.59)</td>
<td>110</td>
</tr>
<tr>
<td>Meines (2011)</td>
<td>0.54 (0.50, 0.59)</td>
<td>110</td>
</tr>
<tr>
<td>Calixago Moncag (2022)</td>
<td>0.56 (0.50, 0.62)</td>
<td>447</td>
</tr>
<tr>
<td>Alfahm (2016)</td>
<td>0.56 (0.52, 0.59)</td>
<td>1006</td>
</tr>
<tr>
<td>Avcu (2016)</td>
<td>0.56 (0.52, 0.59)</td>
<td>1102</td>
</tr>
<tr>
<td>van Bih (2014)</td>
<td>0.35 (0.29, 0.42)</td>
<td>770</td>
</tr>
<tr>
<td>Biernardi (2017)</td>
<td>0.35 (0.29, 0.42)</td>
<td>180</td>
</tr>
<tr>
<td>Donajimite (2018)</td>
<td>0.36 (0.26, 0.47)</td>
<td>76</td>
</tr>
<tr>
<td>Emile (2011)</td>
<td>0.56 (0.50, 0.62)</td>
<td>195</td>
</tr>
<tr>
<td>Nokes (2013)</td>
<td>0.57 (0.50, 0.64)</td>
<td>171</td>
</tr>
<tr>
<td>Rinus (2014)</td>
<td>0.57 (0.50, 0.64)</td>
<td>96</td>
</tr>
<tr>
<td>Balasi (2019)</td>
<td>0.38 (0.32, 0.46)</td>
<td>88</td>
</tr>
<tr>
<td>Jung (2018)</td>
<td>0.38 (0.32, 0.46)</td>
<td>58</td>
</tr>
<tr>
<td>Hoffmann-Voll (2019)</td>
<td>0.40 (0.34, 0.46)</td>
<td>35</td>
</tr>
<tr>
<td>Kowaschn (2018)</td>
<td>0.46 (0.36, 0.56)</td>
<td>36</td>
</tr>
<tr>
<td>Favo (2016)</td>
<td>0.46 (0.36, 0.56)</td>
<td>36</td>
</tr>
<tr>
<td>Jinta (2012)</td>
<td>0.41 (0.33, 0.50)</td>
<td>157</td>
</tr>
<tr>
<td>Zerletta (2020)</td>
<td>0.42 (0.33, 0.50)</td>
<td>97</td>
</tr>
<tr>
<td>Bending (2014)</td>
<td>0.43 (0.36, 0.49)</td>
<td>339</td>
</tr>
<tr>
<td>Sanchez-Caro (2013)</td>
<td>0.42 (0.35, 0.49)</td>
<td>1374</td>
</tr>
<tr>
<td>Watego (2016)</td>
<td>0.44 (0.37, 0.51)</td>
<td>32</td>
</tr>
<tr>
<td>Yajya (2021)</td>
<td>0.44 (0.36, 0.51)</td>
<td>320</td>
</tr>
<tr>
<td>Savarro (2010)</td>
<td>0.45 (0.35, 0.55)</td>
<td>40</td>
</tr>
<tr>
<td>Yajya (2019)</td>
<td>0.45 (0.35, 0.55)</td>
<td>93</td>
</tr>
<tr>
<td>Tomita (2012)</td>
<td>0.45 (0.35, 0.55)</td>
<td>53</td>
</tr>
<tr>
<td>Trombetta (2013)</td>
<td>0.46 (0.38, 0.54)</td>
<td>154</td>
</tr>
<tr>
<td>Focchiaro (2020)</td>
<td>0.47 (0.37, 0.59)</td>
<td>300</td>
</tr>
<tr>
<td>Kalbo (2020)</td>
<td>0.47 (0.37, 0.59)</td>
<td>76</td>
</tr>
<tr>
<td>Bochalli (2016)</td>
<td>0.47 (0.37, 0.59)</td>
<td>83</td>
</tr>
<tr>
<td>Marrii (2012)</td>
<td>0.47 (0.36, 0.58)</td>
<td>32</td>
</tr>
<tr>
<td>Turley (2014)</td>
<td>0.47 (0.36, 0.58)</td>
<td>139</td>
</tr>
<tr>
<td>Treer (2013)</td>
<td>0.48 (0.38, 0.58)</td>
<td>126</td>
</tr>
<tr>
<td>Tacon (2020)</td>
<td>0.46 (0.36, 0.56)</td>
<td>123</td>
</tr>
<tr>
<td>Yu (2016)</td>
<td>0.56 (0.46, 0.66)</td>
<td>132</td>
</tr>
<tr>
<td>Yanaba (2013)</td>
<td>0.51 (0.40, 0.62)</td>
<td>71</td>
</tr>
<tr>
<td>Gutter (2013)</td>
<td>0.51 (0.40, 0.62)</td>
<td>49</td>
</tr>
<tr>
<td>Meiknen (2017)</td>
<td>0.51 (0.45, 0.57)</td>
<td>257</td>
</tr>
<tr>
<td>Hizal (2015)</td>
<td>0.52 (0.43, 0.62)</td>
<td>56</td>
</tr>
<tr>
<td>Nishiyama (2012)</td>
<td>0.52 (0.43, 0.62)</td>
<td>308</td>
</tr>
<tr>
<td>Blandon (2021)</td>
<td>0.53 (0.40, 0.66)</td>
<td>53</td>
</tr>
<tr>
<td>Casasolky (2012)</td>
<td>0.53 (0.46, 0.61)</td>
<td>36</td>
</tr>
<tr>
<td>D’Andrea (2016)</td>
<td>0.53 (0.43, 0.63)</td>
<td>90</td>
</tr>
<tr>
<td>Tufarena (2013)</td>
<td>0.55 (0.45, 0.66)</td>
<td>22</td>
</tr>
<tr>
<td>Elmas (2019)</td>
<td>0.55 (0.45, 0.66)</td>
<td>427</td>
</tr>
<tr>
<td>Hongqiu (2020)</td>
<td>0.56 (0.46, 0.66)</td>
<td>76</td>
</tr>
<tr>
<td>Hax (2017)</td>
<td>0.57 (0.46, 0.68)</td>
<td>177</td>
</tr>
<tr>
<td>Iatmiliu (2018)</td>
<td>0.57 (0.46, 0.68)</td>
<td>76</td>
</tr>
<tr>
<td>Jantam (2017)</td>
<td>0.58 (0.46, 0.70)</td>
<td>152</td>
</tr>
<tr>
<td>Zhang (2016)</td>
<td>0.59 (0.51, 0.69)</td>
<td>123</td>
</tr>
<tr>
<td>Gao (2017)</td>
<td>0.59 (0.51, 0.69)</td>
<td>137</td>
</tr>
<tr>
<td>Poemurgnn (2016)</td>
<td>0.62 (0.56, 0.68)</td>
<td>214</td>
</tr>
<tr>
<td>Zhou (2020)</td>
<td>0.62 (0.56, 0.68)</td>
<td>204</td>
</tr>
<tr>
<td>De Santos (2017)</td>
<td>0.68 (0.57, 0.79)</td>
<td>115</td>
</tr>
<tr>
<td>Salaff (2018)</td>
<td>0.68 (0.57, 0.79)</td>
<td>126</td>
</tr>
<tr>
<td>Zoro (2013)</td>
<td>0.72 (0.60, 0.85)</td>
<td>58</td>
</tr>
<tr>
<td>Hu (2018)</td>
<td>0.66 (0.59, 0.73)</td>
<td>446</td>
</tr>
<tr>
<td>Aranyana (2013)</td>
<td>0.82 (0.75, 0.89)</td>
<td>130</td>
</tr>
<tr>
<td>Nog (2008)</td>
<td>0.86 (0.73, 0.99)</td>
<td>43</td>
</tr>
<tr>
<td>Ogi (2002)</td>
<td>0.87 (0.74, 0.94)</td>
<td>45</td>
</tr>
<tr>
<td>Overall: (I² = 96.7%, p < 0.0001)</td>
<td>0.47 (0.44, 0.50)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ILD: interstitial lung disease, SSc: systemic sclerosis
Figure S1c Prevalence of IIM-ILD, study level data

<table>
<thead>
<tr>
<th>Study</th>
<th>ES (95% CI)</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson (2016)</td>
<td>0.11 (0.09, 0.14)</td>
<td>831</td>
</tr>
<tr>
<td>Hell (2013)</td>
<td>0.16 (0.11, 0.22)</td>
<td>160</td>
</tr>
<tr>
<td>Best (2018)</td>
<td>0.18 (0.11, 0.26)</td>
<td>97</td>
</tr>
<tr>
<td>Nisang (2015)</td>
<td>0.19 (0.14, 0.26)</td>
<td>152</td>
</tr>
<tr>
<td>Gao (2019)</td>
<td>0.23 (0.16, 0.32)</td>
<td>99</td>
</tr>
<tr>
<td>Bhonsing (2014)</td>
<td>0.25 (0.14, 0.40)</td>
<td>40</td>
</tr>
<tr>
<td>Amoura (2006)</td>
<td>0.25 (0.18, 0.35)</td>
<td>102</td>
</tr>
<tr>
<td>Marie (2011)</td>
<td>0.31 (0.26, 0.36)</td>
<td>348</td>
</tr>
<tr>
<td>Schnabel (2003)</td>
<td>0.32 (0.22, 0.44)</td>
<td>63</td>
</tr>
<tr>
<td>Vojnovic (2020)</td>
<td>0.33 (0.25, 0.41)</td>
<td>138</td>
</tr>
<tr>
<td>Chua (2012)</td>
<td>0.37 (0.29, 0.47)</td>
<td>107</td>
</tr>
<tr>
<td>Lee (2022)</td>
<td>0.38 (0.30, 0.47)</td>
<td>129</td>
</tr>
<tr>
<td>Chua (2009)</td>
<td>0.43 (0.30, 0.57)</td>
<td>47</td>
</tr>
<tr>
<td>Park (2010)</td>
<td>0.44 (0.31, 0.58)</td>
<td>48</td>
</tr>
<tr>
<td>Yang (2017)</td>
<td>0.49 (0.36, 0.63)</td>
<td>49</td>
</tr>
<tr>
<td>Zhang (2016)</td>
<td>0.49 (0.42, 0.57)</td>
<td>170</td>
</tr>
<tr>
<td>Yuan (2013)</td>
<td>0.50 (0.39, 0.61)</td>
<td>70</td>
</tr>
<tr>
<td>Woo (2013)</td>
<td>0.51 (0.44, 0.58)</td>
<td>162</td>
</tr>
<tr>
<td>Arumai (2011)</td>
<td>0.54 (0.45, 0.62)</td>
<td>136</td>
</tr>
<tr>
<td>Watanabe (2020)</td>
<td>0.54 (0.47, 0.62)</td>
<td>162</td>
</tr>
<tr>
<td>Zhang (2017)</td>
<td>0.56 (0.44, 0.71)</td>
<td>48</td>
</tr>
<tr>
<td>Fukamatsu (2019)</td>
<td>0.59 (0.47, 0.71)</td>
<td>59</td>
</tr>
<tr>
<td>Hayashi (2007)</td>
<td>0.60 (0.47, 0.72)</td>
<td>55</td>
</tr>
<tr>
<td>Tanaka (2015)</td>
<td>0.60 (0.49, 0.70)</td>
<td>78</td>
</tr>
<tr>
<td>Ishizuka (2019)</td>
<td>0.61 (0.53, 0.69)</td>
<td>124</td>
</tr>
<tr>
<td>Li (2019)</td>
<td>0.63 (0.54, 0.71)</td>
<td>125</td>
</tr>
<tr>
<td>Peng (2020)</td>
<td>0.68 (0.51, 0.74)</td>
<td>182</td>
</tr>
<tr>
<td>Overall (P² = 98.1%, p = 0.000)</td>
<td>0.41 (0.33, 0.50)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: IIM: idiopathic inflammatory myositis, ILD: interstitial lung disease
Figure S1d Prevalence of pSS-ILD, study level data

<table>
<thead>
<tr>
<th>Study</th>
<th>Study level data</th>
<th>ES (95% CI)</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldini (2017)</td>
<td></td>
<td>0.08 (0.04, 0.10)</td>
<td>285</td>
</tr>
<tr>
<td>Qian (2021)</td>
<td></td>
<td>0.09 (0.07, 0.11)</td>
<td>825</td>
</tr>
<tr>
<td>Floree (2018)</td>
<td></td>
<td>0.10 (0.06, 0.15)</td>
<td>197</td>
</tr>
<tr>
<td>ter Borg (2017)</td>
<td></td>
<td>0.12 (0.08, 0.19)</td>
<td>140</td>
</tr>
<tr>
<td>Yaukiz (2020)</td>
<td></td>
<td>0.13 (0.10, 0.16)</td>
<td>372</td>
</tr>
<tr>
<td>Liu (2018)</td>
<td></td>
<td>0.16 (0.14, 0.18)</td>
<td>1184</td>
</tr>
<tr>
<td>Zhang (2016)</td>
<td></td>
<td>0.17 (0.13, 0.21)</td>
<td>343</td>
</tr>
<tr>
<td>Sebastian (2017)</td>
<td></td>
<td>0.19 (0.12, 0.30)</td>
<td>68</td>
</tr>
<tr>
<td>Lee (2021)</td>
<td></td>
<td>0.20 (0.16, 0.26)</td>
<td>221</td>
</tr>
<tr>
<td>Palm (2016)</td>
<td></td>
<td>0.25 (0.19, 0.33)</td>
<td>144</td>
</tr>
<tr>
<td>Zhao (2013)</td>
<td></td>
<td>0.49 (0.40, 0.58)</td>
<td>110</td>
</tr>
<tr>
<td>Overall (p² = 92.9%, p = 0.000)</td>
<td></td>
<td>0.16 (0.12, 0.21)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ILD: interstitial lung disease, pSS: primary Sjögren syndrome
Figure S1e Prevalence of MCTD-ILD, study level data

<table>
<thead>
<tr>
<th>Study</th>
<th>ES (95% CI)</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escola-Verge (2017)</td>
<td>0.25 (0.14, 0.40)</td>
<td>40</td>
</tr>
<tr>
<td>Reiseter (2016)</td>
<td>0.50 (0.45, 0.55)</td>
<td>365</td>
</tr>
<tr>
<td>Bodolay (2005)</td>
<td>0.67 (0.59, 0.74)</td>
<td>144</td>
</tr>
<tr>
<td>Fagundes (2009)</td>
<td>0.78 (0.65, 0.87)</td>
<td>50</td>
</tr>
<tr>
<td>Overall (I^2 = 92.3%, p = 0.000)</td>
<td>0.56 (0.39, 0.72)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ILD: interstitial lung disease, MCTD: mixed connective tissue disease
Figure S1f Prevalence of SLE-ILD, study level data

<table>
<thead>
<tr>
<th>Study</th>
<th>ES (95% CI)</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narvaez (2018)</td>
<td>0.02 (0.02, 0.03)</td>
<td>3215</td>
</tr>
<tr>
<td>Gonzalez Fernandez (2021)</td>
<td>0.04 (0.03, 0.07)</td>
<td>456</td>
</tr>
<tr>
<td>Zhang (2016)</td>
<td>0.05 (0.03, 0.06)</td>
<td>1044</td>
</tr>
<tr>
<td>Sharma (2016)</td>
<td>0.06 (0.04, 0.10)</td>
<td>356</td>
</tr>
<tr>
<td>Mei (2016)</td>
<td>0.14 (0.11, 0.17)</td>
<td>470</td>
</tr>
<tr>
<td>Overall (I^2 = 96.3%, p = 0.000)</td>
<td>0.06 (0.03, 0.10)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ILD: interstitial lung disease, SLE: systemic lupus erythematosus
Figure S2a Study level data on RA-ILD CT patterns

Figure S2b Study level data on SSc-ILD CT patterns

Figure S2c Study level data on IIM-ILD CT patterns

<table>
<thead>
<tr>
<th>Study</th>
<th>UIP</th>
<th>NSIP</th>
<th>OP</th>
<th>Other</th>
<th>Non UIP</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobo-Isaiezn (2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Lucss (2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Neilson (2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Zhang (2016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Marie (2011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>Chua (2009)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Zamora (2016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Chua (2012)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Wang (2022)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>Mena-Vazquez (2021)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Wang (2019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>Tanaka (2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Ungprasert (2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Lee (2022)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>Ishizuka (2016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Obert (2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Fukamatsu (2019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Yura (2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Hotzumi (2015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Debray (2015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>Zuo (2000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>Yoshida (2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165</td>
</tr>
</tbody>
</table>

Figure S2d Study level data on pSS-ILD CT patterns

![Bar chart showing prevalence of different CT patterns in pSS-ILD across various studies.](image)

Figure S2f Study level data on SLE-ILD CT patterns

Figure S2f Study level data on UCTD-ILD CT patterns

SUPPLEMENTAL TABLES

Table S1a Embase search strategy

<table>
<thead>
<tr>
<th></th>
<th>Search Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exp rheumatoid arthritis/</td>
</tr>
<tr>
<td>2</td>
<td>Rheumatoid.mp.</td>
</tr>
<tr>
<td>3</td>
<td>Exp scleroderma/</td>
</tr>
<tr>
<td>4</td>
<td>Scleroderma.mp.</td>
</tr>
<tr>
<td>5</td>
<td>"systemic sclero*".mp.</td>
</tr>
<tr>
<td>6</td>
<td>Exp Sjogren syndrome/</td>
</tr>
<tr>
<td>7</td>
<td>Sj#gren*.mp.</td>
</tr>
<tr>
<td>8</td>
<td>Myositis/</td>
</tr>
<tr>
<td>9</td>
<td>Antisynthetase syndrome/</td>
</tr>
<tr>
<td>10</td>
<td>Dermatomyositis/</td>
</tr>
<tr>
<td>11</td>
<td>Polymyositis/</td>
</tr>
<tr>
<td>12</td>
<td>Dermatomyositis.mp.</td>
</tr>
<tr>
<td>13</td>
<td>Polymyositis.mp.</td>
</tr>
<tr>
<td>14</td>
<td>"antisynthetase syndrome".mp.</td>
</tr>
<tr>
<td>15</td>
<td>"inflammatory myositis".mp.</td>
</tr>
<tr>
<td>16</td>
<td>Connective tissue disease/</td>
</tr>
<tr>
<td>17</td>
<td>"connective tissue dis*".mp.</td>
</tr>
<tr>
<td>18</td>
<td>"collagen vascular dis*".mp.</td>
</tr>
<tr>
<td>19</td>
<td>Exp mixed connective tissue disease/</td>
</tr>
<tr>
<td>20</td>
<td>"mixed ctd".mp.</td>
</tr>
<tr>
<td>21</td>
<td>"undifferentiated ctd".mp.</td>
</tr>
<tr>
<td>22</td>
<td>Exp systemic lup erythematosus/</td>
</tr>
<tr>
<td>23</td>
<td>Lupus.mp.</td>
</tr>
<tr>
<td>24</td>
<td>or/1-23</td>
</tr>
<tr>
<td>25</td>
<td>Exp interstitial lung disease/</td>
</tr>
<tr>
<td>26</td>
<td>Exp lung fibrosis/</td>
</tr>
<tr>
<td>27</td>
<td>(interstitial$ adj3 (lung$ or pulmonary$ or pneom$)).mp.</td>
</tr>
<tr>
<td>28</td>
<td>((pulmonary$ or lung$) adj3 (fibros$ or fibrot$)).mp.</td>
</tr>
<tr>
<td>29</td>
<td>ILD.mp.</td>
</tr>
<tr>
<td>30</td>
<td>UIP.mp.</td>
</tr>
<tr>
<td>31</td>
<td>NSIP.mp.</td>
</tr>
<tr>
<td>32</td>
<td>PPFE.mp.</td>
</tr>
<tr>
<td>33</td>
<td>"pleuroparenchymal fibroelastosis".mp.</td>
</tr>
<tr>
<td>34</td>
<td>Bronchiolitis.mp.</td>
</tr>
<tr>
<td>35</td>
<td>Alveolitis.mp.</td>
</tr>
<tr>
<td>36</td>
<td>"organ#ing pneu*".mp.</td>
</tr>
<tr>
<td>37</td>
<td>or/25-36</td>
</tr>
<tr>
<td>38</td>
<td>Computer assisted tomography/ or computed tomographic angiography/ or high resolution computer tomography/ or multidetector computed tomography/ or spiral computer assisted tomography/ or x-ray computed tomography/</td>
</tr>
<tr>
<td>39</td>
<td>Hrct.mp.</td>
</tr>
<tr>
<td>40</td>
<td>"computed tomography".mp.</td>
</tr>
<tr>
<td>41</td>
<td>"ct-scan".mp.</td>
</tr>
<tr>
<td>42</td>
<td>Prevalence/</td>
</tr>
<tr>
<td>43</td>
<td>Prevalence.mp.</td>
</tr>
<tr>
<td>44</td>
<td>Risk factor/</td>
</tr>
<tr>
<td>45</td>
<td>"risk factor".mp.</td>
</tr>
<tr>
<td>46</td>
<td>Biomarker*.mp</td>
</tr>
<tr>
<td>47</td>
<td>or/38-46</td>
</tr>
<tr>
<td>48</td>
<td>24 and 37 and 47</td>
</tr>
<tr>
<td>49</td>
<td>Limit 48 to yr="2000 – Current"</td>
</tr>
</tbody>
</table>

Table S1b Medline search strategy
<table>
<thead>
<tr>
<th></th>
<th>exp Arthritis, Rheumatoid/</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>rheumatoid.mp.</td>
</tr>
<tr>
<td>3</td>
<td>exp Scleroderma, Systemic/ or exp Scleroderma, Localized/</td>
</tr>
<tr>
<td>4</td>
<td>scleroderma.mp.</td>
</tr>
<tr>
<td>5</td>
<td>"systemic sclero**.mp.</td>
</tr>
<tr>
<td>6</td>
<td>exp Sjogren's Syndrome/</td>
</tr>
<tr>
<td>7</td>
<td>sj#gren*.mp.</td>
</tr>
<tr>
<td>8</td>
<td>exp Dermatomyositis/</td>
</tr>
<tr>
<td>9</td>
<td>dermatomyositis.mp.</td>
</tr>
<tr>
<td>10</td>
<td>exp Polymyositis/</td>
</tr>
<tr>
<td>11</td>
<td>polymyositis.mp.</td>
</tr>
<tr>
<td>12</td>
<td>"antisynthetase syndrome".mp.</td>
</tr>
<tr>
<td>13</td>
<td>"inflammatory myositis".mp.</td>
</tr>
<tr>
<td>14</td>
<td>Connective Tissue Diseases/</td>
</tr>
<tr>
<td>15</td>
<td>"connective tissue dis**.mp.</td>
</tr>
<tr>
<td>16</td>
<td>"collagen vascular dis**.mp.</td>
</tr>
<tr>
<td>17</td>
<td>exp Mixed Connective Tissue Disease/</td>
</tr>
<tr>
<td>18</td>
<td>"mixed ctd".mp.</td>
</tr>
<tr>
<td>19</td>
<td>exp Undifferentiated Connective Tissue Diseases/</td>
</tr>
<tr>
<td>20</td>
<td>"undifferentiated ctd".mp.</td>
</tr>
<tr>
<td>21</td>
<td>exp Lupus Erythematosus, Systemic/</td>
</tr>
<tr>
<td>22</td>
<td>lupus.mp.</td>
</tr>
<tr>
<td>23</td>
<td>or/1-22</td>
</tr>
<tr>
<td>24</td>
<td>exp Lung Diseases, Interstitial/</td>
</tr>
<tr>
<td>25</td>
<td>exp Pulmonary Fibrosis/</td>
</tr>
<tr>
<td>26</td>
<td>(interstitial$ adj3 (lung$ or pulmonary$ or pneumon$)).mp.</td>
</tr>
<tr>
<td>27</td>
<td>((pulmonary$ or lung$) adj3 (fibros$ or fibrot$)).mp.</td>
</tr>
<tr>
<td>28</td>
<td>iId.mp.</td>
</tr>
<tr>
<td>29</td>
<td>Uip.mp.</td>
</tr>
<tr>
<td>30</td>
<td>Nsip.mp.</td>
</tr>
<tr>
<td>31</td>
<td>Ppfe.mp.</td>
</tr>
<tr>
<td>32</td>
<td>"pleuroparenchymal fibroelastosis".mp.</td>
</tr>
<tr>
<td>33</td>
<td>bronchiolitis.mp.</td>
</tr>
<tr>
<td>34</td>
<td>alveolitis.mp.</td>
</tr>
<tr>
<td>35</td>
<td>"organis$ing pneumon".mp.</td>
</tr>
<tr>
<td>36</td>
<td>or/24-35</td>
</tr>
<tr>
<td>37</td>
<td>tomography, x-ray computed/ or computed tomography angiography/ or exp tomography, spiral computed/</td>
</tr>
<tr>
<td>38</td>
<td>HRCT.mp.</td>
</tr>
<tr>
<td>39</td>
<td>"computed tomography".mp.</td>
</tr>
<tr>
<td>40</td>
<td>"CT-scan".mp.</td>
</tr>
<tr>
<td>41</td>
<td>Prevalence/</td>
</tr>
<tr>
<td>42</td>
<td>Prevalence.mp.</td>
</tr>
<tr>
<td>43</td>
<td>protective factors/ or risk factors/</td>
</tr>
<tr>
<td>44</td>
<td>"risk factor".mp.</td>
</tr>
<tr>
<td>45</td>
<td>biomarker*.mp.</td>
</tr>
<tr>
<td>46</td>
<td>or/37-45</td>
</tr>
<tr>
<td>47</td>
<td>23 and 36 and 46</td>
</tr>
<tr>
<td>48</td>
<td>limit 47 to yr="2020 -Current"</td>
</tr>
</tbody>
</table>
Table S2 Number of studies and total sample size addressing each objective. Data are reported as number of studies (included conference abstracts), N = total number of patients.

<table>
<thead>
<tr>
<th>Connective Tissue Disease</th>
<th>Prevalence</th>
<th>Risk Factors for ILD</th>
<th>ILD Pattern</th>
<th>Risk Factors for ILD Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatoid Arthritis</td>
<td>23 (6)</td>
<td>41 (10)</td>
<td>54 (13)</td>
<td>8 (1)</td>
</tr>
<tr>
<td></td>
<td>N = 18,884</td>
<td>N = 11,806</td>
<td>N = 4,897</td>
<td>N = 1,543</td>
</tr>
<tr>
<td>Systemic Sclerosis</td>
<td>69 (13)</td>
<td>33 (3)</td>
<td>22 (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 31,096</td>
<td>N = 24,281</td>
<td>N = 1,263</td>
<td></td>
</tr>
<tr>
<td>Idiopathic Inflammatory Myositis</td>
<td>27 (1)</td>
<td>22 (2)</td>
<td>23 (2)</td>
<td>1 (0)</td>
</tr>
<tr>
<td></td>
<td>N = 3,781</td>
<td>N = 3,349</td>
<td>N = 1,305</td>
<td>N = 48</td>
</tr>
<tr>
<td>Primary Sjögren Syndrome</td>
<td>11 (4)</td>
<td>8 (3)</td>
<td>16 (5)</td>
<td>1 (0)</td>
</tr>
<tr>
<td></td>
<td>N = 3,899</td>
<td>N = 3,716</td>
<td>N = 722</td>
<td>N = 170</td>
</tr>
<tr>
<td>Mixed Connective Tissue Disease</td>
<td>4 (1)</td>
<td>3 (2)</td>
<td>3 (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 599</td>
<td>N = 537</td>
<td>N = 52</td>
<td></td>
</tr>
<tr>
<td>Systemic Lupus Erythematous</td>
<td>5 (2)</td>
<td>1 (1)</td>
<td>3 (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 6,749</td>
<td>N = 289</td>
<td>N = 93</td>
<td></td>
</tr>
<tr>
<td>Undifferentiated Connective Tissue Disease</td>
<td>3 (1)</td>
<td></td>
<td>1 (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 91</td>
<td></td>
<td>N = 66</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CT: computed tomography, ILD: interstitial lung disease
Table S3a Characteristics of studies addressing prevalence of RA-ILD, distribution of CT patterns of RA-ILD, and risk factors for development of RA-ILD.

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Studies</td>
<td>23</td>
<td>41</td>
<td>54</td>
<td>8</td>
</tr>
<tr>
<td>Conference Abstracts</td>
<td>6</td>
<td>10</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Total N</td>
<td>18,884</td>
<td>11,806</td>
<td>-</td>
<td>1,543</td>
</tr>
<tr>
<td>N ILD</td>
<td>1,055</td>
<td>3,548</td>
<td>4,897</td>
<td>1,206</td>
</tr>
</tbody>
</table>

Demographics

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years, mean)</td>
<td>54.3 (N = 2,845)</td>
<td>57.1 (N = 3,309)</td>
<td>61.3 (N = 1,667)</td>
<td>61.7 (N = 610)</td>
</tr>
<tr>
<td>Disease Duration (years, mean)</td>
<td>7.3 (N = 2,372)</td>
<td>7.7 (N = 2,530)</td>
<td>9.6 (N = 455)</td>
<td>10.2 (N = 88)</td>
</tr>
<tr>
<td>Sex (male)</td>
<td>841/4,153 (20.3%)</td>
<td>1,788/6,901 (25.9%)</td>
<td>1,577/3,960 (39.8%)</td>
<td>353/848 (41.6%)</td>
</tr>
<tr>
<td>Smoking History (ever)</td>
<td>677/3,097 (21.9%)</td>
<td>1,935/6,012 (32.2%)</td>
<td>1,695/3,604 (47.0%)</td>
<td>115/269 (42.6%)</td>
</tr>
</tbody>
</table>

Serology

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>1,742/2,608 (66.8%)</td>
<td>2,992/4,146 (72.2%)</td>
<td>2,786/3,294 (84.6%)</td>
<td>-</td>
</tr>
<tr>
<td>Anti-CCP</td>
<td>1,608/2,158 (74.5%)</td>
<td>2,579/3,570 (72.2%)</td>
<td>2,427/2,862 (84.8%)</td>
<td>-</td>
</tr>
</tbody>
</table>

Lung Function

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (mean % predicted)</td>
<td>-</td>
<td>-</td>
<td>80.1 (N = 2,359)</td>
<td>-</td>
</tr>
<tr>
<td>TLC (mean % predicted)</td>
<td>-</td>
<td>-</td>
<td>76.9 (N = 783)</td>
<td>-</td>
</tr>
<tr>
<td>DLCO (mean % predicted)</td>
<td>-</td>
<td>-</td>
<td>60.2 (N = 2,117)</td>
<td>-</td>
</tr>
</tbody>
</table>

Table S3b Characteristics of studies addressing prevalence of SSc-ILD, distribution of CT patterns of SSc-ILD, and risk factors for development of SSc-ILD. No studies address risk factors for specific CT patterns.

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Conference Abstracts</td>
<td>69</td>
<td>33</td>
<td>22</td>
</tr>
<tr>
<td>Total N</td>
<td>31,096</td>
<td>24,281</td>
<td>-</td>
</tr>
<tr>
<td>Total N ILD</td>
<td>11,330</td>
<td>7,499</td>
<td>1,263</td>
</tr>
</tbody>
</table>

Demographics

- **Age (years, mean)**: 55.4 (N = 26,273), 55.3 (N = 22,625), 56.0 (N = 659)
- **Disease Duration (years, mean)**: 9.1 (N = 23,874), 8.8 (N = 21,314), -
- **Sex (male)**: 4,747/31,250 (15.2%), 3,519/24,041 (14.6%), 127/837 (15.2%)
- **Smoking History (ever)**: 950/2,705 (35.1%), 482/1,549 (31.1%), 178/570 (31.2%)

CTD Subtype

- **Limited SSc**: 17,541/30,139 (58.2%), 13,034/23,298 (55.9%), 194/378 (51.3%)
- **Diffuse SSc**: 9,503/30,734 (30.9%), 7,340/23,696 (31.0%), 183/378 (48.4%)

Serology

- **ANA**: 21,837/22,892 (95.4%), 20,536/21,498 (95.5%), 319/345 (92.0%)
- **Anti-ScI70**: 8,280/28,103 (29.5%), 7,007/22,876 (30.6%), 260/486 (53.5%)
- **Anti-Centromere**: 10,562/28,237 (37.4%), 8,713/23,207 (37.5%), 69/476 (14.4%)
- **Anti-RNP**: 1668/21,598 (7.7%), 1,536/20,839 (7.4%), -

Lung Function

- **FVC**: 90.2 (N = 1,720), 93.3 (N = 1,257), 80.8 (N = 595)
- **DLCO (mean % predicted)**: 66.0 (N = 1,598), 63.7 (N = 1,257), 57.2 (N = 595)

Table S3c Characteristics of studies addressing prevalence of IIM-ILD, distribution of CT patterns of IIM-ILD, and risk factors for development of IIM-ILD.

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Studies</td>
<td>27</td>
<td>22</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>Conference Abstracts</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total N</td>
<td>3,781</td>
<td>3,349</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total N ILD</td>
<td>1,335</td>
<td>948</td>
<td>1,305</td>
<td>48</td>
</tr>
</tbody>
</table>

Demographics

<table>
<thead>
<tr>
<th></th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years, mean)</td>
<td>49.5 (N = 722)</td>
<td>49.4 (N = 682)</td>
<td>52.1 (N = 602)</td>
<td>-</td>
</tr>
<tr>
<td>Sex (male)</td>
<td>912/2,980 (30.6%)</td>
<td>933/3,011 (31.0%)</td>
<td>366/1,110 (33.0%)</td>
<td>17/48 (35.4%)</td>
</tr>
<tr>
<td>Smoking History</td>
<td></td>
<td>-</td>
<td>-</td>
<td>137/392 (34.9%)</td>
</tr>
<tr>
<td>CTD Subtype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermatomyositis</td>
<td>1,997/3,447 (57.9%)</td>
<td>1,674/3,075 (54.4%)</td>
<td>414/866 (47.8%)</td>
<td>18/48 (37.5%)</td>
</tr>
<tr>
<td>Polymyositis</td>
<td>1,206/2,729 (44.2%)</td>
<td>871/1,892 (46.0%)</td>
<td>323/831 (38.9%)</td>
<td>6/48 (12.5%)</td>
</tr>
</tbody>
</table>

Serology

<table>
<thead>
<tr>
<th></th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANA</td>
<td>280/589 (47.5%)</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Anti-Jo-1</td>
<td>105/841 (12.5%)</td>
<td>63/599 (10.4%)</td>
<td>2</td>
<td>6/48 (12.5%)</td>
</tr>
</tbody>
</table>

Lung Function

<table>
<thead>
<tr>
<th></th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td></td>
<td></td>
<td>72.2 (N = 586)</td>
<td>-</td>
</tr>
<tr>
<td>DLCO (mean % predicted)</td>
<td>-</td>
<td>-</td>
<td>60.4 (N = 522)</td>
<td>-</td>
</tr>
</tbody>
</table>

Table S3d Characteristics of studies addressing prevalence of pSS-ILD, distribution of CT patterns of pSS-ILD, and risk factors for development of pSS-ILD.

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Studies</td>
<td>11</td>
<td>8</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Conference Abstracts</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Total N</td>
<td>3,899</td>
<td>3,715</td>
<td>-</td>
<td>170</td>
</tr>
<tr>
<td>Total N ILD</td>
<td>562</td>
<td>641</td>
<td>722</td>
<td>85</td>
</tr>
</tbody>
</table>

Demographics

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years, mean)</td>
<td>50.4 (N = 1,460)</td>
<td>-</td>
<td>58.8 (N = 457)</td>
<td>-</td>
</tr>
<tr>
<td>Disease Duration (years, mean)</td>
<td>8.7 (N = 482)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sex (male)</td>
<td>202/3,555 (5.7%)</td>
<td>201/3,447 (5.8%)</td>
<td>90/522 (17.2%)</td>
<td>16/170 (9.4%)</td>
</tr>
<tr>
<td>Smoking History (ever)</td>
<td>-</td>
<td>-</td>
<td>59/309 (19.1%)</td>
<td>-</td>
</tr>
</tbody>
</table>

Serology

<table>
<thead>
<tr>
<th>Serology</th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANA</td>
<td>1,080/1,677 (64.4%)</td>
<td>1,473/1,683 (87.5%)</td>
<td>378/475 (79.5%)</td>
<td>163/170 (95.9%)</td>
</tr>
<tr>
<td>Anti-SSA/Ro</td>
<td>1,004/1,821 (55.1%)</td>
<td>1,507/1,851 (81.4%)</td>
<td>317/478 (66.3%)</td>
<td>141/170 (82.9%)</td>
</tr>
<tr>
<td>Anti-SSB/La</td>
<td>510/1,821 (28.2%)</td>
<td>791/1,832 (43.2%)</td>
<td>144/475 (30.4%)</td>
<td>78/170 (45.9%)</td>
</tr>
</tbody>
</table>

Lung Function

<table>
<thead>
<tr>
<th>Lung Function</th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (mean % predicted)</td>
<td>-</td>
<td>-</td>
<td>66.53 (N = 350)</td>
<td>-</td>
</tr>
<tr>
<td>DLCO (mean % predicted)</td>
<td>-</td>
<td>-</td>
<td>58.6 (N = 350)</td>
<td>-</td>
</tr>
</tbody>
</table>

Table S3e Characteristics of studies addressing prevalence of SLE-ILD, distribution of CT patterns of SLE-ILD, and risk factors for development of SLE-ILD. No studies addressed CT pattern risk factors.

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Conference Abstracts</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total N</td>
<td>6,749</td>
<td>289</td>
<td>-</td>
</tr>
<tr>
<td>Total N ILD</td>
<td>498</td>
<td>23</td>
<td>93</td>
</tr>
</tbody>
</table>

Demographics

<table>
<thead>
<tr>
<th></th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years, mean)</td>
<td>46.4 (N = 3,685)</td>
<td>-</td>
<td>55.4 (N = 10)</td>
</tr>
<tr>
<td>Disease Duration (years, mean)</td>
<td>9.1 (N = 3,685)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sex (male)</td>
<td>360/3,974 (9.1%)</td>
<td>42/289 (14.5%)</td>
<td>15/65 (23.1%)</td>
</tr>
<tr>
<td>Smoking History (ever)</td>
<td>1,351/3,215 (42.0%)</td>
<td>-</td>
<td>16/55 (29.1%)</td>
</tr>
</tbody>
</table>

Serology

<table>
<thead>
<tr>
<th></th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANA</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Lung Function

<table>
<thead>
<tr>
<th></th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (median % predicted)</td>
<td>-</td>
<td>-</td>
<td>81.8 (N = 55)</td>
</tr>
<tr>
<td>DLCO (median % predicted)</td>
<td>-</td>
<td>-</td>
<td>57.4 (N = 55)</td>
</tr>
</tbody>
</table>

Table S3f Characteristics of studies addressing prevalence of MCTD-ILD, distribution of CT patterns of MCTD-ILD, and risk factors for development of MCTD-ILD. No studies addressed risk factors for specific CT patterns.

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>Prevalence Studies</th>
<th>Risk Factor ILD Studies</th>
<th>CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Studies</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Conference Abstracts</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total N</td>
<td>599</td>
<td>537</td>
<td>-</td>
</tr>
<tr>
<td>Total N ILD</td>
<td>327</td>
<td>292</td>
<td>52</td>
</tr>
</tbody>
</table>

Demographics

- **Age (years, mean)**: 47.5 (N = 194), 49.1 (N = 144), 49.8 (N = 52)
- **Disease Duration (years, mean)**: 12.0 (N = 194), 13.4 (N = 144), -
- **Sex (male)**: 15/234 (6.4%), 11/144 (7.6%), 6/52 (11.5%)
- **Smoking History (ever)**: 8/50 (16.0%), -, 13/37 (35.1%)

Serology

- **RF**: 43/144 (30.0%), 43/144 (30.0%), -
- **Anti-CCP**: -, -, -
- **ANA**: 144/144 (100.5%), 144/144 (100.0%), -

Lung Function

- **FVC (mean % predicted)**: 82.0 (N = 50), -, 77.6 (N = 37)
- **TLC (mean % predicted)**: 87.0 (N = 50), -, -
- **DLCO (mean % predicted)**: 87.0 (N = 50), -, 58.3 (N = 37)

Table S3g Characteristics of studies addressing prevalence of UCTD-ILD, distribution of CT patterns of UCTD-ILD, and risk factors for development of UCTD-ILD. No studies addressed prevalence of ILD or risk factors for ILD in UCTD.

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Studies</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Conference Abstracts</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total N</td>
<td>-</td>
<td>66</td>
</tr>
<tr>
<td>Total N ILD</td>
<td>91</td>
<td>41</td>
</tr>
</tbody>
</table>

Demographics

<table>
<thead>
<tr>
<th></th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years, mean)</td>
<td>62.4 (N = 24)</td>
<td>57.7 (N = 66)</td>
</tr>
<tr>
<td>Sex (male)</td>
<td>21/50 (42.0%)</td>
<td>21/66 (31.8%)</td>
</tr>
<tr>
<td>Smoking History (ever)</td>
<td>13/24 (54.2%)</td>
<td>29/66 (44.0%)</td>
</tr>
</tbody>
</table>

Serology

<table>
<thead>
<tr>
<th></th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>8/50 (15.2%)</td>
<td>29/62 (46.8%)</td>
</tr>
<tr>
<td>ANA</td>
<td>34/50 (67.3%)</td>
<td>57/65 (87.7%)</td>
</tr>
</tbody>
</table>

Lung Function

<table>
<thead>
<tr>
<th></th>
<th>CT Pattern Studies</th>
<th>Risk Factor CT Pattern Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (mean % predicted)</td>
<td>79.0 (N = 24)</td>
<td>-</td>
</tr>
<tr>
<td>DLCO (mean % predicted)</td>
<td>59.7 (N = 24)</td>
<td>-</td>
</tr>
</tbody>
</table>

Table S4 List of references, study characteristics, and quality of evidence.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Country</th>
<th>Connective Tissue Disease</th>
<th>Total N</th>
<th>ILD N</th>
<th>Newcastle Ottawa Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Country</td>
<td>doi</td>
<td>pmid</td>
<td>volume</td>
<td>pages</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>AlSheikh H, Ahmad Z, Johnson SR.</td>
<td>2019</td>
<td>Canada</td>
<td></td>
<td>1005</td>
<td>349</td>
<td>8</td>
</tr>
<tr>
<td>Amnyeva I, Teplova LV, Lesnyak VN, Starovojtova MN, Desinova OV, Nevskaya TA.</td>
<td>2010</td>
<td>Russia</td>
<td></td>
<td>138</td>
<td>113</td>
<td>8</td>
</tr>
<tr>
<td>Name(s)</td>
<td>Country</td>
<td>Year</td>
<td>Patients</td>
<td>Deaths</td>
<td>Malignancies</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Country</td>
<td>Case</td>
<td>Control</td>
<td>Total</td>
<td>% Disease</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>Baillieau NA, Tabaj G, Villagomez R, Di Boscio V, Quadrelli SA.</td>
<td>2010</td>
<td>Argentina</td>
<td>2</td>
<td>70</td>
<td>40</td>
<td>7</td>
</tr>
<tr>
<td>Balanescu P, Balanescu E, Baicus C, Balanescu A. S100A6, Calumenin and Cytohesin 2 as Biomarkers for Cutaneous Involvement in Systemic Sclerosis Patients: A Case Control Study.</td>
<td>2021</td>
<td>Romania</td>
<td>2</td>
<td>53</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>Title</td>
<td>Year</td>
<td>Country</td>
<td>DOI</td>
<td>Page Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Association of silica exposure with chest HRCT and clinical characteristics in systemic sclerosis.</td>
<td>2020</td>
<td>France</td>
<td>2</td>
<td>97</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>Distinctive cutaneous and systemic features associated with specific antomyositis antibodies in adults with dermatomyositis: a prospective multicentric study of 117 patients.</td>
<td>2018</td>
<td>France</td>
<td>3</td>
<td>117</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>Scleroderma-polymyositis overlap syndrome versus idiopathic polymyositis and systemic sclerosis: a descriptive study on clinical features and myopathology.</td>
<td>2014</td>
<td>Netherlands</td>
<td>2</td>
<td>397</td>
<td>170</td>
<td>8</td>
</tr>
<tr>
<td>Study on rheumatoid arthritis-associated interstitial lung disease in the elderly patients.</td>
<td>2012</td>
<td>China</td>
<td>1</td>
<td>565</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Country</td>
<td>Pages</td>
<td>References</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Country</td>
<td>Page Numbers</td>
<td>Journal Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>---------</td>
<td>--------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Country</td>
<td>Page</td>
<td>Volume</td>
<td>Journal</td>
<td>Issue</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Platelet/Lymphocyte, Lymphocyte/Monocyte, and Neutrophil/Lymphocyte Ratios as Biomarkers in Patients with Rheumatoid Arthritis and Rheumatoid Arthritis-Associated Interstitial Lung Disease.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Country</td>
<td>Year</td>
<td>Volume/Issue</td>
<td>Pages</td>
<td>Column 2</td>
<td>Column 3</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Capillary blood volume measurement in scleroderma patients submitted to nitric oxide diffusion test. In; 2012 2012: (var.pagings). 51 (SUPPL. 2) (pp ii104); Oxford University Press; 2012.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Country</td>
<td>Citation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Country</td>
<td>Patients</td>
<td>Controls</td>
<td>Follow-up</td>
<td>Predictors</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Country</td>
<td>Total N</td>
<td>Cases</td>
<td>Controls</td>
<td>Study Details</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Country</td>
<td>Page</td>
<td>Column 1</td>
<td>Column 2</td>
<td>Column 3</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Fukamatsu H, Hirai Y, Miyake T, Kaji T, Morizane S, Yokoyama E, Hamada T, Ono T, Koyama Y, Norikane S, Iwatsuki K</td>
<td>2019</td>
<td>Japan</td>
<td>3</td>
<td>59</td>
<td>27</td>
<td>4</td>
</tr>
<tr>
<td>Gautam M, Masood MJ, Arooj S, Mahmud M-EH, Mukhtar MJ</td>
<td>2020</td>
<td>Pakistan</td>
<td>1</td>
<td>54</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Go DJ, Lee EY, Lee EB, Song YW, Konig MF, Park JK</td>
<td>2016</td>
<td>South Korea</td>
<td>3</td>
<td>114</td>
<td>53</td>
<td>7</td>
</tr>
<tr>
<td>Gonzalez Fernandez I, Moriano C, Diez Alvarez E, Larco Rojas XE, Lopez Robles A, Vallejo Pascual ME, Perez Sandoval MT</td>
<td>2021</td>
<td>Spain</td>
<td>6</td>
<td>455</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Country</td>
<td>Issue</td>
<td>Page1</td>
<td>Page2</td>
<td>Page3</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Country</td>
<td>Patients</td>
<td>Follow-up</td>
<td>Follow-up</td>
<td>Outcome</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Hoang-Duc H, Pham-Huy Q, Vu-Minh T, Duong-Quy S</td>
<td>2020</td>
<td>Vietnam</td>
<td>2</td>
<td>74</td>
<td>41</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name(s)</th>
<th>Year</th>
<th>Country</th>
<th>Page(s)</th>
<th>Page(s)</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jantarat A, Muangchan C. Epidemiology and clinical characteristics of systemic sclerosis overlap syndrome (SSc-OS), and the factors significantly associated with SSc-OS in Thai patients with systemic sclerosis. Modern Rheumatology 2021(100959226).</td>
<td>2021</td>
<td>Thailand</td>
<td>2</td>
<td>152</td>
<td>88</td>
</tr>
<tr>
<td>Year</td>
<td>Country</td>
<td>Cases</td>
<td>Deaths</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Year</td>
<td>Sample Size</td>
<td>Disease(Specific)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>-------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Country</td>
<td>Page</td>
<td>Volume</td>
<td>Issue</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Kelly C, Chan E, Nisar M, Arthanari S, Woodhead F, Dawson J, Sathi N,</td>
<td>2013</td>
<td>United Kingdom</td>
<td>1</td>
<td>159</td>
<td>159</td>
</tr>
<tr>
<td>Ahmad Y. Rheumatoid arthritis related interstitial lung disease-relevance of lung function tests and high resolution computed tomography in a large multicentre series. In; 2013 2013: (var.pagings). 72 (SUPPL. 3) (no pagination); BMJ Publishing Group; 2013.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name</td>
<td>First Name</td>
<td>Year</td>
<td>Country</td>
<td>Page Numbers</td>
<td>Month</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------</td>
<td>---------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>Kondoh Y</td>
<td>Johkoh T</td>
<td>2015</td>
<td>Japan</td>
<td>7, 24, 24, 4</td>
<td>November</td>
</tr>
<tr>
<td>Kronzer VL</td>
<td>Huang W</td>
<td>2021</td>
<td>USA</td>
<td>1, 317, 84, 7</td>
<td>January</td>
</tr>
<tr>
<td>Kubo S</td>
<td>Siebuhr AS</td>
<td>2020</td>
<td>Japan</td>
<td>2, 79, 37, 4</td>
<td>June</td>
</tr>
<tr>
<td>Lai N-L</td>
<td>Jia W</td>
<td>2019</td>
<td>China</td>
<td>1, 200, 100, 6</td>
<td>September</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Country</td>
<td>Volume</td>
<td>Issue</td>
<td>Pages</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Country</td>
<td>Page</td>
<td>Volume</td>
<td>Start</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Manetti M, Guiducci S, Romano E, Bellando-Randone S, Conforti ML, Ibba-</td>
<td>2012</td>
<td>Italy</td>
<td>2</td>
<td>72</td>
<td>34</td>
</tr>
<tr>
<td>Manneschi L, Matucci-Cerinic M. Increased serum levels and tissue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expression of matrix metalloproteinase-12 in patients with systemic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sclerosis: correlation with severity of skin and pulmonary fibrosis and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colaci M, Spinella A, Luppi F, Ferri C. Unclassifiable interstitial lung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disease or undifferentiated connective tissue disease? A challenging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>differential diagnosis. In: 2015 2015: (var.pagings). 74 (SUPPL. 2) (pp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>591); BMJ Publishing Group; 2015.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F, Salvarani C, Sebastiani M. Fibrosing interstitial lung disease in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marie I, Hatron PY, Dominique S, Cherin P, Mouton L, Menard JF. Short-</td>
<td>2011</td>
<td>France</td>
<td>3</td>
<td>348</td>
<td>107</td>
</tr>
<tr>
<td>term and long-term outcomes of interstitial lung disease in polymyositis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11): 3439-3447.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jouneau S, Hatron PY, Tiev KP, Vittecoq Q, Noel D, Mouton L, Menard JF,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jouen F. Comparison of long-term outcome between anti-Jo1- and anti-PL7/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL12 positive patients with antisynthetase syndrome. Autoimmunity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Country</td>
<td>Page</td>
<td>Citations</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Mei YJ, Wang P, Jiang C, Wang T, Chen LJ, Li ZJ, Pan HF.</td>
<td>2018</td>
<td>China</td>
<td>6</td>
<td>470 65 4</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Country</td>
<td>Page Numbers</td>
<td>Citations</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Mori S, Koga Y, Sugimoto M</td>
<td>2011</td>
<td>Japan</td>
<td>1</td>
<td>189 19 7</td>
<td></td>
</tr>
<tr>
<td>Mori S, Koga Y, Sugimoto M</td>
<td>2012</td>
<td>Japan</td>
<td>1</td>
<td>356 24 7</td>
<td></td>
</tr>
<tr>
<td>Narang NS, Casciola-Rosen L, Li S, Chung L, Fiorentino DF</td>
<td>2015</td>
<td>USA</td>
<td>3</td>
<td>152 29 7</td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Country</td>
<td>Page(s)</td>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Country</td>
<td>Page(s)</td>
<td>Volume(s)</td>
<td>Issue(s)</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Jokenst CE, Umar SB, Griffing WL, Neville MR, Malhotra A, Parish JM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individuals With Scleroderma May Have Increased Risk of Sleep-Disordered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nunez A, Ojanguren I, Munoz X, Cruz MJ, Morell F, Villar A. Radiologic</td>
<td>2015</td>
<td>Spain</td>
<td>1</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>pattern as a survival predictor in the rheumatoid arthritis interstitial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lung disease. In: 2015: (var.pagings), 46 (SUPPL. 59) (no pagination);</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Respiratory Society; 2015.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naccache J-M. Outcome and prognostic factors in a French cohort of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>patients with myositis-associated interstitial lung disease. Rheumatol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ishii Y. Clinical features of organizing pneumonia associated with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tissue disease-associated interstitial lung disease. Pulmonology 2022:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28(2): 113-118.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>radiological characteristics of rheumatoid arthritis-associated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Country</td>
<td>Total</td>
<td>Number 1</td>
<td>Number 2</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Park JK, George M, Danoff SK, Qubti MA, Gelber AC, Christopher-Stine L. ESR and CRP do not correlate with extent of muscle injury but their elevation is associated with pulmonary involvement in Idiopathic Inflammatory myopathy. In; 2010 2010: (var.pagings). 62 (SUPPL. 10) (pp 919); John Wiley and Sons Inc.; 2010.</td>
<td>2010</td>
<td>USA</td>
<td>3</td>
<td>48</td>
<td>21</td>
</tr>
<tr>
<td>Name</td>
<td>Year</td>
<td>Country</td>
<td>Page 1</td>
<td>Page 2</td>
<td>Page 3</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Name(s)</td>
<td>Year</td>
<td>Country</td>
<td>Patients</td>
<td>Follow-up</td>
<td>Publication Details</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Proudman S.</td>
<td>2018</td>
<td>Australia</td>
<td>2</td>
<td>17838</td>
<td>4639</td>
</tr>
<tr>
<td>Qaradakhy TA, Ali KM, Karim OH.</td>
<td>2012</td>
<td>Iraqi Kurdistan</td>
<td>2</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Country</td>
<td>Page</td>
<td>Word</td>
<td>Citation</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Country</td>
<td>Volume</td>
<td>Issue</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Salaffi F, Di Carlo M, Carotti M, Fraticelli P, Gabrielli A, Giovagnoni A.</td>
<td>Italy</td>
<td>2018</td>
<td></td>
<td>126 86 8</td>
<td></td>
</tr>
<tr>
<td>Sargin G, Kose R, Senturk T.</td>
<td>Turkey</td>
<td>2018</td>
<td></td>
<td>83 43 7</td>
<td></td>
</tr>
<tr>
<td>Schnabel A, Reuter M, Biederer J, Richter C, Gross WL.</td>
<td>Germany</td>
<td>2003</td>
<td></td>
<td>63 20 8</td>
<td></td>
</tr>
<tr>
<td>Sebastian A, MisterskaSkora M, Silicki J, Sebastian M, Wiland P.</td>
<td>Poland</td>
<td>2017</td>
<td></td>
<td>68 13 8</td>
<td></td>
</tr>
<tr>
<td>Research Question</td>
<td>Year</td>
<td>Country</td>
<td>ILD Prevalence</td>
<td>SLE Prevalence</td>
<td>Other Prevalence</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Rheumatoid arthritis related interstitial lung disease. Radiological patterns and correlations with clinical, serological and demographic features of disease.</td>
<td>2014</td>
<td>Italy</td>
<td>1</td>
<td>99</td>
<td>32</td>
</tr>
<tr>
<td>Prevalence of ILD in lupus and its serological and systemic association: A cross sectional study at a tertiary care centre in India.</td>
<td>2018</td>
<td>India</td>
<td>6</td>
<td>289</td>
<td>23</td>
</tr>
<tr>
<td>Monitoring of interstitial lung disease in rheumatoid patients in routine clinical practice and therapies.</td>
<td>2018</td>
<td>UK</td>
<td>1</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Lung Involvement in Primary Sjogren's Syndrome-An Under-Diagnosed Entity.</td>
<td>2020</td>
<td>Germany</td>
<td>4</td>
<td>268</td>
<td>31</td>
</tr>
<tr>
<td>Interstitial lung disease in scleroderma portuguese patients.</td>
<td>2016</td>
<td>Portugal</td>
<td>2</td>
<td>103</td>
<td>34</td>
</tr>
<tr>
<td>Ethnic influence on the phenotype of French patients with systemic sclerosis.</td>
<td>2021</td>
<td>France</td>
<td>2</td>
<td>425</td>
<td>199</td>
</tr>
<tr>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Location</td>
<td>Gene(s)</td>
<td>Gene Description</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>--------------</td>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Trombetta AC, Smith V, Gotelli E, Ghio M, Pizzato S, Pizzorni C,</td>
<td>2018</td>
<td>Italy,</td>
<td>2</td>
<td>154 71 8</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Country</td>
<td>Page</td>
<td>Volume</td>
<td>Issue</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Location</td>
<td>Pages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vojinovic T, Cavazzana I, Ceruti P, Fredi M, Modina D, Berlendis M, Franceschini F.</td>
<td>2020</td>
<td>Italy</td>
<td>3</td>
<td>138</td>
<td>45</td>
</tr>
<tr>
<td>Wang J, Wang X, Qi X, Sun Z, Zhang T, Cui Y, Shu Q.</td>
<td>2022</td>
<td>China</td>
<td>1, 2, 3</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Wang J-X, Du C-G.</td>
<td>2015</td>
<td>China</td>
<td>1</td>
<td>544</td>
<td>83</td>
</tr>
<tr>
<td>Wang N, Zhang Q, Jing X, Guo J, Huang H, Xu Z.</td>
<td>2020</td>
<td>China</td>
<td>1</td>
<td>96</td>
<td>45</td>
</tr>
<tr>
<td>Title</td>
<td>Year</td>
<td>Country</td>
<td>Page 1</td>
<td>Page 2</td>
<td>Page 3</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Zhang G, Gargani L, Matucci-Cerinic M, Furst DE. Lung ultrasound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-lines and serum KL-6 correlate with the severity of idiopathic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence and predictors of interstitial lung disease (ILD) in Thai</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watanabe E, Gono T, Kuwana M, Terai C. Predictive factors for sustained</td>
<td>2020</td>
<td>Japan</td>
<td>3</td>
<td>168</td>
<td>88</td>
</tr>
<tr>
<td>remission with stratification by myositis-specific autoantibodies in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adult polymyositis/dermatomyositis. Rheumatology (United Kingdom) 2020:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59(3): 586-593.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH. Mortality factors in idiopathic inflammatory myopathy: Focusing on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>malignancy and interstitial lung disease. Modern Rheumatology 2013:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23(3): 503-508.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>soluble programmed death ligand 1(sPD-L1) is associated with the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>presence of interstitial lung disease in rheumatoid arthritis: A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T, Hesselstrand R, Truedsson L. CD81 and CD48 show different expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>on blood eosinophils in systemic sclerosis: new markers for disease and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Country</td>
<td>Study Title</td>
<td>Journal</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Year</td>
<td>Country</td>
<td>Patients</td>
<td>Deaths</td>
<td>Duration</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Interstitial Lung Disease in Systemic Sclerosis: A Single-center Retrospective Analysis</td>
<td>2021</td>
<td>Turkey</td>
<td>2</td>
<td>100</td>
<td>150-156</td>
</tr>
<tr>
<td>Survival analysis of patients with Sjogren's syndrome in Turkey: a tertiary hospital-based study</td>
<td>2020</td>
<td>Turkey</td>
<td>4</td>
<td>47</td>
<td>372</td>
</tr>
<tr>
<td>Clinical audit of prevalence of pulmonary manifestations among patients with rheumatoid arthritis in Hospital Tuanku Jaafar (HTJ), Seremban, Malaysia.</td>
<td>2021</td>
<td>Malaysia</td>
<td>1</td>
<td>75</td>
<td>403</td>
</tr>
<tr>
<td>Impact of pulmonary fibrosis and elevated pulmonary pressures on right ventricular function in patients with systemic sclerosis.</td>
<td>2016</td>
<td>Netherlands</td>
<td>2</td>
<td>51</td>
<td>102</td>
</tr>
<tr>
<td>Association of anti-aminoacyl-transfer RNA synthetase antibody and anti-melanoma differentiation-associated gene 5 antibody with the therapeutic response of polymyositis/dermatomyositis-associated interstitial lung disease.</td>
<td>2017</td>
<td>Japan</td>
<td>3</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>Prevalence, Treatment, and Outcomes of Coexistent Pulmonary Hypertension and Interstitial Lung Disease in Systemic Sclerosis.</td>
<td>2019</td>
<td>USA</td>
<td>2</td>
<td>8</td>
<td>93</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Country</td>
<td>Page1</td>
<td>Page2</td>
<td>Page3</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Year</th>
<th>Country</th>
<th>Volume</th>
<th>Issue/Section/Supplement</th>
<th>Pages</th>
<th>DOI</th>
</tr>
</thead>
</table>
Table S5 Pooled prevalence of ILD CT patterns, by connective tissue disease. Data shown are pooled percent (95% confidence interval). Heterogeneity is displayed as I^2 statistic and p value.

<table>
<thead>
<tr>
<th>CTD</th>
<th>Total N</th>
<th>UIP</th>
<th>NSIP</th>
<th>OP</th>
<th>LIP</th>
<th>Other</th>
<th>Non UIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>4897</td>
<td>46 (42-50) $I^2 = 88.7%$ $p = 0.00$</td>
<td>35 (31-40) $I^2 = 84.1%$ $p = 0.00$</td>
<td>4 (3-6) $I^2 = 60.9%$ $p = 0.00$</td>
<td>17 (12-23) $I^2 = 95.3%$ $p = 0.00$</td>
<td>19 (15-24) $I^2 = 72.3%$ $p = 0.00$</td>
<td>76 (70-82) $I^2 = 60.6%$ $p = 0.00$</td>
</tr>
<tr>
<td>SSc</td>
<td>1263</td>
<td>19 (15-24) $I^2 = 88.7%$ $p = 0.00$</td>
<td>76 (70-82) $I^2 = 60.6%$ $p = 0.00$</td>
<td>16 (9-25) $I^2 = 91.2%$ $p = 0.00$</td>
<td>13 (7-21) $I^2 = 91.3%$ $p = 0.00$</td>
<td>8 (4-13) $I^2 = 86.6%$ $p = 0.00$</td>
<td>59 (52-67) $I^2 = 83.3%$ $p = 0.00$</td>
</tr>
<tr>
<td>IIM</td>
<td>1305</td>
<td>8 (4-13) $I^2 = 86.6%$ $p = 0.00$</td>
<td>59 (52-67) $I^2 = 83.3%$ $p = 0.00$</td>
<td>16 (9-25) $I^2 = 91.2%$ $p = 0.00$</td>
<td>13 (7-21) $I^2 = 91.3%$ $p = 0.00$</td>
<td>5 (1-7) $I^2 = 81.1%$ $p = 0.00$</td>
<td></td>
</tr>
<tr>
<td>pSS</td>
<td>722</td>
<td>28 (15-43) $I^2 = 91.3%$ $p = 0.00$</td>
<td>49 (39-59) $I^2 = 81.0%$ $p = 0.00$</td>
<td>3 (1-6) $I^2 = 27.6%$ $p = 0.17$</td>
<td>7 (2-15) $I^2 = 78.2%$ $p = 0.00$</td>
<td>5 (0-15) $I^2 = 90.2%$ $p = 0.00$</td>
<td></td>
</tr>
<tr>
<td>MCTD</td>
<td>52</td>
<td>6 (1-16) $I^2 = 0.0%$ $p = 0.41$</td>
<td>70 (50-87) $I^2 = 48.2%$ $p = 0.15$</td>
<td>21 (5-44) $I^2 = 63.0%$ $p = 0.07$</td>
<td>21 (5-44) $I^2 = 63.0%$ $p = 0.07$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLE</td>
<td>93</td>
<td>9 (1-20) $I^2 = 51.1%$ $p = 0.13$</td>
<td>27 (12-45) $I^2 = 45.2%$ $p = 0.14$</td>
<td>49 (31-67) $I^2 = 60.7%$ $p = 0.08$</td>
<td>63 (45-80) $I^2 = 61.4%$ $p = 0.08$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCTD</td>
<td>91</td>
<td>37 (20-55) $I^2 = 67.0%$ $p = 0.048$</td>
<td>63 (45-80) $I^2 = 61.4%$ $p = 0.08$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>