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Abstract
Tuberculosis (TB) remains a leading infectious cause of death worldwide and the coronavirus disease 2019
pandemic has negatively impacted the global TB burden of disease indicators. If the targets of TB
mortality and incidence reduction set by the international community are to be met, new more effective
adult and adolescent TB vaccines are urgently needed. There are several new vaccine candidates at
different stages of clinical development. Given the limited funding for vaccine development, it is crucial
that trial designs are as efficient as possible. Prevention of infection (POI) approaches offer an attractive
opportunity to accelerate new candidate vaccines to advance into large and expensive prevention of disease
(POD) efficacy trials. However, POI approaches are limited by imperfect current tools to measure
Mycobacterium tuberculosis infection end-points. POD trials need to carefully consider the type and
number of microbiological tests that define TB disease and, if efficacy against subclinical (asymptomatic)
TB disease is to be tested, POD trials need to explore how best to define and measure this form of TB.
Prevention of recurrence trials are an alternative approach to generate proof of concept for efficacy, but
optimal timing of vaccination relative to treatment must still be explored. Novel and efficient approaches to
efficacy trial design, in addition to an increasing number of candidates entering phase 2–3 trials, would
accelerate the long-standing quest for a new TB vaccine.

Introduction
Tuberculosis (TB) remains a leading infectious cause of death worldwide [1]. The bacille Calmette–Guérin
(BCG) vaccine, the only available licensed TB vaccine, has shown partial efficacy and effectiveness
against childhood TB, but limited protection against adult pulmonary TB disease [2]. Thus, if we are to
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meet the targets of TB mortality and incidence reduction set by the global End TB Strategy, new more
effective adult and adolescent TB vaccines are urgently needed [3]. There are several new vaccine
candidates at different stages of the clinical development pipeline [4]. Given the substantial resources
required for efficacy trials and the limited amount of funding available for vaccine development, it is
crucial that trial designs are as efficient as possible [5]. The selection of primary and secondary end-points
for currently proposed approaches is of paramount importance. Clinically and epidemiologically relevant
outcomes and how they relate to the stages of the natural history of TB need to be carefully defined (figure 1).
In this article, we discuss possible approaches and knowledge gaps related to end-point selection in
pre-licensure TB vaccine efficacy trials.

Prevention of infection (POI) approaches to accelerate candidate vaccines into prevention of
disease (POD) efficacy trials
In recent years, there has been renewed interest in POI approaches, partially due to the positive efficacy
signal associated with BCG revaccination in adolescence [6], but also due to the potential impact that
successful POI candidates could have on POD approaches. Given that Mycobacterium tuberculosis
(MTB) infections occur much more frequently than TB disease episodes, efficacy signals obtained by
POI candidates would require a much lower sample size and a shorter duration of follow-up compared to
those candidates tested in POD trials (sample size calculation depends on various parameters; for any set
values of expected efficacy, significance level and power, a higher event rate would favour a smaller
overall sample size). However, it is possible that a vaccine could have a differential effect in POI
compared to POD.

The fundamental premise behind the search for vaccines that can prevent MTB infection is that by
preventing infection, subsequent disease would also be prevented. TB progression occurs at its highest rate
within 1–2 years after acquisition of MTB infection [7–9] and the lifetime risk of progression into active
TB disease is around 10%. Interestingly, an existing MTB infection may protect from re-infection in
animal models [10], and humans with immune sensitisation from earlier infection are less likely to
progress to TB disease after re-infection [11]. Thus, ideally, a POI vaccine should prevent either all MTB
infections (i.e. 100% efficacy) or at least all of the subset of MTB infections that would have progressed to
TB disease. Although we do not know who among the infected will progress to disease, a POI vaccine
with partial efficacy would likely have an important public health impact [12].

Measuring MTB infection as an end-point in clinical trials is complicated by the fact that there are no
validated assays that directly measure the presence of viable MTB in healthy individuals. Rather, MTB
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FIGURE 1 Vaccine strategies along the natural history of tuberculosis (TB), according to the expected effect. Vaccines developed with the strategy
to prevent infection (POI) are mostly targeted for populations not yet exposed to Mycobacterium tuberculosis (i.e. pre-infection). Vaccines developed
for prevention of disease (POD) could be useful if administered post- or pre-TB infection to prevent development of symptomatic disease.
Therapeutic vaccines could have effects both in treatment-shortening and/or prevention of recurrence. Vaccines primarily developed for a
prevention of recurrence (POR) strategy could be given with the aim of prevention of either re-infection or recurrence of disease (true relapse).
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infection is inferred through indirect assays, such as purified protein derivative (PPD)-based tuberculin skin
tests (TSTs) or interferon gamma release assays (IGRAs) [13]. These assays detect the presence of a
cellular immune response to MTB-specific antigens, which is indicative of recent or past in vivo exposure
to MTB [14, 15]. IGRAs have similar sensitivity to TSTs for identifying individuals with TB disease, but
higher specificity, as they do not give false-positive results in those with previous BCG vaccination or
exposure to environmental mycobacteria. In addition, IGRAs allow a more objective, laboratory-based,
assessment in a single visit, whereas a TST needs a return visit to read the result which, in addition, is
subject to intra and inter-reader variability [16]. Therefore, although many epidemiological studies employ
PPD-based TST due to lower cost, the increased specificity and reduced need for repeat visits makes IGRA
the measurement of choice for POI clinical trials.

Although higher levels of interferon-gamma (IFN-γ) detected by IGRA (at the time of IGRA conversion)
have been associated with higher risk of TB progression (higher positive predictive value) [14, 15, 17],
neither TSTs nor IGRAs accurately identify healthy individuals who will develop disease. Discovery and
validation of novel biomarkers (i.e. whole-blood RNA transcriptional signatures including several
combinations of genes) that predict progression from MTB infection to active TB disease are ongoing
[18–20], but they are limited by a short prognostic horizon [21] and their applicability as clinical trial
end-points has not been explored. In particular, it is not clear whether such biomarkers predict progression
to disease that could be prevented by vaccination.

Most TB vaccine related studies have used an IGRA assay from the different QuantiFERON (QTF)
generations (QTF-Gold, QTF-TB Gold in Tube or QTF-TB Gold Plus test, by Qiagen) as an indirect test
for TB infection. QTF measures the IFN-γ response in IU·mL−1. IGRA conversion from a negative to a
positive test is currently considered the most robust biomarker of acquisition of MTB infection that is a
suitable end-point for clinical trials (table 1). However, serial IGRA testing is associated with substantial
variability in the test results, which may result from both biological and technical variability (sample
preparation and processing) [13, 17]. To partly address these issues, more stringent end-point definitions
can be applied. These include defining “sustained” IGRA conversion as one (or more) negative test
followed by at least two positive tests over 6 months. Sustained IGRA conversion has been hypothesised to
represent persistent MTB infection, as opposed to a transient conversion to positive, followed by reversion
to negative within 6 months. IGRA reversion occurs more frequently with low IFN-γ conversion values
just above the assay cut-off [14, 22, 23]. The clinical significance of IGRA reversion remains to be
established, but TST reversion has been associated with self-cured TB in humans and sterilised infection in
guinea pigs [24]. Alternative cut-offs to interpret IGRA results may also be considered (for research
purposes) to define alternative POI end-points, to exclude values falling in the “uncertainty zone” (IFN-γ
0.2–0.7 IU·mL−1) [17] or enrich for highest risk of TB progression (IFN-γ>4 IU·mL−1 at conversion)
[14, 15], at the expense of lower sensitivity to detect new MTB infections. Table 1 shows the advantages
and disadvantages of several possible POI end-points in vaccine efficacy clinical trials, many of them used
in ongoing trials).

Three POI trials have been conducted in recent years, using these different end-point definitions as primary
and secondary objectives. The first POI phase IIb trial, which assessed efficacy of H4:IC31 and BCG
revaccination in adolescents [6], specified one primary end-point and several secondary end-points, all of
them based on QFT Gold-in-Tube assay. The trial did not show efficacy for either H4:IC31 or BCG
revaccination based on analysis of the primary end-point: QFT conversion from negative at baseline to
⩾0.35 IU·mL−1 any time during follow-up. However, BCG revaccination showed 45.4% efficacy against
the secondary end-point, sustained QFT conversion, defined as the conversion from a negative QFT at
baseline to a positive QFT without reversion to negative status at 3 months and 6 months after conversion
(i.e. three consecutive positive QFT results within 6 months). Upon initial conversion, QFT reversion rates
were 46% in BCG and 25% in placebo recipients. A potential explanation could be that some new MTB
infections are transient, and the QTF result would correspondingly be transient. This assumption, for which
no direct evidence is yet available, would imply that individuals with QFT reversion might have cleared
infection and have lower risk of progression to TB disease. Conversely, sustained QFT conversion could
be hypothesised to represent persistent MTB infection, which would be associated with a higher risk of
progression to TB disease (figure 2 shows the assumed IGRA dynamics after vaccination with a POI
candidate). Notably, BCG revaccination also showed 45% efficacy in preventing QFT conversion when
defined as >4 IU·mL−1 (exploratory end-point).

A new larger phase IIb POI trial of BCG revaccination is currently being conducted in South Africa with
sustained QFT conversion as the primary end-point (i.e. a prevention of sustained conversion trial) and
QFT conversion when defined as >4 IU·mL−1 as secondary end-point (NCT04152161). Another POI
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TABLE 1 Advantages and disadvantages of possible end-point definitions for tuberculosis (TB) vaccine efficacy trials

Advantages Disadvantages

POI
IGRA (QTF) conversion

(>0.35 IU·mL−1)
∼10-fold more frequent than TB disease
Widely used threshold in routine practice
Higher sensitivity for detecting MTB infection

compared to higher thresholds

Does not detect all true MTB infections
IGRA reversion is common, but of unclear clinical significance
Significance of protection unclear
Test performance in PLHIV, people with immune-mediated

inflammatory diseases taking immunosuppressive treatment,
and very young children is unclear

IGRA (QTF) conversion
(>4.0 IU·mL−1)

Higher risk of progression to TB disease than
conversion at manufacturer threshold

Higher specificity for detecting MTB infection than
manufacturer threshold

Less frequent event than conversion at manufacturer threshold
Lower sensitivity for detecting MTB infection than manufacturer

threshold

Sustained IGRA
conversion (6 months)

Might represent sustained (persistent) MTB
infection

Might be associated with higher risk of TB disease
compared to a single conversion

Lower risk of false-positive result compared to a
single test

Less frequent event than initial IGRA conversion
Does not encompass IGRA conversion–reversion–conversion events
Need for TB preventive therapy precludes nested POI in POD

efficacy trial design

POD
MTB liquid culture

(sputum)
Gold standard (most sensitive) tool
Allows genotyping of MTB strain

Need for central laboratory
Variable contamination rate (largely laboratory-dependent)
Lower yield in pauci-bacillary TB disease:

- HIV-associated TB
- childhood TB

- One sample Logistically simple
Lower sensitivity

Potential false-positive results

- Two or more separate
samples (processed
independently)

Higher specificity (if both need to be positive) Logistically complex
Less frequent than single positive sample
Decreased sensitivity (if both need to be positive), especially in

pauci-bacillary TB disease:
- HIV-associated TB
- childhood TB

- Before treatment of the
TB episode starts

Not affected by effect of vaccination on response
to TB therapy

Logistically complex
Lower sensitivity than before or after treatment starts

Xpert Ultra (sputum) Does not need central laboratory
Available at district-level hospitals
Rapid turnaround

Does not allow to genotype MTB strain
Lower sensitivity and specificity than culture (higher false-positive

rate, especially among trace results)
MTB liquid culture OR Xpert

Ultra (sputum)
- With symptoms Protection associated with direct health benefit No opportunity to assess vaccine efficacy against

subclinical disease
- Without symptoms Allows assessment of vaccine efficacy against

subclinical TB disease
Significance of clinical protection unclear
Need for TB treatment precludes subsequent assessment of

vaccine efficacy against symptomatic TB disease
Digital chest radiograph

(with or without CAD)
High sensitivity for TB, widely available and with

high added value in populations with
paucibacillary disease, such as:
- HIV-associated TB
- childhood TB

Limited specificity

Urine LAM High specificity in PLHIV with low CD4 counts Limited sensitivity with increasing levels of CD4 counts
TB symptoms (clinical

diagnosis)
High sensitivity, especially in pulmonary TB among

HIV-negative individuals, cheap, no laboratory
infrastructure needed

Sometimes used to define unconfirmed TB

Limited specificity
Subjective interpretation of symptoms

Prevention of recurrence/therapeutic
M. tuberculosis liquid culture

(sputum)
Gold standard
Allows genotyping of MTB strain (true relapse

versus reinfection) if collected before treatment

Need for central laboratory

Xpert Ultra (sputum) Logistically simple at treatment start Cannot distinguish viable from non-viable MTB bacilli
No opportunity to genotype MTB strain

CAD: computer-aided detection; IGRA: interferon gamma release assay; LAM: lipoarabinomannan MTB: Mycobacterium tuberculosis; PLHIV: people
living with HIV; POD: prevention of disease; POI: prevention of infection; QFT: QuantiFERON-TB.
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candidate, the inactivated Mycobacterium obuense vaccine DAR-901, was recently tested in a phase IIb
POI trial in Tanzanian adolescents with a lower force of MTB infection than that observed in South Africa
(NCT02712424). DAR-901 did not show efficacy against either initial or sustained IGRA conversion in
this trial [25].

Besides representing indirect evidence of MTB infection, IGRAs and TSTs have other limitations. Some
people with culture-confirmed TB disease are QFT-negative, suggesting that there are individuals who do
not convert their QFT at the time of infection (or that they reverted their QFT status but nonetheless
progressed to disease). For example, it has been shown that 5–10% of heavily exposed TB contacts show
persistent QFT-negative results, despite having evidence of TB exposure through humoral response against
different MTB antigens [26, 27]. Therefore, the true MTB infection status in these individuals is uncertain
and they would not be identified by IGRAs as infected, highlighting the need to explore other
immunological assays to ascertain TB infection status. In addition, people living with HIV (PLHIV) who
are immunosuppressed or people with immune-mediated inflammatory diseases taking tumour necrosis
factor-α inhibitors might also have a poorer IFN-γ response, affecting the interpretation of IGRA results.
Conversely, evidence suggests that adaptive immune responses (positive IGRA or positive TST) have been
shown to persist for long periods in individuals who have very likely cleared the MTB infection and who
have very low risk of progression to TB [28]. Modelling analyses suggest that the number of people
harbouring viable MTB at any given time worldwide might be much lower than previously estimated by
the number of IGRA-/TST-positive individuals [29, 30]. Therefore, while detection of IGRA conversion is
considered a biomarker for acquisition of MTB infection, it is possible that some individuals with
sustained conversion may also clear infection [31].

Modified IGRAs may also be needed to evaluate MTB infection in study populations who have received
novel TB vaccines expressing antigens that are also included in currently available commercial IGRA. For
example, ESAT6- and CFP10-free IGRAs may be needed to evaluate MTB infection in individuals who
have received H56:IC31 or MTBVAC, respectively, for which traditional IGRAs would not distinguish
between vaccination and MTB infection. A promising ESAT6-free assay has recently been developed with
similar accuracy as QFT for detecting established MTB infection [32].

Optimising TB disease end-points for future efficacy trials
POD
In addition to utilising POI trials to accelerate and streamline down-selection of candidates to progress to
further stages of development, there is a need to optimise the selection of efficacy end-points in POD
trials. For POD studies, a foundational question is “what is the definition of TB disease?”. The answer to
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this question helps to guide the screening procedures necessary at baseline to rule out prevalent disease
prior to vaccination, and to guide the tests used in follow-up to ascertain incident disease outcomes as a
function of vaccination status and thus to estimate vaccine efficacy. Broadly speaking, there are two
potential angles to the definition of TB disease – one pertaining to illness regardless of transmissibility and
a public health perspective that puts an emphasis on potential for transmission. While it is clear that an
individual could be both symptomatic and contagious, the growing literature around subclinical
tuberculosis [33], in which an individual is asymptomatic but is found to have positive microbiologic tests
for MTB, allows further profiling of TB disease based upon expected transmissibility.

Regardless of the TB case definition, it is paramount that prevalent cases at baseline, which could not be
prevented by vaccination, are identified and excluded. Simple symptom screening would overlook
individuals with existing subclinical TB disease, who might progress to symptomatic disease during the
trial period, and in consequence underestimate the true vaccine efficacy. For this reason, it would be
important to perform microbiological assessments at enrolment on all subjects.

A phase 2b M72/AS01E prevention of disease study (NCT01755598) [34] excluded randomisation
individuals who either had symptoms of TB at screening or were Xpert-positive at screening (Xpert is a
rapid molecular test based on detection of MTB nucleic acid). No significant vaccine efficacy was
demonstrated during the first year after vaccination, whereas considerable efficacy against disease was
reported in the second and third year of the trial. Therefore, it might be hypothesised that despite efforts
to exclude participants with active tuberculosis, incipient or subclinical TB cases might have been
missed in this study, and these were the cases seen in the first 9–12 months, which occurred at similar
rates in the vaccine and placebo arms, before incidence in the vaccine arm began to decline. A recent
national TB prevalence survey from South Africa demonstrated that among 234 survey cases (220
culture-positive and 14 culture-negative), 57.7% of the individuals had abnormal chest radiography
(CXR) with no clinical symptoms and only 6% of cases with abnormal CXR were negative by culture,
suggesting screening radiology could be useful to exclude asymptomatic individuals with TB from
clinical trials [35]. The recent World Health Organization (WHO) systematic screening guidelines for TB
disease also recommend CXR in those populations in which TB screening is indicated, especially in
PLHIV, in whom CXR improves the sensitivity of the WHO-recommended four-symptom screen in
those on antiretroviral therapy (ART) [36]. However, CXR reading requires either human resources, with
unavoidable inter-rater variability, or computer-aided detection (CAD) software, for which the pooled
specificity ranges from 54 to 60% when benchmarked at 90% sensitivity [37]. This significant limitation
applies to both baseline CXR screening to determine eligibility and as a component of algorithms to
define unconfirmed TB disease.

Obtaining samples from study participants to ascertain disease end-points might not always be feasible.
Indeed, not all participants, even those with TB, are able to produce an expectorated sputum sample for
microbiological confirmation. In those unable to produce sputum spontaneously (sputum unproductive),
induction with hypertonic saline followed by two or three samples collected on the same day has been
recommended for clinical purposes, avoiding the complex logistics of requesting three samples on three
separate days [38].

Selection of the efficacy end-point will depend on the primary goal of the trial. If the goal is to reduce the
rate of incident symptomatic TB by vaccination, the presence of symptoms and a positive microbiological
test during follow-up will suffice to ascertain incident TB cases. If, however, the goal is to reduce the
development of any MTB-culture positivity, then serial sputum tests would be needed to look for all new
potentially contagious cases that might impact MTB transmission, including subclinical disease. Of note,
nucleic acid amplification tests would not be a substitute for culture in patients with recent previously
treated TB since the technology cannot discern live from dead tubercle bacilli. It should also be noted that
regular microbiologic screening to detect subclinical or asymptomatic TB would not allow subsequent
progression to symptomatic disease, as all individuals with microbiologically confirmed TB would be
referred for treatment, halting further disease progression. Thus, it might not be possible to properly
ascertain both subclinical and symptomatic TB disease end-points in the same trial. One alternative
approach would be microbiologic screening of all participants at the end of the study, regardless of
presence or absence of symptoms. Collecting sputum samples in all participants at different time points for
retrospective microbiological testing at the end of the study could also shed light on the efficacy against
subclinical disease.

One question that arises is whether an isolated positive test is sufficient to define disease for the detection
of incident TB cases. Based on published literature indicating that the rate of false-positivity is 1/50 to
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1/100 [39, 40] (Xpert MTB/RIF or culture, respectively), it is unlikely that a single positive test would
falsely assign any one individual. However, multiple false-positives in both arms of a trial could have the
effect of decreasing effect size, i.e. biasing the efficacy estimate for an effective vaccine towards zero.
Given that the goal of the baseline test is to screen out individuals who may develop symptomatic disease
due to already existing subclinical TB, it would be reasonable to use a single positive result for this
purpose. However, since ascertainment of TB disease end-points after the vaccine intervention should be
highly specific, two or more tests should ideally be used to define the primary outcome. Table 1 shows the
advantages and disadvantages of several possible POD end-points in vaccine efficacy trials, many of them
used in ongoing trials.

Two special situations require additional consideration: paediatric TB and extrapulmonary TB (EPTB). In
high-burden TB settings, there is a bimodal curve of paediatric TB disease incidence with a peak <2 years,
a trough from age 5–10 years, and a second upward trend starting in adolescence. The first peak in very
young children is associated with a high risk for morbidity and mortality due to disseminated and severe
forms of TB disease. Children under age 5 years may be investigated by gastric lavage or induced sputum
and nasopharyngeal aspirate after hypertonic saline nebulisation, but diagnostic yield seldom exceeds 30%,
even in hospitalised children [41, 42]. Since true TB disease in young children may be missed by a case
definition requiring microbiologic confirmation, a composite end-point including evidence of MTB
exposure and/or infection, presence of symptoms, and radiologic evidence of intrathoracic TB may be
used [43]. However, definition of MTB infection may not even be possible in trials of vaccines that
cross-react with IGRA without the development of new tools. While such composite end-points are less
specific than one requiring microbiologic confirmation, specificity may be improved by applying stringent
definitions for exposure and compatible symptoms, and by applying a standardised approach to radiologic
evaluation by an expert panel. Unfortunately, CAD solutions for paediatric TB are still under evaluation.

EPTB disease has also been excluded from the primary end-point of the M72 efficacy trial (conducted
among adults aged 18–50 years) and it has not been included as a standalone end-point amongst the
secondary end-points [34]. Likely reasons are the lower bacteriological confirmation rate found in EPTB
patients, the lower frequency of EPTB events overall, and the possibility of different vaccine-induced
immune responses against pulmonary TB and EPTB, which would hinder the efficacy assessment of the
most common TB form, pulmonary TB. A joint secondary end-point including pulmonary and
extrapulmonary tuberculosis disease should be explored in future POD trials. EPTB in children is an
important outcome and one of the reasons why BCG is given at birth is to prevent miliary and meningeal
TB. However, the number of such cases in modern BCG clinical trials has been remarkably small [44],
and most data have been generated in case-control studies [45, 46]. For future trials, an optimal diagnosis
of EPTB (for children and adults) should include microbiologic assessment (single positive nucleic acid
amplification test or culture) and/or histopathologic evidence of necrotising granulomas with acid-fast
bacilli, but the number of end-points is likely to be too small to provide a precise estimate of protective
efficacy for EPTB alone.

Prevention of recurrence (POR) and therapeutic approaches
In this section we include considerations for both classical POR trials, in which vaccination occurs towards
the end or at the end of TB treatment and can only affect post-treatment outcomes, and therapeutic trials,
in which vaccination occurs during TB treatment and may affect both on- and post-treatment outcomes
(figure 1) [47]. It is thus apparent that timing of vaccination is likely critical to the magnitude and scope of
potential benefit to TB patients. Interest in clinical trials of POR approaches has been growing, driven in
part by the potential to fast-track vaccine development by conducting small, less costly trials in TB patient
populations, in whom recurrent TB end-points accrue several times faster than TB disease end-points in
the general population [48]. A study from Cape Town showed that 18% of patients with a first TB episode
in 2013 had at least one further episode by 2016 [49]. Therapeutic vaccine approaches for TB patients, in
whom treatment failure is likewise more common than incident TB in the general population, also have
potential to directly reduce immediate post-treatment pulmonary morbidity and mortality in patients treated
for either drug-sensitive TB (DS-TB) or drug-resistant TB (DR-TB).

POR approaches, in which vaccination occurs at the end of treatment when bacillary and antigen load is
low, may be the preferred trial design for candidate vaccines with an unknown safety profile in TB patient
populations. It is likely that the potential for harm, in the form of excessive systemic or local inflammatory
reaction to vaccination, including the so-called Koch phenomenon [50], is reduced as the vaccination time
point shifts further from the start of TB treatment and bacillary burden decreases. It would also be
expected that for trials including PLHIV, the potential immune dysregulation of therapeutic vaccines is
minimised as the time to vaccination increases in relation to ART initiation. Conversely, the potential for
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on-treatment benefit would increase as the vaccination time point shifts closest to the start of treatment.
Since there is also potential for overlapping drug/vaccine toxicities early during the treatment phase, a time
de-escalation approach could be used to select the optimal time point for therapeutic vaccination [47], in
which vaccination shifts iteratively towards treatment start in the absence of safety signals from prior
cohorts. In addition to injection site reactogenicity, safety end-point evaluation might be enhanced by
comparison of lung inflammation measured by positron emission tomography or computer tomography
[51, 52]. This approach would allow time de-escalation for evaluation of safety to occur in real time,
without waiting for immunogenicity end-point analyses.

The primary efficacy end-point for both POR and therapeutic TB vaccine trials is microbiologically
confirmed pulmonary TB, occurring in the post-treatment period and/or at the end of treatment,
respectively [53]. An efficacy signal from a POR or therapeutic vaccine trial might be used to green-light a
conventional POD trial in the general population. However, it must be acknowledged that the mechanism
of vaccine-mediated eradication of live bacilli in the context of ongoing or recent disease may differ from
that required to prevent progression to disease, whether in uninfected individuals or those with
asymptomatic MTB infection. Further, it would be ideal to understand whether a POR vaccine protects
against post-treatment true relapse (endogenous reactivation of bacilli not cleared by TB treatment),
reinfection, or both. For this, enrolment at the start of treatment may be required to obtain the MTB
genotype, and an increased sample size would be required to power efficacy estimates for each end-point
separately. In addition, a particular candidate could hypothetically protect against reinfection, but not
against true relapse, or vice versa. In both situations, the observed vaccine efficacy would underestimate
the true vaccine efficacy specifically for a particular protective mechanism, while the extent of
underestimation depends on the incidence of the phenomena against which no protection is afforded.

The potential for therapeutic vaccination to improve treatment outcomes for both DS- and DR-TB hinges
not only on the vaccine-specific immune response, but also on the potential for vaccine-mediated
improvement in reducing treatment duration, adverse effects, and outcome, which may be specific to a
drug regimen. Therapeutic vaccination could have a significant impact in DR-TB patients, as their
treatment has traditionally been lengthy, toxic, poorly tolerated, with low rates of cure and high rates of
mortality. DR-TB patients demonstrated a lower risk of post-treatment recurrence than DS-TB patients
[54], either because many patients with DR-TB did not survive to cure or because of the long treatment
duration. However, treatment outcomes for DR-TB using new regimens are comparable to DS-TB [55].
Patients with moderate and hard-to-treat TB, both DS- and DR-TB, might benefit from a POR vaccine to
reduce the risk of recurrence. In both DS- and DR-TB, a therapeutic TB vaccine may further contribute to
treatment-shortening and reducing post-TB treatment morbidity and mortality, and towards preventing
resistance. Consequently, the inclusion of post-TB lung function-related secondary end-points (measured
at baseline and after treatment) could provide additional information on vaccine capacity to prevent
lingering sequelae.

It is possible, if not likely, that the magnitude of a POR or therapeutic vaccine efficacy signal would be
specific to a particular drug regimen, due to the interaction of the therapeutic effect on antigen load and
potential vaccine-mediated immune response. Given the progress in new shorter effective regimens for
both DS- and DR-TB, POR or therapeutic vaccines should be evaluated against different treatment
regimens, not only the current standard of care. This is particularly true if vaccine-mediated reductions in
the rates of adverse treatment outcomes, including pulmonary morbidity, treatment failure, mortality and
recurrence, are to be parlayed into further reductions in treatment regimen duration or complexity. The
primary challenge to this approach is that TB-recurrence end-points accrue slowly and late in trial
follow-up, too late to allow adaptive designs to advance optimal vaccine-regimen combinations or
conversely to halt suboptimal vaccine-regimen combinations. It seems that implementation of a TB
treatment-shortening strategy using adjunctive therapeutic vaccination would require multiple, sequential
trials, first incorporating vaccination at different time points and thereafter incorporating different treatment
regimens for both DS- and DR-TB.

End-point definition in vaccine trials including PLHIV
MTB-infected PLHIV are at higher risk of progression to TB disease and of worse treatment outcomes
[54]. Thus, PLHIV are a priority group for TB-preventive strategies (preventive treatments or vaccines)
and to improve treatment outcomes (therapeutic and POR vaccines) [55]. Safety end-points are of special
importance in this population and safety-related concerns have been key arguments precluding the
inclusion of PLHIV in certain TB vaccine clinical trials. In order to progress into clinical development,
vaccines need to show an appropriate safety profile in early stages, and this would be of even greater
importance in trials involving live attenuated vaccines that included untreated or immunocompromised PLHIV.
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However, modelling has demonstrated the potentially important population-level impact of protection of
PLHIV through TB vaccination in high HIV prevalence settings [12]; so non-immunosuppressed PLHIV
should be included in trials where possible, ideally in pre-licensure trials so that this population can be
included in the indication at launch.

POI trials including PLHIV face added challenges regarding the measurement of efficacy end-points, since
current tools to measure TB infection are even less optimal in PLHIV than in people without HIV
infection. TST sensitivity is lower among PLHIV [56]. Evidence on the diagnostic performance of IGRA
to detect recent MTB infection among PLHIV with low CD4 counts is limited. In addition, the predictive
value of a given IGRA conversion threshold to develop TB is still uncertain in HIV-uninfected individuals.
It would seem reasonable to include PLHIV on ART in POI trials, but not immunosuppressed individuals,
due to the uncertainty about the diagnostic performance and interpretation of MTB infection tests and the
likely robust response required to show vaccine efficacy.

Efficacy end-points in phase IIb/III POD trials including PLHIV follow similar arguments as for
HIV-negative individuals. Capturing subclinical TB as an end-point (or screening for subclinical TB at
enrolment) might have the same relevance for PLHIV, as this phenotype seems to be similarly prevalent
irrespective of HIV status [35, 57]. However, traditional sputum-based diagnostic tools might be less
sensitive for TB disease in PLHIV, and the inclusion of urine-based diagnostics (TB- lipoarabinomannan
(LAM), urine Xpert) might be considered [58, 59]. However, although these tools, including the promising
FujiLAM [60], may be sensitive for TB diagnosis among PLHIV with low CD4 counts, they lack
specificity. EPTB is also more frequent in PLHIV, and this form of TB may need organ-specific diagnostic
approaches [61].

The potential inclusion of less stringent end-points for any unconfirmed TB case definition for PLHIV,
including the use of digital CXR and CAD, epidemiological linkage, and symptom screening could be
explored, as has been done for preventive therapy trials among PLHIV and children [62, 63]. However, it
must be acknowledged that such approaches unavoidably decrease specificity and would be a major
challenge for inclusion of PLHIV in POD efficacy trials, since the TB disease end-point should be
identical for all participants, with and without HIV infection. A need for specially designed TB end-points
for immunosuppressed PLHIV might preclude participation in critically important licensure studies.
Therefore, until new and better diagnostic tools are developed, the TB end-point definition for inclusive
vaccine efficacy trials might not be optimally sensitive for TB disease in immunosuppressed PLHIV.
However, PLHIV should be included in efficacy trials for safety and immunogenicity assessments, even if
they are not powered to demonstrate vaccine efficacy for POD in this subgroup. If shown to be safe and
immunogenic in phase 3 trials, vaccine could potentially be recommended for use in PLHIV once
marketing approval is granted.

Conclusions
Recent advances in proof-of-concept efficacy trials have renewed hope for the development of a successful
candidate vaccine that could accelerate efforts to decrease the unacceptable global burden of TB. POI
approaches offer an attractive opportunity to green-light and accelerate new candidate vaccines to advance
into large and expensive POD efficacy trials. However, POI approaches are limited by imperfect current
tools to measure MTB infection end-points and uncertainty around the significance of POI for protection
against progression to TB disease. Therefore, new and better tests to determine established MTB infection
are needed, as well as establishing the clinical significance of IGRA reversions.

The potential contribution of undiagnosed, subclinical TB disease to the epidemic has received increasing
attention. However, although subclinical TB may or may not be an important component of MTB
transmission, the extent to which subclinical disease progresses to symptomatic TB disease, and thus its
importance for individual morbidity and mortality, needs to be elucidated. For this reason, and given that
parallel surveillance for both subclinical and symptomatic TB in a clinical trial setting does not seem
feasible, the primary end-point for POD efficacy trials that include participants with and without HIV
infection is likely to remain symptomatic microbiologically confirmed TB disease. However, it might be
feasible to include subclinical TB at end of follow-up as a secondary end-point, which would not affect the
ability to demonstrate POD efficacy for symptomatic TB cases during the trial.

The design of therapeutic and POR trials to test new TB vaccine candidates is primarily affected by the
timing of vaccination relative to the end of TB treatment. Crucial outstanding questions include whether
vaccination close to the start of treatment is safe and can offer an immune-mediated benefit for treatment
outcomes. In addition, the extent to which the vaccine efficacy of POR or therapeutic trials can be
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extrapolated to direct protection against progression to TB disease needs to be elucidated, given the
different immunological status of recipients and the potentially different mechanisms of vaccine-mediated
protection. Regardless, demonstration of efficacy for the therapeutic or POR indication would allow
incorporation of TB vaccines into trials of shorter and simpler therapeutic regimens.

Improved diagnostic tools and strategies for both MTB infection and TB disease are being developed,
which may be useful in the design and selection of end-points for TB vaccine trials.

Efficient approaches to efficacy trial design, in addition to an increasing number of candidates entering
phase 2–3 trials, would contribute to acceleration of the long-standing quest for a new TB vaccine.

Provenance: submitted article, peer reviewed.

Acknowledgements: We would like to thank Ann Ginsberg (Bill and Melinda Gates Foundation) for her comments
on the manuscript and Alex Macdonald for helping us with the editing of Figure 1.

Conflict of interest: D. Tait is a salaried employee IAVI NPC. E. Nemes has received grants or contracts from US
National Institutes of Health, Bill and Melinda Gates Foundation and Gates Medical Research Institute, outside the
submitted work. Leadership or fiduciary role in other board, society, committee or advocacy group, paid or
unpaid: “TB immune correlates” Leadership Team. R. Mogg advises that support for the present manuscript has
been received from Bill and Melinda Gates, for which they are currently an employee. Consulting fees received
from PMV Pharma, Autobahn Therapeutics, Asher Biotherapeutics, Inc., and Bill and Melinda Gates Foundation,
outside the submitted work. Unpaid participation on a Data Safety Monitoring Board or Advisory Board for
COnV-ert DSMB, outside the submitted work. Stock or stock options held for Takeda, outside the submitted work.
R.C. Harris is current employee of Sanofi Pasteur. Shares held for Sanofi Pasteur, outside the submitted work.
A. Fiore-Gartland reports support for the present manuscript received from Bill and Melinda Gates Foundation,
grant-based funding for Vaccines and Immunology Statistical Center. T. Evans has received consulting fees from Vir
Biotechnology, outside the submitted work. Participation on an advisory board to GHIF on a recombinant BCG
project run by Serum Institute of India, outside the submitted work. A.F Dagnew is a current employee of the Bill
and Melinda Gates Medical Research Institute. F. Cobelens has received grants or contracts from EDCTP and the
Bill and Melinda Gates Foundation, outside the submitted work. Support for attending meetings and/or travel
received from Tuberculosis Vaccine Initiative, outside the submitted work. Participation on a Data Safety
Monitoring Board or Advisory Board for Tuberculosis Vaccine Initiative and EDCTP Tuberculosis Vaccine Oversight
Committee, outside the submitted work. Leadership or fiduciary role in other board, society, committee or
advocacy group, paid or unpaid: Coalition for TB Vaccine Discovery, Bill and Melinda Gates Foundation. M.A. Behr
has received grants or contracts from Canadian Institutes for Health Research (Foundation Grant) and Canada
Research Chair, outside the submitted work. Patents planned, issued or pending: Molecular differences between
species of the M. tuberculosis complex Grant US-7364740-B2. Priority date 1998/08/25. Participated on the
Endpoint Committee of RCT comparing 9 INH to 4 Rif (Menzies, NEJM, 2018). M. Hatherill reports institutional
clinical trial grants to University of Cape Town, outside the submitted work. The remaining authors have nothing
to disclose.

Support statement: R.G. White is funded by the Wellcome Trust (218261/Z/19/Z), NIH (1R01AI147321-01), EDTCP
(RIA208D-2505B), UK MRC (CCF17-7779 via SET Bloomsbury), ESRC (ES/P008011/1), BMGF (OPP1084276,
OPP1135288 & INV-001754), and the WHO (2020/985800-0).

References
1 World Health Organization. Global Tuberculosis Report 2021. Geneva, Switzerland, 2021. Available from: www.

who.int/publications/i/item/9789240037021
2 Lange C, Aaby P, Behr MA, et al. 100 years of Mycobacterium bovis bacille Calmette–Guérin. Lancet Infect Dis

2022; 22: e2–e12.
3 Uplekar M, Weil D, Lonnroth K, et al. WHO’s new End TB Strategy. Lancet 2015; 385: 1799–1801.
4 Tuberculosis Vaccine Initiative (TBVI). Pipeline of Vaccines. 2021. Available from: www.tbvi.eu/what-we-do/

pipeline-of-vaccines/ Date last accessed: 7 February 2022.
5 García-Basteiro AL, Ruhwald M, Lange C. Design of tuberculosis vaccine trials under financial constraints.

Expert Rev Vaccines 2016; 15: 799–801.
6 Nemes E, Geldenhuys H, Rozot V, et al. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG

revaccination. N Engl J Med 2018; 379: 138–149.
7 Wiker HG, Mustafa T, Bjune GA, et al. Evidence for waning of latency in a cohort study of tuberculosis. BMC

Infect Dis 2010; 10: 37.

https://doi.org/10.1183/16000617.0044-2022 10

EUROPEAN RESPIRATORY REVIEW TUBERCULOSIS | A.L. GARCIA-BASTEIRO ET AL.

http://www.who.int/publications/i/item/9789240037021
http://www.who.int/publications/i/item/9789240037021
http://www.tbvi.eu/what-we-do/pipeline-of-vaccines/
http://www.tbvi.eu/what-we-do/pipeline-of-vaccines/
http://www.tbvi.eu/what-we-do/pipeline-of-vaccines/
http://www.tbvi.eu/what-we-do/pipeline-of-vaccines/
http://www.tbvi.eu/what-we-do/pipeline-of-vaccines/
http://www.tbvi.eu/what-we-do/pipeline-of-vaccines/


8 Behr MA, Edelstein PH, Ramakrishnan L. Revisiting the timetable of tuberculosis. BMJ 2018; 362: k2738.
9 Machingaidze S, Verver S, Mulenga H, et al. Predictive value of recent quantiFERON conversion for

tuberculosis disease in adolescents. Am J Respir Crit Care Med 2012; 186: 1051–1056.
10 Cadena AM, Hopkins FF, Maiello P, et al. Concurrent infection with Mycobacterium tuberculosis confers robust

protection against secondary infection in macaques. PLoS Pathog 2018; 14: e1007305.
11 Andrews JR, Noubary F, Walensky RP, et al. Risk of progression to active tuberculosis following reinfection

with Mycobacterium tuberculosis. Clin Infect Dis 2012; 54: 784–791.
12 Harris RC, Sumner T, Knight GM, et al. Potential impact of tuberculosis vaccines in China, South Africa, and

India. Sci Transl Med 2020; 12: eaax4607.
13 Pai M, Denkinger CM, Kik SV, et al. Gamma interferon release assays for detection of Mycobacterium

tuberculosis infection. Clin Microbiol Rev 2014; 27: 3–20.
14 Andrews JR, Nemes E, Tameris M, et al. Serial QuantiFERON testing and tuberculosis disease risk among

young children: an observational cohort study. Lancet Respir Med 2017; 5: 282–290.
15 Gupta RK, Lipman M, Jackson C, et al. Quantitative IFN-γ release assay and tuberculin skin test results to

predict incident tuberculosis. A prospective cohort study. Am J Respir Crit Care Med 2020; 201: 984–991.
16 Gualano G, Mencarini P, Lauria FN, et al. Tuberculin skin test – Outdated or still useful for latent TB infection

screening? Int J Infect Dis 2019; 80: S20–S22.
17 Nemes E, Rozot V, Geldenhuys H, et al. Optimization and interpretation of serial QuantiFERON testing to

measure acquisition of mycobacterium tuberculosis infection. Am J Respir Crit Care Med 2017; 196: 638–648.
18 Zak DE, Penn-Nicholson A, Scriba TJ, et al. A blood RNA signature for tuberculosis disease risk: a prospective

cohort study. Lancet 2016; 387: 2312–2322.
19 Suliman S, Thompson EG, Sutherland J, et al. Four-gene pan-African blood signature predicts progression to

tuberculosis. Am J Respir Crit Care Med 2018; 197: 1198–1208.
20 Mendelsohn SC, Fiore-Gartland A, Penn-Nicholson A, et al. Validation of a host blood transcriptomic

biomarker for pulmonary tuberculosis in people living with HIV: a prospective diagnostic and prognostic
accuracy study. Lancet Glob Heal 2021; 9: e841–e853.

21 Gupta RK, Turner CT, Venturini C, et al. Concise whole blood transcriptional signatures for incipient
tuberculosis: a systematic review and patient-level pooled meta-analysis. Lancet Respir Med 2020; 8: 395–406.

22 Andrews JR, Hatherill M, Mahomed H, et al. The dynamics of QuantiFERON-TB Gold in-Tube conversion and
reversion in a cohort of South African adolescents. Am J Respir Crit Care Med 2015; 191: 584–591.

23 Petruccioli E, Chiacchio T, Vanini V, et al. Effect of therapy on Quantiferon-Plus response in patients with
active and latent tuberculosis infection. Sci Rep 2018; 8: 15626

24 Hawn TR, Day TA, Scriba TJ, et al. Tuberculosis vaccines and prevention of infection. Microbiol Mol Biol Rev
2014; 78: 650–671.

25 Munseri P, Said J, Amour M, et al. DAR-901 vaccine for the prevention of infection with Mycobacterium
tuberculosis among BCG-immunized adolescents in Tanzania: a randomized controlled, double-blind phase
2b trial. Vaccine 2020; 38: 7239–7245.

26 Lu LL, Smith MT, Yu KKQ, et al. IFN-γ-independent immune markers of Mycobacterium tuberculosis exposure.
Nat Med 2019; 25: 977–987.

27 Gutierrez J, Kroon EE, Möller M, et al. Phenotype definition for “Resisters” to Mycobacterium tuberculosis
infection in the literature—A review and recommendations. Front Immunol 2021; 12: 173.

28 Behr MA, Edelstein PH, Ramakrishnan L. Is Mycobacterium tuberculosis infection life long? BMJ 2019; 367: 15770.
29 Emery JC, Richards AS, Dale KD, et al. Self-clearance of Mycobacterium tuberculosis infection: implications for

lifetime risk and population at-risk of tuberculosis disease. Proc R Soc B Biol Sci 2021; 288: 20201635.
30 Houben RMGJ, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using

mathematical modelling. PLoS Med 2016; 13: e1002152.
31 Behr MA, Kaufmann E, Duffin J, et al. Latent tuberculosis: two centuries of confusion. Am J Respir Crit Care

Med 2021; 204: 142–148.
32 Nemes E, Abrahams D, Scriba TJ, et al. Diagnostic accuracy of early secretory antigenic target-6-free

interferon-gamma release assay compared to QuantiFERON-TB gold in-tube. Clin Infect Dis 2019; 69:
1724–1730.

33 Drain PK, Bajema KL, Dowdy D, et al. Incipient and subclinical tuberculosis: a clinical review of early stages
and progression of infection. Clin Microbiol Rev 2018; 31: e00021-18.

34 Van Der Meeren O, Hatherill M, Nduba V, et al. Phase 2b controlled trial of M72/AS01 E vaccine to prevent
tuberculosis. N Engl J Med 2018; 379: 1621–1634.

35 van der Walt M, Moyo S, et al. The First National TB Prevalence Survey. South Africa, 2018. https://www.nicd.
ac.za/wp-content/uploads/2021/02/TB-Prevalence-survey-report_A4_SA_TPS-Short_Feb-2021.pdf Date last
accessed: 4 May 2021.

36 World Health Organization. WHO consolidated guidelines on tuberculosis module 2: screening – systematic
screening for tuberculosis disease. Geneva, Switzerland. 2021. https://www.who.int/publications/i/item/
9789240022676

https://doi.org/10.1183/16000617.0044-2022 11

EUROPEAN RESPIRATORY REVIEW TUBERCULOSIS | A.L. GARCIA-BASTEIRO ET AL.

https://www.nicd.ac.za/wp-content/uploads/2021/02/TB-Prevalence-survey-report_A4_SA_TPS-Short_Feb-2021.pdf
https://www.nicd.ac.za/wp-content/uploads/2021/02/TB-Prevalence-survey-report_A4_SA_TPS-Short_Feb-2021.pdf
https://www.who.int/publications/i/item/9789240022676
https://www.who.int/publications/i/item/9789240022676
https://www.who.int/publications/i/item/9789240022676


37 Tavaziva G, Harris M, Abidi SK, et al. Chest X-ray analysis with deep learning-based software as a triage test
for pulmonary tuberculosis: an individual patient data meta-analysis of diagnostic accuracy. Clin Infect Dis
2022; 74: 1390–1400.

38 World Health Organization. Same-day diagnosis of tuberculosis by microscopy. Policy Statement. 2011.
http://apps.who.int/iris/bitstream/handle/10665/44603/9789241501606_eng.pdf?sequence=1 Date last accessed:
30 July 2021.

39 Zifodya JS, Kreniske JS, Schiller I, et al. Xpert Ultra versus Xpert MTB/RIF for pulmonary tuberculosis and
rifampicin resistance in adults with presumptive pulmonary tuberculosis. Cochrane Database Syst Rev 2021; 2:
CD009593.

40 Demers A-M, Boulle A, Warren R, et al. Use of simulated sputum specimens to estimate the specificity of
laboratory-diagnosed tuberculosis Int J Tuberc Lung Dis 2010; 14: 1016–1023.

41 Marais BJ, Pai M. Recent advances in the diagnosis of childhood tuberculosis. Arch Dis Child 2007; 92:
446–452.

42 Marais BJ, Hesseling AC, Gie RP, et al. The bacteriologic yield in children with intrathoracic tuberculosis. Clin
Infect Dis 2006; 42: e69–e71.

43 Graham SM, Cuevas LE, Jean-Philippe P, et al. Clinical case definitions for classification of intrathoracic
tuberculosis in children: an update. Clin Infect Dis 2015; 61: S179–S187.

44 Mangtani P, Abubakar I, Ariti C, et al. Protection by BCG vaccine against tuberculosis: a systematic review of
randomized controlled trials. Clin Infect Dis 2014; 58: 470–480.

45 Smith PG. Retrospective assessment of the effectiveness of BCG vaccination against tuberculosis using the
case-control method. Tubercle 1982; 63: 23–35.

46 Abubakar, I, Pimpin, L, Ariti, C et al. Systematic review and meta-analysis of the current evidence on the
duration of protection by bacillus Calmette–Guérin vaccination against tuberculosis. Health Technol Assess
2013; 17: 1–372.

47 Hatherill M, White RG, Hawn TR. Clinical development of new TB vaccines: recent advances and next steps.
Front Microbiol 2020; 10: 3154.

48 Ellis RD, Hatherill M, Tait D, et al. Innovative clinical trial designs to rationalize TB vaccine development.
Tuberculosis 2015; 95: 352–357.

49 Hermans SM, Zinyakatira N, Caldwell J, et al. High rates of recurrent tuberculosis disease: a population-level
cohort study. Clin Infect Dis 2021; 72: 1919–1926.

50 Cardona PJ. The progress of therapeutic vaccination with regard to tuberculosis. Front Microbiol 2016; 7:
1536.

51 Malherbe ST, Shenai S, Ronacher K, et al. Persisting positron emission tomography lesion activity and
Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat Med 2016; 22: 1094–1100.

52 Chen RY, Via LE, Dodd LE, et al. Using biomarkers to predict TB treatment duration (Predict TB): a
prospective, randomized, noninferiority, treatment shortening clinical trial. Gates Open Res 2017; 1: 9.

53 Vekemans J, Brennan MJ, Hatherill M, et al. Preferred product characteristics for therapeutic vaccines to
improve tuberculosis treatment outcomes: key considerations from World Health Organization consultations.
Vaccine 2020; 38: 135–142.

54 Getahun H, Gunneberg C, Granich R, et al. HIV infection-associated tuberculosis: the epidemiology and the
response. Clin Infect Dis 2010; 50: Suppl. 3, S201–S207.

55 World Health Organization. Latent TB Infection: Updated and consolidated guidelines for programmatic
management. Geneva, Switzerland, 2018. https://www.who.int/publications/i/item/9789241550239

56 Cobelens FG, Egwaga SM, Van Ginkel T, et al. Tuberculin skin testing in patients with HIV infection: limited
benefit of reduced cutoff values. Clin Infect Dis 2006; 43: 634–639.

57 Frascella B, Richards AS, Sossen B, et al. Subclinical tuberculosis disease-a review and analysis of prevalence
surveys to inform definitions, burden, associations, and screening methodology. Clin Infect Dis 2021; 73:
e830–e841.

58 Lawn SD, Kerkhoff AD, Burton R, et al. Diagnostic accuracy, incremental yield and prognostic value of
determine TB-LAM for routine diagnostic testing for tuberculosis in HIV-infected patients requiring acute
hospital admission in South Africa: a prospective cohort. BMC Med 2017; 15: 67.

59 Lawn SD, Kerkhoff AD, Vogt M, et al. Diagnostic accuracy of a low-cost, urine antigen, point-of-care screening
assay for HIV-associated pulmonary tuberculosis before antiretroviral therapy: a descriptive study. Lancet
Infect Dis 2012; 12: 201–209.

60 Broger T, Sossen B, du Toit E, et al. Novel lipoarabinomannan point-of-care tuberculosis test for people with
HIV: a diagnostic accuracy study. Lancet Infect Dis 2019; 19: 852–861.

61 Kwan C, Ernst JD. HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev 2011; 24: 351–376.
62 Swindells S, Komarow L, Tripathy S, et al. Screening for pulmonary tuberculosis in HIV-infected individuals:

AIDS clinical trials group protocol A5253. Int J Tuberc Lung Dis 2013; 17: 532–539.
63 Sterling TR, Villarino ME, Borisov AS, et al. Three months of rifapentine and isoniazid for latent tuberculosis

infection. N Engl J Med 2011; 365: 2155–2166.

https://doi.org/10.1183/16000617.0044-2022 12

EUROPEAN RESPIRATORY REVIEW TUBERCULOSIS | A.L. GARCIA-BASTEIRO ET AL.

http://apps.who.int/iris/bitstream/handle/10665/44603/9789241501606_eng.pdf?sequence=1
http://apps.who.int/iris/bitstream/handle/10665/44603/9789241501606_eng.pdf?sequence=1
https://www.who.int/publications/i/item/9789241550239

	End-point definition and trial design to advance tuberculosis vaccine development
	Abstract
	Introduction
	Prevention of infection (POI) approaches to accelerate candidate vaccines into prevention of disease (POD) efficacy trials
	Optimising TB disease end-points for future efficacy trials
	POD
	Prevention of recurrence (POR) and therapeutic approaches

	End-point definition in vaccine trials including PLHIV
	Conclusions
	References


