
Clinical significance and applications of oscillometry

David A. Kaminsky1,23, Shannon J. Simpson2,23, Kenneth I. Berger3, Peter Calverley4, Pedro L. de Melo 5,
Ronald Dandurand6,7, Raffaele L. Dellacà 8, Claude S. Farah 9, Ramon Farré10,11, Graham L. Hall2,
Iulia Ioan 12,13, Charles G. Irvin1, David W. Kaczka 14, Gregory G. King15,16, Hajime Kurosawa17,
Enrico Lombardi18, Geoffrey N. Maksym19, François Marchal12,13, Ellie Oostveen20, Beno W. Oppenheimer3,
Paul D. Robinson21, Maarten van den Berge22 and Cindy Thamrin 16

1Dept of Medicine, Pulmonary and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, USA.
2Children’s Lung Health, Telethon Kids Institute, School of Allied Health, Curtin University, Perth, Australia. 3Division of Pulmonary,
Critical Care, and Sleep Medicine, NYU School of Medicine and André Cournand Pulmonary Physiology Laboratory, Belleuve Hospital,
New York, NY, USA. 4Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK. 5Dept of Physiology, Biomedical
Instrumentation Laboratory, Institute of Biology and Faculty of Engineering, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
6Lakeshore General Hospital, Pointe-Claire, QC, Canada. 7Montreal Chest Institute, Meakins-Christie Labs, Oscillometry Unit of the
Centre for Innovative Medicine, McGill University Health Centre and Research Institute, and McGill University, Montreal, QC, Canada.
8Dipartimento di Elettronica, Informazione e Bioingegneria – DEIB, Politecnico di Milano University, Milan, Italy. 9Dept of Respiratory
Medicine, Concord Repatriation General Hospital, Sydney, Australia. 10Unitat de Biofísica i Bioenginyeria, Facultat de Medicina,
Universitat de Barcelona-IDIBAPS, Barcelona, Spain. 11CIBER de Enfermedades Respiratorias, Madrid, Spain. 12Dept of Paediatric Lung
Function Testing, Children’s Hospital, Vandoeuvre-lès-Nancy, France. 13EA 3450 DevAH – Laboratory of Physiology, Faculty of Medicine,
University of Lorraine, Vandoeuvre-lès-Nancy, France. 14Depts of Anaesthesia, Biomedical Engineering and Radiology, University of
Iowa, Iowa City, IA, USA. 15Dept of Respiratory Medicine and Airway Physiology and Imaging Group, Royal North Shore Hospital, St
Leonards, Australia. 16Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia. 17Dept of Occupational
Health, Tohoku University School of Medicine, Sendai, Japan. 18Paediatric Pulmonary Unit, Meyer Paediatric University Hospital,
Florence, Italy. 19School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada. 20Dept of Respiratory Medicine,
Antwerp University Hospital and University of Antwerp, Belgium. 21Woolcock Institute of Medical Research, Children’s Hospital at
Westmead, Sydney, Australia. 22Dept of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Groningen,
The Netherlands. 23These authors have contributed equally to this manuscript.

Corresponding author: David A. Kaminsky (david.kaminsky@uvm.edu)

Shareable abstract (@ERSpublications)
This paper provides a current review of the interpretation, clinical significance and application of
oscillometry in respiratory medicine, with special emphasis on limitations of evidence and
suggestions for future research. https://bit.ly/3GQPViA

Cite this article as: Kaminsky DA, Simpson SJ, Berger KI, et al. Clinical significance and applications of
oscillometry. Eur Respir Rev 2022; 31: 210208 [DOI: 10.1183/16000617.0208-2021].

Abstract
Recently, “Technical standards for respiratory oscillometry” was published, which reviewed the
physiological basis of oscillometric measures and detailed the technical factors related to equipment and
test performance, quality assurance and reporting of results. Here we present a review of the clinical
significance and applications of oscillometry. We briefly review the physiological principles of
oscillometry and the basics of oscillometry interpretation, and then describe what is currently known about
oscillometry in its role as a sensitive measure of airway resistance, bronchodilator responsiveness and
bronchial challenge testing, and response to medical therapy, particularly in asthma and COPD. The
technique may have unique advantages in situations where spirometry and other lung function tests are not
suitable, such as in infants, neuromuscular disease, sleep apnoea and critical care. Other potential
applications include detection of bronchiolitis obliterans, vocal cord dysfunction and the effects of
environmental exposures. However, despite great promise as a useful clinical tool, we identify a number of
areas in which more evidence of clinical utility is needed before oscillometry becomes routinely used for
diagnosing or monitoring respiratory disease.

Introduction
The mechanical properties of the lungs are disrupted in many disease states and exposures and contribute
to major respiratory symptoms such as dyspnoea. Both the clinical management and our understanding of
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respiratory disease have benefitted from widely available tests like spirometry and the measurement of
absolute lung volumes and gas transfer. However, these measurements require significant patient
co-operation and a willingness to undertake maximal respiratory efforts. Oscillometry is a noninvasive
method for measuring the mechanical properties of the respiratory system, which can enhance our
understanding and management of lung disease [1]. Recently, the European Respiratory Journal published
“Technical standards for respiratory oscillometry” [2], which reviewed the physiological basis of
oscillometric measures and detailed the technical factors related to standardisation of equipment and test
performance, quality assurance and reporting of results. Here we provide a review of the clinical
significance and applications of oscillometry. We briefly review the physiological principles of
oscillometric measurements and the basics of oscillometry interpretation, highlight potential clinical
applications, and identify future work required for oscillometry to become routinely used in clinical
practice.

The physiology and performance of oscillometry
Oscillometry measures the mechanical impedance of the respiratory system (Zrs), representing the resistive
and reactive forces that must be overcome to drive an oscillating flow signal into the respiratory system.
The forces arise in the respiratory system from 1) the resistance of the airways and tissues to flow (Rrs),
2) the elastance (stiffness) of the lung parenchyma and chest wall in response to changes in volume
(encompassed in reactance, Xrs), and 3) the inertance of accelerating gas in the airways (Irs). Zrs has
generally been reported from a single frequency or over the frequency range of 5–40 Hz as an average
across the whole breathing cycle (i.e. both inspiration and expiration). It has also been reported separately
during the inspiratory and expiratory phases. These concepts and how they are measured by oscillometry
are described in detail in the technical document. We provide a brief summary of these details in table 1,
figure 1 and the supplementary material.

Much of the evidence for clinical utility of oscillometry, including the studies cited in the current
document, have been collected using a wide range of equipment, protocols and reporting formats.
Although there is increasing availability of commercial oscillometry devices, comparability across devices
remains a challenge, especially with regards to differences in the frequency dependence of resistance and
reactance at higher-than-normal impedance [3, 4]. As such, the applicability of existing reference equations
(supplementary table S1) remains uncertain for abnormal disease states and across different devices and
manufacturers. Until this is resolved, comparisons between healthy and diseased cohorts should ideally be
made using the same device, and differences in results based on variability in equipment, protocols and
reference values should be considered when interpreting data presented in this review. Efforts are currently
underway by the Global Lung Function Initiative to gather data from around the world to develop more
universal, robust reference equations that take into account specific equipment and protocols.

Additionally, while oscillometry is a simple test to perform in clinic, its interpretation remains a challenge
for many. Further aspects need to be better established before oscillometry gains an evidence-based
position in clinical practice, as summarised in table 2. Many of these aspects are highlighted in the
following sections, but in particular it is important to note that establishing minimal important clinical
differences to assess change in lung function over time is a crucial area for future research.

Oscillometry during infancy
Lung function measurements during infancy have largely been confined to a few specialist centres due to
technical complexity, lack of commercially available equipment, and potential risks associated with the
measurement (e.g. requirement for sedation). Additionally, the use of a face mask in infants complicates
the interpretation of impedance data, since much of the measured Rrs may be attributed to nasal
resistance [5]. To date, there is no evidence that impedance measurements in infants contribute to clinical
decision-making. However, oscillometric studies have contributed to the pathophysiological understanding
of respiratory disease in infants, particularly those with wheezing disorders, as described in the
supplementary material.

Preterm birth and bronchopulmonary dysplasia beyond the neonatal intensive care unit
Emerging evidence suggests that oscillometry is a clinically useful measure of lung function in survivors
of very preterm birth. Compared to preschoolers delivered at term, those born prematurely have increased
Rrs, more negative Xrs and increased area of reactance (AX ) and resonant frequency ( fres) [6]. Deficits are
even greater in premature babies with bronchopulmonary dysplasia (BPD) [7–9]. Xrs measured in the first
week of life has been shown to improve prognostication of respiratory outcome in very preterm infants on
noninvasive respiratory support. Recently, EVANS et al. [10] showed that while all oscillometric outcomes
were abnormal in those born very prematurely, Xrs was particularly sensitive at distinguishing term versus
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preterm preschoolers, suggesting a role for oscillometry in monitoring preterm lung disease. Deficits in
oscillometric outcomes persist up to at least adolescence and correlate with respiratory symptoms [11, 12].

To date, only one study has measured oscillometry longitudinally in this population [13]. Interestingly, Xrs

and AX deteriorated over time in those with BPD in parallel with declines in spirometry measures, and
were found to decrease faster in those children exposed to environmental tobacco smoke and those with
respiratory symptoms. Deterioration in these oscillometry outcomes was not associated with structural lung
damage on chest computed tomography (CT) scans. The pathophysiology underpinning increased lung
stiffness in this population remains unclear, but may reflect failed alveolarisation, structural damage to the
parenchyma or inflammatory changes to the lungs.

Asthma
Oscillometric measurements can distinguish adult asthmatics from healthy controls [14–16], asthmatics
with different degrees of airway obstruction [17], and between groups of adults with asthma compared to
COPD [15, 18–21]. Oscillometry may be especially helpful in diagnosing asthma in patients with
preserved spirometry as a more sensitive indicator of abnormal airway physiology [22]. However, while

TABLE 1 Summary of oscillometric parameters with a focus on the medium frequency range likely to be used in clinical practice (5–40 Hz)

Parameter Physiological interpretation

Zrs Respiratory system impedance, reflecting the total forces related to resistance, elastance and inertance that
must be overcome to drive airflow into and out of the lung. Zrs broadly describes the mechanical
properties of the entire respiratory system (airway, parenchyma and chest wall). Zrs is not used in clinical
practice per se. Rather, Zrs is represented by its components, respiratory system resistance (Rrs) and
reactance (Xrs) as described below.

Rrs Resistance of the respiratory system, reflecting frctional losses both in gases as they flow along airways and
in tissues of the lung and chest wall as they are stretched and deformed. Rrs at individual frequencies is
denoted Rrs5, Rrs8, etc. Changes in Rrs at higher frequencies above ∼5 Hz are reflective of changes in
airway resistance, i.e. calibre, and thus sensitive to airway narrowing. As such, Rrs could be increased in
clinical situations such as during bronchoconstriction, the presence of excessive mucous or mucous
plugging, airway inflammation, and other causes of airway narrowing or obstruction. Tissue resistance
becomes progressively more important as frequency decreases below 5 Hz, becoming dominant at
normal breathing frequencies (∼0.2 Hz) and lower.

Frequency dependence of
resistance (e.g. Rrs5–20)

Rrs is largely frequency independent over the medium frequency range among healthy individuals (except in
very young children). However, in many respiratory diseases, increased upward inflection of resistance is
often evident at low frequencies and therefore frequency dependence is increased. Clinically, the
frequency dependence of Rrs is commonly quantified as the difference Rrs5–20. This is thought to primarily
be sensitive to heterogeneous narrowing in the peripheral airways, but it may also arise from substantial
heterogeneity in narrowing of more central airways, heterogeneity of time constants reflecting airway
versus parenchymal disease, and upper airway shunt flow (compliant regions proximal to resistance).

Xrs Reactance of the respiratory system, reflecting respiratory system elastance (Ers) due to the combined
stiffnesses of the lung and chest wall tissues (below fres; described below), and respiratory system
inertance (Irs) due to the mass of gas in the central airways (above the fres). Xrs becomes “more negative”
in lung disease, indicating the respiratory system becomes stiffer. Xrs is very dependent on lung volume,
with Xrs5 having been demonstrated to be sensitive to airway closure and reflecting communicating lung
volume. Intrabreath changes in Xrs5 are useful to detect expiratory flow limitation. To date, Irs is not
commonly used as a measure of lung disease clinically, but may be altered in conditions affecting gas
flow in the upper and central airways.

fres Resonant frequency, where Ers and Irs make equal and opposite contributions to impedance, (i.e. where Xrs
is zero). Ers makes the major contribution to Xrs as frequency decreases below fres, while Irs dominates
increasingly above fres. The fres of a healthy adult male is around 8 Hz but is usually higher in lung
disease. In children, fres is generally higher than 8 Hz and decreases with age.

AX In contrast to Rrs in health, Xrs is frequency-dependent in the medium frequency range, the magnitude of
which is exaggerated in lung disease. The area under the reactance curve (AX) is the area inscribed by
the Xrs curve between the lowest measured frequency and fres. AX is thus an integrative measure
dominated by the lower frequency components of Xrs, determined predominately by Ers, and affected by
the point at which Xrs crosses the frequency axis ( fres), which is determined both by Ers and Irs. It has the
advantage of having positive rather than negative units and is a measure that evaluates Xrs over a range
of frequencies, with units of elastance hPa·L−1. Assessing AX (considering Xrs at all frequencies below fres)
in the clinic is potentially more sensitive to changes in the elastic properties of the respiratory system
than Xrs at a single frequency.
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helpful in adults, the delineation between healthy controls and asthmatics using oscillometry is less clear in
preschool-aged children, with several studies showing no difference between groups [23–25]. These
conflicting findings may be due to differing diagnostic criteria, disease severity or degree of control in the
paediatric populations studied who may have smaller differences between health and disease than adults.

Oscillometric outcomes other than resistance and reactance (such as AX and Rrs5–20) may also be useful in
supporting a diagnosis of asthma, predicting future loss of asthma control or monitoring clinical treatment
changes. In particular, the term “small airway dysfunction” (SAD) has gained traction. The large
ATLANTIS cohort revealed that Rrs5–20, AX and Xrs5 were all strong contributors to SAD, with high
prevalence in asthma compared to other physiological measures thought to reflect small airways [26].
However, a limitation of the study is that the definition of SAD relied on a statistical, data-driven approach,
rather than an independent measure. It also is important to realise that no measures are specific for SAD,
including Rrs5–20, which is sensitive to heterogeneouis peripheral airway narrowing, but can also be affected
by heterogeneity in the central airways and upper airway shunt (table 1). Furthermore, these relative
contributions are likely dependent on disease. We urge caution in the strict interpretation of Rrs5–20 as
relating solely to small airways disease, especially when measured using devices that are known to be
associated with enhanced frequency dependence of resistance [3, 27–29]. The clinical significance of Rrs5–20

continues to be evaluated in terms of its mechanism [30, 31], prevalence [32] and correlations with
measures of severity and control in both children and adults [26, 33, 34].

In addition, oscillometry has provided novel insights into the pathophysiology of asthma via the effects of
lung volume on oscillatory mechanics, as well as short- and long-term variations in mechanics over time.
These topics are further addressed in the supplementary material. These variations may be a marker of
instability, and potentially useful to detect exacerbations or loss of control, particularly in a home
telemonitoring setting [35]. Intrabreath changes in oscillometry parameters may also provide additional
information beyond conventional parameters: in preschoolers it improved detection of acute obstruction
and recurrent wheezers from healthy controls [36], while in adults with severe asthma it distinguished
those with poor control from those with good control [37]. While oscillometry measures are generally
altered in asthmatics at the population level, oscillometry is arguably of most benefit in clinical practice for
the diagnosis of asthma (via bronchodilation or bronchoprovocation) and monitoring response to
intervention, as discussed in the following sections.
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FIGURE 1 Impedance spectrum. Respiratory system impedance (Zrs) is plotted against frequency. Zrs is
composed of a real component seen by resistance (Rrs) and an imaginary component expressed as reactance
(Xrs). Rrs and Xrs at specific frequencies are noted by the frequency at which they are measured (e.g. Rrs5=Rrs at
5 Hz, Rrs20=Rrs at 20 Hz). The point at which Xrs crosses zero is the resonant frequency ( fres). Below fres, Xrs is
dominated by elastance, and above fres, Xrs is dominated by inertance. An integrated measure of low frequency
Xrs is the area inscribed by Xrs and Zrs=0 starting at the lowest frequency up to fres, known as the area of the Xrs
curve, AX. The lowest frequency defining AX is shown at 5 Hz, but it may be estimated starting from any
frequency. Note that the Zrs spectrum shown is characteristic for a healthy adult. In healthy young children, the
values and frequency dependence of Rrs would be relatively increased, Xrs would be more negative and fres
would be shifted markedly to the right (resulting in increased AX).
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TABLE 2 Gaps in knowledge and future needs in defining the clinical applications of oscillometry

Area of need What we think we know Identified gaps/research questions

Harmonisation of
oscillometry devices [3]

Different metrics between commercial devices as measured
impedance is increased.

Established standard testing procedures to compare
devices.

Encourage manufacturers to revise hardware and
firmware/software design.

Normative values Multiple reference populations to determine “normal”, separate
for children and adults.

Large, multicentre studies to determine multi-ethnic
population normal values across all ages,
equivalent to the Global Lung Function Initiative.

Minimal clinically
important change

Short-term test variability over minutes and days; coefficient of
repeatability values in children and adults.

Longitudinal data in healthy people to understand variability
and changes through life.

Correlations with clinical progression in disease
populations.

Minimally clinically important changes for each
oscillometry index, which likely vary with disease
and treatment.

Bronchodilator response Cut-offs for significant bronchodilator responses, expressed for
multiple indices in different ways, from individual studies in
healthy people.

Good discrimination between health and asthma.
Higher sensitivity than spirometry in terms of response and
identifying responders.

Higher sensitivity than spirometry in identifying individuals with
poor asthma control.

Determine the most useful way to express
bronchodilator responses in the clinic.

Consistency of such responses within subjects over
time.

Further studies on clinical correlates of
bronchodilator responses, in both healthy and
disease populations across all ages.

Standardisation of
bronchial challenge
testing protocol

Good feasibility in younger age groups.
Variability across studies in terms of cut-offs.
Higher sensitivity than spirometry in terms of response and
identifying responders.

Determine value added to hyperresponsiveness
measured by spirometry.

Determine standardised cut-offs for the range of
challenge agents.

Potential feasibility of shorter protocols.
Phenotyping in
obstructive diseases

Correlations of specific indices with symptoms, imaging and
spirometry in terms of baseline measures, changes in
response to treatment and prediction of treatment response.

Determine which indices provide the most clinically
relevant information by reporting comprehensive,
head-to-head comparison across the full range of
indices, within disease populations, including
patient-centred outcomes.

Explore the role of new indices, such as those
obtained from within-breath measurements.

Sensitivity analyses within disease populations for
oscillometry indices.

Comprehensive studies correlating oscillometry
measures with other phenotyping tools, such as
lung imaging and histology.

Determine correlations with known and emerging
biomarkers of disease, particularly in response to
treatment.

Grading severity of
abnormalities

No data. Assess degrees of deviation from normal in relation
to statistical variation and clinical outcomes.

Home monitoring Potential marker of airway instability in asthma.
Sensitive detector of exacerbations in COPD, and utility as
guide for intervention in subset of COPD patients (those with
previous hospitalisation).

Role in exacerbation detection and guide for
intervention in asthma.

Role in prediction of disease progression and
responses to treatment in asthma and COPD.

Utility in other diseases.
Emerging clinical
applications

Potential role in identifying lung function deficits in preterm
children.

Limited utility demonstrated thus far in cystic fibrosis in
children, less data in adults.

Potential role in detecting early changes in smokers.
Potential utility in identifying pathological changes in obesity.
Potential in monitoring progression after environmental
exposures.

Potential in diagnosis of vocal cord dysfunction.
Potential role in titrating level of respiratory support in sleep
and in COPD patients in the intensive care setting.

Potential in identifying clinical progression in lung and bone
marrow transplant patients, as well as interstitial lung
disease and neuromuscular disease.

Larger clinical studies beyond proof of concept.
Potential for aerosol generation to stratify risk of
preventing spread of infection compared to
spirometry.
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Bronchodilator response testing
As discussed in the recent technical standards [2], cut-offs indicating a significant bronchodilator response
(BDR) using oscillometric indices are reported in healthy adults and children (i.e. 40% decrease in Rrs at
5 Hz, 50% increase in Xrs at 5 Hz and 80% decrease in AX relative to baseline) (supplementary table S2) [2].
Recent work has shown results for BDR in adults [38, 39] that are similar to published data using different
instruments [4], suggesting that BDR in oscillometry appears to be robust to different devices and
populations. Nevertheless, given the diversity of age ranges, equipment and protocols, further work is still
needed to best define a BDR, its significance relative to important patient outcomes and consistency of
response over time.

Several studies have shown that a BDR based on oscillometric parameters is better than one based on
forced expiratory volume in 1 s (FEV1) at differentiating asthmatic from healthy children [40–42].
However, data relating to BDR in children with “early life” wheeze (i.e. no formal diagnosis of asthma)
are less clear, with some studies reporting no differences in BDR between wheezy and non-wheezy
preschoolers [43]. In adults, bronchodilation was identified more often using oscillometry than spirometry,
and in one study changes in Xrs and AX (but not Rrs) correlated with spirometric responses and identified
more subjects with poor asthma control compared to spirometry [44]. Other studies have shown that BDR
assessed with oscillometry correlates with poor asthma control [14, 45].

Bronchial challenge testing
Oscillometry can also be used as an alternative to spirometry for conducting bronchial challenges in adults
[46–58] and children [59–65]. A summary of studies to date attempting to define airway
hyperresponsiveness (AHR) based on oscillometry is shown in supplementary table S3. Results vary
widely, ranging from a 20 to 50% increase in Rrs5 and a 20–80% decrease in Xrs5. Provocation studies in
children are feasible in patients as young as 3 years old using oscillometry [59, 61]. However, conclusive
data indicating which outcome measures and threshold values best reflect a positive bronchial challenge
test are currently lacking in this age group. The main advantage of oscillometry for bronchial challenge
testing is increased sensitivity of detecting bronchoconstriction, which might shorten the test and reduce
the cumulative dose of the agent. However, there may be underestimation of the response occurring in the
lungs in children during a challenge due to loss of the oscillatory flow into the upper and large airways,
known as upper airway shunt [66]. More information about upper airway shunt is found in the
supplementary material.

Deep breaths (i.e. inflation to total lung capacity (TLC)) during spirometry testing, or with some inhalation
agents, potentially affect diagnosis, given both the bronchoprotective and bronchodilator effect of deep
inhalation in health and in asthma [67–69]. Consequently, oscillometry may be more sensitive than
spirometry for detecting AHR in mild asthmatic patients, given their maintained, albeit reduced, response
to a deep breath, resulting in a lower provocative dose of methacholine [47, 70] and therefore a shorter
testing protocol. However, since avoiding deep breaths may result in AHR even in healthy individuals [71],
oscillometry may be less sensitive than spirometry in distinguishing healthy from asthmatic individuals. Of
note, patients may prfer oscillometry over spirometry during bronchial challenge testing because they do
not have to repeatedly take the deep breaths needed to perform spirometry.

AHR detected by oscillometry is repeatable [47, 49, 61, 72] and correlates with responsiveness based on
FEV1 [73], but the correlations of spirometry and oscillometry are inconsistent. There is wide variability
across studies, which may be explained by differences in methodology and study populations. However, it
appears that oscillometric indices may provide additional information to spirometry. For example, some
subjects report symptoms during bronchial challenge without accompanying changes in FEV1, which may
be related to the effects of deep inhalation mitigating changes in FEV1; however, concomitant changes in
Rrs and AX suggest there is narrowing and/or closure of small airways [74, 75] not detected by spirometry.
In summary, oscillometry is a useful tool to detect airway narrowing before spirometry during bronchial
challenge testing, but the correlations and thresholds of response are variable, and further studies are
needed to determine if oscillometry indices are more clinically relevant than spirometry.

Treatment responses in asthma
In addition to treatment with bronchodilators, differences in Rrs and Xrs in response to different inhaled
corticosteroids (ICS) [76, 77], montelukast [78], ICS/long acting β2-agonist (LABA) formulations [79],
and ICS versus ICS/LABA [80] have been demonstrated. In general, Rrs, Xrs and AX are more sensitive
than spirometry [81]. Recent work has shown that oscillometry and other parameters related to peripheral
airway function can be correlated with an improvement in symptoms for patients with poorly controlled
asthma receiving ICS/LABA therapy [82]. One study has attempted to determine whether oscillometry
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could distinguish any benefit of small versus large particle size ICS therapy based on peripheral versus
central airway obstruction, respectively; however, this study only looked at the differential treatment effect
on symptoms, not oscillometry, and used an arbitrary oscillometric definition of peripheral airway
function [83]. Oscillometric indices are also sensitive to improvements in asthma in response to
mepolizumab therapy [84]. These findings suggest an important role of oscillometry in identifying and
monitoring treatment responses in asthma, complementary to traditional spirometry.

Thus, in asthma, individual oscillometry studies have demonstrated physiological correlations of specific
indices with symptoms, imaging, spirometry, changes in response to bronchodilators, bronchial challenges
and treatment, and prediction of treatment response. What needs to follow are larger scale trials beyond
proof of concept that demonstrate actual clinical utility in terms of improving patient care in asthma, as
well as what constitutes a minimal clinically significant difference in oscillometry parameters.

Cystic fibrosis
A number of studies in children with cystic fibrosis (CF) reveal normal oscillometric indices [85–87], with only
one study of preschool children with CF reporting abnormal values [88]. Associations between oscillometric
indices and other clinical parameters in children with CF are variable [25, 86, 88–92]. There are limited data on
the use of oscillometry in adults with CF; however, by one report, resistance and reactance are abnormal in
adults with CF and correlate with other measures of lung function [93]. Therefore, the clinical utility of
oscillometry in CF remains uncertain, particularly when other clinical tests have shown superior ability to detect
early CF lung disease and successfully monitor improvement in lung function with intervention.

COPD
Oscillometry may play an important role in the early detection of the adverse effects of smoking before
COPD is diagnosed [94]. Several studies have found a high prevalence of abnormal Zrs in smokers with
normal spirometry, mainly in Rrs and Xrs near 5 Hz [95–98], with up to 60% of smokers with normal
spirometry (FEV1/forced vital capacity (FVC)>0.70) having some abnormality on oscillometry. Smokers
also have greater prevalence of significant BDR compared to nonsmokers [38]. The clinical significance of
these findings still needs to be determined by pathologic correlations and prospective clinical studies to
establish relevance and utility.

Patients with COPD have significantly higher Rrs and more negative Xrs values than healthy people [99],
changes that are proportional to the degree of airway obstruction [100]. Empirical studies demonstrate that
Xrs is related to the degree of gas trapping and hyperinflation in the lungs and reflects the amount of
communicating lung volume [101]. Xrs and fres relate better to FEV1, and measures of hyperinflation, i.e.
inspiratory capacity/TLC and residual volume/TLC ratios, than do resistance measurements [102, 103].
Magnetic resonance imaging-derived measurements of abnormal gas mixing correlate best with Rrs5–19 and
AX in COPD patients [104]. Recent work with parametric response mapping by CT has demonstrated
strong correlations with oscillometry-derived Rrs5–19 in patients with COPD [105], which is presumed to
reflect small airways disease (but may also reflect large airway heterogeneity). A similar finding has been
shown using endobronchial optical coherency tomography, which demonstrated that Rrs5–20 correlated with
small airways pathology in heavy smokers and patients with COPD [106]. Oscillometric parameters likely
related to gas trapping (i.e. Xrs ) in patients with COPD correlated with changes in exercise capacity
following completion of pulmonary rehabilitation [107]. Oscillometry may also help in the categorisation
of COPD severity [108].

As in asthma, oscillometry parameters are sensitive to treatment in patients with COPD. For example, Xrs

near 5 Hz rather than Rrs appears to be more sensitive to bronchodilators [109–113] or ICS/LABA
combination treatment [114], or recovery from exacerbations [102, 115–117]. The magnitude of the BDR
depends on the disease stage. In the earlier stages of COPD, improvements in oscillometric parameters are
greater compared to healthy subjects and are related mainly to an increased bronchodilation of the central
airways, improvements in ventilation homogeneity based on the slope of the resistive component of Zrs,
and total mechanical load [118].

Examination of intrabreath oscillometry has been especially significant in COPD, where it has been used to
demonstrate evidence of tidal expiratory flow limitation (EFLT). Reactance and resistance are higher during
expiration compared to inspiration in patients with COPD [119–121], reflecting dynamic airway compression
and expiratory airflow limitation [122]. The underlying mechanisms of airway collapse during tidal breathing
are uncertain. An empirically defined threshold of the difference between inspiratory and expiratory Xrs has
been shown to be a sensitive and specific method for detecting EFLT [123, 124]. The inspiratory–expiratory
difference in Xrs and its variability over time is also associated with worse dyspnoea [125]. This index is also
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associated with more rapid deterioration in exercise capacity over time and an increased likelihood of
exacerbations irrespective of the degree of spirometric impairment [126, 127]. EFLT during tidal breathing is
an important determinant of dynamic hyperinflation and its identification using oscillometry during
noninvasive ventilation allows determining the lowest positive end-expiratory pressure (PEEP) able to
abolish it. Recent preliminary studies showed that oscillometry can be incorporated in home noninvasive
ventilators for abolishing EFLT by continuously tailoring PEEP to varying lung mechanics [128] leading to
reduced hypercapnia and ineffective efforts in stable COPD during nocturnal noninvasive ventilation [129].
Currently, some major limitations to the use of intrabreath monitoring of oscillometry are the lack of
normative data and standardisation of analysis and reporting of data.

Oscillometry is often thought to be a better reflection of breathing conditions of everyday life than
spirometry, as it directly assesses mechanical impediment to airflow during normal breathing, rather than
following deep inhalation; this arguably makes it more useful in COPD, where dyspnoea often occurs even
at rest, or where severely obstructed patients can have difficulties with forced manoeuvres. It also makes it
amenable to home telemonitoring in COPD, in which feasibility and potential clinical utility has been
demonstrated [130] (see supplementary material). Furthermore, the deep inspiration required in spirometry
has variable effects on airway calibre in COPD, which may affect clinical correlations [131, 132].
Oscillometry has also revealed greater variations in lung function over time [133, 134] and greater
bronchodilator responses in COPD than expected from spirometry [38], again shedding light on disease
pathogenesis that goes beyond fixed airway obstruction and reversibility in the larger airways.

In summary, oscillometry may aide in earlier detection of smoking-related effects on the lung and adds
insight into the pathophysiology of COPD; however, we still need more data to assess how oscillometry
relates to clinical phenotypes of COPD (e.g. predominance of emphysema versus bronchitis) and how it
will affect clinical management of patients with COPD.

Bronchiolitis obliterans
Because of its sensitivity to small airway disease, oscillometry has been used to study patients with or at
risk of bronchiolitis obliterans. In children, post-infectious bronchiolitis obliterans can be detected by
greater changes in Xrs compared to spirometry [135]. In adult lung and bone marrow transplant recipients,
bronchiolitis obliterans syndrome may be detected earlier by oscillometry than by conventional spirometry
[136–138]. The lack of a need for deep inspiration with oscillometry is also beneficial in patients in the
acute postoperative lung transplant period.

Obesity
Impedance measured by oscillometry has been well studied in obesity [139–145]. The effects of obesity are
most apparent in Xrs, which suggests that there is an increase in heterogeneous airway narrowing and in
airway closure in the lung periphery, although increased stiffness of the chest wall can also contribute [146].
By contrast, there are minimal changes in spirometry and typically no changes in FEV1/FVC ratio in
obesity, with the exception of very severe obesity (>40 kg·m−2) [147].

In obesity, Rrs is increased, possibly due to reduced operating lung volume [148–150]. However, this is not
the whole reason for this increase [140, 144, 151] as pulmonary circulatory congestion and airway oedema
occur in obesity [152, 153] and are correlated with the magnitude of abnormality in both Rrs and Xrs [143].
These changes in airway function make interpretation of impedance in obesity difficult when assessing a
patient with potential coexisting airway disease. Obese individuals with clinically and physiologically
confirmed asthma have a more negative Xrs than obese, non-asthmatic individuals, probably because of
enhanced peripheral airway closure [142, 146]. Changes in Rrs and Xrs with obesity and following bariatric
surgery are more pronounced in the supine position with oscillometry being more sensitive to weight loss
compared with spirometry [142, 146, 154]. The responses to methacholine bronchial challenge in obese
subjects are different compared to non-obese subjects, particularly with regard to bronchoprotection [155]
and exaggerated decreases in Xrs [139, 141, 155]. These nuanced differences cannot be easily determined
with spirometry. Therefore, obesity is associated with a greater response to bronchoconstriction in terms of
changes in the respiratory system elastic properties, but the clinical and pathophysiologic significance of
these observations is uncertain.

In children, obesity has been found to be associated with a pattern different from that of obese adults
(reduced FEV1/FVC with normal or even increased FEV1 and FVC), called “airway dysanapsis” [156].
Oscillometry may help distinguish the effects of obesity or asthma on the cause of a low FEV1/FVC in
children due to dysanapsis or airway narrowing [157]. Increased Rrs5–20 and AX were also found in a
cross-sectional study on overweight and obese adolescents [158]. Further research is needed to better
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define the effects of obesity on oscillometric parameters in overweight and obese children. In both adults
and children, it remains unclear how oscillometry data in obesity will contribute to clinical diagnosis and
management.

Restrictive diseases
The clinical application of oscillometry in restrictive lung disease is less established in comparison to
obstructive disease. Most oscillometric studies of restrictive lung diseases have investigated interstitial lung
disease (ILD). Although ILD and obstructive lung diseases are clinically distinct, their corresponding Zrs
spectra demonstrate similar patterns of abnormalities, perhaps due to the higher airway resistance found at
lower lung volume in ILD. For example, a patient with ILD may demonstrate elevated Rrs, enhanced
frequency dependence of Rrs, and more negative Xrs at low frequencies consistent with increased elastance
[159–162]. Such findings correlate with the severity of the restriction assessed by either TLC or vital
capacity and with the severity of radiographic abnormalities [162–165]. Recent work has shown that while
oscillometric parameters in both patients with ILD and COPD correlate well with ventilation unevenness
and Rrs, correlations were poor with alterations in static compliance due to emphysema or pulmonary
fibrosis [166]. The longitudinal change of Zrs measured by oscillometry in ILD has not been studied.

Oscillometry has also been used to study lung function in pulmonary restriction caused by neuromuscular
disease. Conventional physiological studies document diminished vital capacity due to both reduced lung
compliance and reduced outward pull of the chest wall in children and adults with neuromuscular disease
[167, 168]. While it has been suggested that oscillometry may be useful for the evaluation of neuromuscular
disease [169], the data are limited. Technical difficulties in establishing an adequate mouth seal in patients
with bulbar weakness may limit applicability in this group. However, oscillometry would appear to have a
major advantage over spirometry in detecting lung disease in patients with neuromuscular weakness in
general because it does not require muscle force to generate the deep inspiration involved in spirometry.

Vocal cord dysfunction
Paradoxical inspiratory adduction of the vocal cords or reduction in subglottal cross-sectional area induces
acute symptoms that is often mistaken for (or associated with) asthma [170]. Detection of inspiratory flow
limitation is not widely assessed in clinic and is poorly tolerated, particularly in children. Model analysis
has indicated the potential of oscillometry for assessing vocal cord dysfunction (VCD) [171, 172]. It is
recommended to carefully examine intratidal changes in Zrs for large positive swings during inspiration
[173], especially when tidal inspiratory flow limitation may be suspected [174], and to identify markedly
positive differences between inspiratory and expiratory Rrs [175]. Owing to expiratory glottal narrowing,
these differences are usually negative in control subjects or stable asthmatics and may be enhanced further
in acute bronchoconstriction [175–177]. Large case-control studies are necessary to establish the sensitivity
and specificity in VCD.

Sleep apnoea
Obstructive sleep apnoea (OSA) is a very prevalent disease in adults, characterised by recurrent upper
airway collapse and obstruction, resulting in nocturnal apnoea and hypopnoea. Given that increase in upper
airway resistance is a landmark of OSA, oscillometry is particularly suited for detecting such airway
obstruction [178] and hence for application in this disease [179, 180]. Initially, oscillometry was applied to
help diagnose OSA in awake patients, since increased susceptibility to airway collapse can be detected by
measuring changes in Rrs during continuous negative airway pressure [181]. The effect of posture on
oscillometric measures is also enhanced in supine patients with OSA compared to supine patients without
OSA, increasing the sensitivity of oscillometry in OSA [182]. Although initial data showed that
oscillometry was able to distinguish OSA patients from healthy adults [181], its application for simplified
diagnosis has not yet been implemented in routine clinical practice. However, oscillometry is useful for
monitoring upper airway collapse during sleep [183–185]. Oscillometry also provides insight into how
airway resistance is normalised by application of continuous positive airway pressure (CPAP) [186], and
how sleep apnoea and asthma may interact to worsen airway obstruction [187]. Further information on the
use of oscillometry in the setting of CPAP is found in the supplementary material.

Environmental and occupational exposures
Oscillometry has been used in monitoring and detection of lung function among people exposed to various
environmental or occupational irritants or hazards. Firefighters and those exposed to asbestos have been
shown to have abnormalities in oscillometry parameters even with normal spirometric indices [188].
Similar findings are seen in symptomatic people exposed to World Trade Center dust during the 9/11
attacks and suggest the detection of distal airway dysfunction even when spirometry is normal [189, 190].
Exposures to specific inhaled contaminants have been shown to result in changes in Zrs that often but not
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invariably correlate with changes in spirometry; hence, the two measures may be complementary [191].
Oscillometry has the potential to detect changes years after an environmental exposure. For example,
infants exposed to poor air quality from a coal mine fire for a 6-week episode when less than 2 years old
had worse AX 3 years after the fire [192]. Furthermore, a study in adolescents showed that exposure to air
pollution from local traffic during infancy was associated with abnormal oscillometry parameters
suggesting distal airways disease, especially in those with asthma [193]. These studies all suggest that
oscillometry may be useful for monitoring lung function in occupational settings and in detecting early
changes in lung function in association with environmental exposures.

Of unique concern at the time of this writing is the prevention of spreading contaminated aerosols during
lung function testing during the current coronavirus disease 2019 pandemic. Although no data are
available, oscillometry is thought to be safer than spirometry in this regard, given that deep inhalation and
forced exhalation are not required [194].

Critical care
The measurement of Zrs in critically ill patients receiving ventilatory support poses many unique
challenges to the clinician, especially regarding technique and safety [195–200], including managing the
interface between the oscillometric generator and the patient’s airway [201–203], and the influence of the
ventilator circuit on the excitation waveform [204–215]. Further details related to the technical issues of
applying oscillometry through the ventilatory circuit are discussed in the supplementary material. Despite
technical challenges, the use of oscillometry in ventilated and critically ill patients has yielded tremendous
information on the mechanical derangements and pathophysiological processes associated with various
respiratory diseases [198, 200, 216–220], such as lung derecruitment [221], parenchymal overdistention [222]
and EFLT [124, 223, 224]. In the paediatric patients, oscillometry may be useful for monitoring the effects
of positional changes and adjustment of PEEP [220, 225–228] and for improving prediction of respiratory
outcomes in extremely preterm newborns receiving invasive ventilation [229]. A recent American Thoracic
Society/European Respiratory Society workshop report on the evaluation of respiratory function, including
oscillometry in the neonatal and paediatric intensive care units, has recently been published [230].
Oscillometry thus has the potential not only to optimise ventilator settings [226, 231–235], but also to
enhance our understanding of the immediate impact of various surgical interventions on lung function
[204, 205, 216, 236].

Summary and future research
In summary, oscillometry has shown to be of value for the diagnosing lung disease in our youngest
patients and throughout life, and monitoring disease progression, acute exacerbations and treatment effects.
While many gaps in our understanding are closing, many still need to be filled in order to ensure a smooth
transition of oscillometry from a research tool to a reliable, robust, clinical tool (table 2). In undertaking
this review of clinical literature using oscillometry, we have identified several areas where more evidence
is required before oscillometry may be used routinely in clinical practice. Looking to the future, we
envision many opportunities to develop oscillometry for a wide range of clinical applications [1].
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