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Abstract
Chronic exposure to environmental pollutants is a major contributor to the development and progression of
obstructive airway diseases, including asthma and COPD. Understanding the mechanisms underlying the
development of obstructive lung diseases upon exposure to inhaled pollutants will lead to novel insights
into the pathogenesis, prevention and treatment of these diseases. The respiratory epithelial lining forms a
robust physicochemical barrier protecting the body from inhaled toxic particles and pathogens. Inhalation
of airborne particles and gases may impair airway epithelial barrier function and subsequently lead to
exaggerated inflammatory responses and airway remodelling, which are key features of asthma and COPD.
In addition, air pollutant-induced airway epithelial barrier dysfunction may increase susceptibility to
respiratory infections, thereby increasing the risk of exacerbations and thus triggering further inflammation.
In this review, we discuss the molecular and immunological mechanisms involved in physical barrier
disruption induced by major airborne pollutants and outline their implications in the pathogenesis of
asthma and COPD. We further discuss the link between these pollutants and changes in the lung
microbiome as a potential factor for aggravating airway diseases. Understanding these mechanisms may
lead to identification of novel targets for therapeutic intervention to restore airway epithelial integrity in
asthma and COPD.

Introduction
Obstructive airway diseases, including COPD and asthma, are respiratory diseases characterised by airflow
limitation, chronic airway inflammation and progressive decline in lung function [1]. By 2015, more than
half a billion individuals were diagnosed with asthma or COPD worldwide [2]. Although asthma cases
account for up to two-thirds of these cases, the mortality rate in COPD is twice that of asthma, which is in
part explained by the fact that COPD is mostly diagnosed among elderly patients [2]. Environmental
exposures, including air pollutants from burning biomass and fossil fuels, dust, nanoparticles that are
emitted by chemical industries, microplastics in textiles, emissions from large farms, and detergents used
for laundry, expose a large population to health risks both in developed and developing countries [3].
These environmental factors in combination with genetic susceptibility factors constitute the major risk
factors for chronic airway diseases [4]. In addition, such pollutants can worsen the symptoms and
exacerbate asthma and COPD, as demonstrated by the observation that each year many patients are being
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admitted to hospital at times of reduced air quality during both extremely high and low temperature days
[5–7]. These exposures may increase susceptibility to airway infections with viral and bacterial pathogens,
which are considered to be the major driving factors for exacerbations [8]. The airway epithelium functions
as a mechanical and immunologic barrier by its physical barrier function, removal of noxious agents by
employing mucociliary machinery, metabolism of pollutants and production of antimicrobial and immune
mediators, collectively serving to protect the gas exchange unit, i.e. the alveoli, as well as the submucosal
layers from the inhaled environment [9]. Due to its anatomical location as the first point in the respiratory
system encountering these exposures, it is more susceptible to damage than the alveoli. Indeed, there is
increasing evidence to suggest that COPD cases that are linked to exposure to the emissions released by
burning biomass fuels show a distinct phenotype with more prominent airway disease and less alveolar
damage (emphysema) [10, 11]. Impaired airway epithelial barrier function is involved in the complex
pathogenesis of both asthma and COPD, both of which are obstructive airway diseases [9, 12]. Many air
pollutants inflict epithelial damage by inducing oxidative stress [13], propagating barrier dysfunction,
pro-inflammatory responses and remodelling. Impaired epithelial repair mechanisms may lead to persistent
barrier disruption [9]. Prolonged exposure to many of the inhaled air pollutants directly or indirectly causes
airway epithelial barrier dysfunction [12], which may subsequently facilitate colonisation and invasion of
respiratory pathogens, and thus may contribute to the development and progression of COPD and asthma.

In this review, we provide a comprehensive, up-to-date overview on the mechanisms of air
pollutant-induced airway epithelial barrier dysfunction and outline how this contributes to airway epithelial
remodelling, epithelial innate immune dysfunction and infections in asthma and COPD. Furthermore, by
discussing potential therapeutics that have been experimentally found to resolve airway epithelial barrier
dysfunction induced by air pollutants in different airway disease models, we aim to stress the clinical
implications of this novel insight.

Sources, compositions and respiratory hazards of air pollutants
Air pollutants are generally categorised based on their nature (gas or particles), sources (indoor and
outdoor) and size (ultrafine, fine and coarse) [14]. Air pollutants with either indoor or outdoor air origin
are a mixture of gas and solid-phase varied-size particles but with different origins [14]. Indoor air
pollution mainly originates from stoves, biologic materials (such as mould), microplastics and household
dust [15], whereas outdoor pollutants originate from vehicles and industrial (urban)/agricultural activities
(rural) [14]. Outdoor particulate matter (PM) is a heterogenous mixture that can consist of airborne dust
and heavy metals as well as nanoparticles emitted by vehicles, wildfire smoke, volcano eruptions and
chemical industries [16]. The majority of outdoor urban PM originates from incomplete burning of fossil
fuels by transport vehicles in cities [17].

PM ranges from ultrafine particles with diameters ⩽0.1 µm or PM0.1 (e.g. nanoparticles), fine particles or
PM2.5 ⩽2.5 µm (e.g. vehicle exhaust) and coarse particles or PM10–2.5 2.5–10 µm (e.g. dust) [16]. Fine PM
is particularly harmful to inhale as it travels deeper into the small airways than coarse PM [16]. Indeed,
inhalation of fine PM has been associated with the progression of asthma and COPD [18–20]. In addition
to black carbon, PM2.5 carries chemical components such as sulfate, nitrate, ammonium and silicon, as
well as gas phase polyaromatic hydrocarbon (PAH), mainly originating from either industrial sources such
as chemical industries or burning of fossil fuels as well as emissions from large farms [14]. Apart from
PAH, other gas phase pollutants such as ozone, sulphur dioxide (SO2), nitrogen oxides (NOx), carbon
monoxide (CO) and methane appear separately from PM2.5 in ambient air pollution [14]. Ozone is formed
as a by-product of a reaction between volatile organic compounds and NOx originated from outdoor air
pollution in the presence of sunlight [17] and PAH originates from burning of organic materials such as
oil, woods and coal [14].

The average concentrations of PM0.1, PM2.5, PM10–2.5 in outdoor air have been reported to be affected by
season and have been calculated as 16–58, 27–58 and 20–42 µg·m−3, respectively [21, 22]. Recent World
Health Organization (WHO) air quality guidelines recommend the daily levels of PM2.5 and PM10–2.5 in
the air to be kept lower than 15 µg·m−3 and 45 µg·m−3, respectively [23]. A 10 µg·m−3 increase in PM2.5

and PM10–2.5 levels was associated with higher mortality and prevalence of respiratory diseases [24].
Furthermore, short- or long-term exposure to air pollutants is closely linked to respiratory diseases such as
asthma and COPD [14]. Increased levels of outdoor pollution, in particular NO2, PM2.5 and black carbon
levels, have also been associated with the onset and progression of childhood asthma [18]. Additionally, a
recent large cross-sectional study revealed a strong association between increased levels of PM2.5 and NO2

and decreased lung function and prevalence of COPD [19]. Volcano ash released upon volcanic eruptions
has been considered as an air pollutant with a potential hazardous impact on respiratory function [25].
Volcano ash is composed of many known air pollutants, including fine PM, iron, silica (SiO2) and SO2.
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It has been shown that volcanic emission exposure, specifically SO2, is associated with increased
hospitalisation in patients with respiratory diseases, particularly in those with COPD and asthma [26].

Airway epithelial barrier function in health and obstructive lung diseases
The pseudostratified human airway epithelium is composed of several subsets of cells, including secretory
goblet and club cells, ciliated cells, basal cells and more rare cell types such as tuft cells, neuroendocrine
cells and recently identified ionocytes, each responsible for a specific function (figure 1a) [27]. Mucus
produced by goblet cells trap and neutralise noxious particles that can subsequently be cleared by ciliary
movement of the ciliated cells. Basal cells can regenerate these secretory subsets and ciliated cells [27].
Airway epithelial cells (AECs) protect the submucosal layer against noxious particles, allergens and
respiratory pathogens, by forming both physical, mucosal and innate immune barriers [9]. The physical
airway epithelial barriers include junctions between the adjacent cells. At the apical side of the cells, tight
junctions (TJs) including zona occludens (ZO)-1, ZO-2, claudin family members, the junctional adhesion
molecule ( JAM) family, occludin, tricellulin and marvelD3, stabilise the barrier. At the basolateral side of
TJs, adherens junctions (AJs), comprising the transmembrane protein E-cadherin, attach the cells to each
other [12]. AJs and TJs are linked together via ZOs and the cell polarity proteins Par complex (Par1–6) [9]
and to the cytoskeleton machinery through scaffolding proteins, e.g. actin filaments, cingulin and β-catenin [12].
TJs serve as ionic gates which chiefly regulate the passage of ions and small peptides between the
epithelial cells, yet function as fences which compartmentalise apical and basal parts of the cell
establishing cell polarity [12]. In contrast, AJs attach the adjacent AECs at the basolateral side, providing a
robust attachment that facilitates the formation of other junctional complexes. Together AJs and TJs keep
the sub-epithelium protected from penetration of noxious particles and respiratory pathogens [12].
Although both AJs and TJs are expressed by all subsets of AECs, specific subsets may be more
susceptible to barrier dysfunction resulting from air pollutants. For instance, since ciliated cells are located
on the luminal surfaces, and are in direct contact with the inhaled particles, they are likely to be more
susceptible to damaging insults than basal cells [28].

Loss of epithelial cell–cell contact has been observed in several obstructive airway diseases, including
asthma and COPD [9, 12, 29]. Of note, decreased expression of several TJs and AJs, including E-cadherin,
β-catenin, occludin and ZO-1 in the airway epithelium of patients with asthma and patients with COPD
was reported to be accompanied by diminished ciliary function [9, 12]. Airway epithelial damage and loss
of barrier function may not only lead to increased antigen uptake and antigen-presenting immune cells
such as dendritic cells, but also to increased pro-inflammatory activity of the epithelium, leading to
secretion of danger-associated molecular patterns (DAMPs), cytokines and chemokines and recruitment of
innate and adaptive immune cells (figure 1b) [9]. Further, loss of barrier function is accompanied by
impaired antimicrobial activity [30]. Meanwhile, other changes in epithelial function are observed in
obstructive lung diseases, such as mucociliary dysfunction with the loss of cilia, impaired ciliary beating
and mucus hypersecretion contributing to airway obstruction [9].

Molecular mechanisms involved in air pollutant-induced airway epithelial barrier dysfunction
Mechanisms of physical barrier disruption by particulate matter
Numerous studies showed that air pollutants, as one of the major risk factors for development of asthma
and COPD, induce airway epithelial barrier disruption [31–35]. PM2.5 present in e.g. traffic-related air
pollution is among the most studied outdoor air pollutants affecting epithelial integrity [36]. In addition,
atmospheric gases such as ozone, ammonia and SO2 have been shown to induce airway epithelial barrier
dysfunction [33, 34, 37–39]. Studies show that repetitive short sub-toxic exposures to soluble PM2.5

induces airway epithelial barrier disruption by downregulation of TJs, E-cadherin, decline in transepithelial
electrical resistance (TEER) and an increase in paracellular permeability in vitro [34, 35, 40]. Furthermore,
diesel exhaust as one of the major sources of PM in cities was shown to decrease TEER and reduce the
expression of ZO-1 and E-cadherin in AECs in vitro and in vivo [31, 32, 41]. An increase in reactive oxygen
species (ROS) production following exposure to air pollutants may serve as a key mechanism in airway
epithelial barrier dysfunction. This resulting increase in oxidative stress can originate either from direct free
radical activity of components (e.g. metals in PM), from the activation of cellular ROS-generating systems
such as nicotinamide adenine dinucleotide phosphate (NADPH) and dual oxidase, or by altering
mitochondrial function [42]. Moreover, air pollutants can enhance ROS levels by suppressing lung
antioxidant mechanisms. While oxidative stress responses usually lead to activation of the antioxidant
machinery, such as superoxide dismutase (SOD), nuclear factor E2-related factor 2 (Nrf2) and antioxidant
responsive element (ARE)-mediated transcriptional responses, PM reduced these mechanisms particularly at
higher doses [43]. Furthermore, a decrease in SOD2 expression has been observed in the lungs of mice
repeatedly exposed to high concentration of PM2.5 prior to a haze period [44]. In addition, polymorphisms in
antioxidant enzyme genes (GSTM1, GSTP1, GSTT1 and NQO1) have been associated with higher
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FIGURE 1 Inhalation of air pollutants promotes airway epithelial barrier dysfunction. a) Healthy airway epithelium is protected against pathogens by
physical junctions between the adjacent cells and by releasing innate immune HDPs. b) By exposure to airborne PM, the TJs and AJs between the AECs,
including ZO-1, occludin and E-cadherin, are disrupted. Furthermore, PM induces mucociliary dysfunction by reducing cilia number, loss of cilia as well as
goblet cell metaplasia leading to increased mucus production. PM entering the airway submucosa is presented to adaptive immune cells by APCs.
PM-induced increase in MHCII on APCs leads to expansion of adaptive immune cells and production of inflammatory cytokines that further inflict airway
epithelial barrier dysfunction. PM exposure also induces submucosal accumulation of neutrophils which may lead to barrier dysfunction by secretion of
SPs. c) PM-induced barrier dysfunction is in part triggered by AhR-mediated increase in ROS generation by mitochondria and subsequent activation of
EGFR and ERK or ROS-mediated increase in cytoplasmic HMGB1 and ROS-mediated increase in autophagy in AECs. Activation of EGFR either by
PM-induced increase in AREG or ROS leads to disassembly in AJs by disrupting E-cadherin/β-catenin, and increased TJs permeability by Rac1/
JNK-mediated disruption in ZO-1 and occludin. Activation of ERK in turn triggers airway barrier dysfunction through HER2-mediated increase in IL-6. AEC:
airway epithelial cell; AhR: aryl hydrocarbon receptor; AJ: adherens junction; APC: antigen-presenting cell; AREG: amphiregulin; β-cat: β-catenin; E-cad:
E-cadherin; EGFR: epidermal growth factor receptor; ERK: extracellular signal-regulated kinase; HDP: host defence proteins and peptide; HER2: human
epidermal receptor 2; HMGB1: high-mobility group box 1; IFN: interferon; IL: interleukin; JNK: c-jun N-terminal kinase; MHCII: major histocompatibility
complex class II; MUC5AC: mucin 5AC; OCLDN: occludin; PAH: polyaromatic hydrocarbon; PM: particulate matter; ROS: reactive oxygen species; SP: serine
protease; Th: T-helper cell; TJ: tight junction; TNF: tumour necrosis factor; ZO-1: zonula occludens-1. Figure partially created with BioRender.com.
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susceptibility to lung function decline upon exposure to air pollutants, highlighting the role of redox
imbalance in the development of respiratory disease upon exposure to air pollutants [45, 46].

In urban areas the fine and ultrafine PM organic carbon-derivative components such as PAH and quinones
(e.g. benzene and naphthalene) are largely responsible for oxidative damage [47]. PM2.5 and PAH induces
ROS via the aryl hydrocarbon receptor and subsequent cytochrome p450 activation [48]. However,
inorganic materials in PM2.5 such as transition metals (iron, copper, silicon etc.) and nanoparticles as well
as gas phase NOx and ozone display free radical activity and may thus increase the oxidative burden [47].
In contrast, coarse particles are mainly composed of transition metals, which have been described to induce
oxidative stress in the lung [49], either via direct free radical activity [47] or via increased lipid
peroxidation in the lung [50].

Co-exposure to PM10–2.5 and lipopolysaccharide attenuated E-cadherin and claudin1 in ALI-cultured AECs
in vitro possibly via ROS-mediated activation of aryl hydrocarbon receptor (AhR) and through
mitochondrial cytochrome p450 activation [51]. ROS-mediated activation of epidermal growth factor
receptor (EGFR) and downstream extracellular signal-regulated kinase (ERK) signalling is one of the
molecular mechanisms that has been implicated in airway epithelial barrier disruption by affecting both TJs
and AJs [9]. While high E-cadherin expression limits EGFR activity, activation of EGFR leads to
redistribution of E-cadherin and vice versa, by causing tyrosine phosphorylation of β-catenin through Src
kinases [52], internalisation of E-cadherin and increased paracellular permeability by Rac1/c-jun
N-terminal kinase ( JNK)-mediated decrease in ZO-1 and occludin junctional localisation [53]. Of
note, PM-induced EGFR activation in AECs was shown to induce airway epithelial barrier disruption in
AECs [54, 55]. Non-toxic doses of whole PM2.5, and organic extract of PM2.5 mainly containing
PAH, were shown to increase the release of the EGFR ligand amphiregulin over 24 h up to 48 h
post-exposure in AECs in vitro [56, 57]. This increased release of EGFR ligands upon PM exposure was
reported to be dependent on metalloproteinases such as metalloproteinase 17 (ADAM17) also known as
(TNF-α)-converting enzyme (TACE) [58], which proteolytically cleaves the active form of amphiregulin.
PM-induced ROS release has been implicated in the increase of amphiregulin release in AECs [55], which
may subsequently lead to EGFR/ERK activation and airway epithelial barrier disruption by the destabilisation
of junctional proteins. The activation of EGFR by PM was shown to lead to further release of amphiregulin in
an ERK1-dependent manner [59]. Cytoplasmic release of high-mobility group box 1 (HMGB1), a
chromatin-binding protein and DAMP released upon cellular damage, has also been shown to cause a
disruption in TJs and AJs via activation of ERK in AECs in vitro [60]. Short-term (2 days) exposure to PM2.5

increases HMGB1 release in the airways of mice [61], which may subsequently lead to airway epithelial barrier
disruption. The PM-mediated release of HMGB1 and subsequent ERK-induced barrier disruption may be
dependent on ROS levels, as oxidative stress was reported to enhance the release of HMGB1 from epithelial
cells in vitro [62]. Therefore, ROS may not only lead to EGFR activation, but may also induce the release of
HMGB1 and thus increase ERK signalling, leading to disassembly of AJs and TJs (figure 1c).

The oxidative damage induced by air pollutants is thought to be mainly mediated through the mitochondria
that are responsible for oxidative phosphorylation (OXPHOS) and concomitant ROS production [63].
Mitochondria are also highly sensitive to oxidative stress damage, and mitochondrial damage leads to
higher ROS production. It has been proposed that PAH present in PM triggers oxidative damage to
mitochondria [64, 65]. Mitochondrial dysfunction has been reported in the airway epithelium upon
environmental exposures [63]. Notably, transcriptomic analysis of AECs exposed to PM2.5 revealed a
significant alteration in the expression of genes regulating metabolic functions [66]. A metabolic shift from
OXPHOS to glycolysis has been observed in AECs stimulated with organic soluble fraction of PM2.5 for
24 h [67]. In line with these findings, repeated exposure of AECs from both patients with COPD and
non-COPD subjects to PM2.5 for 24 h induced mitochondrial dysfunction with increased mitochondrial
(mt) ROS levels and reduced OXPHOS activity [68]. Similar mitochondrial abnormalities with enhanced
ROS production have been observed in the lung tissues of mice and rats that received PM2.5 intranasally
for 1 month [69, 70] and PM10–2.5 for 3 weeks [71]. Increased levels of mtROS may contribute to airway
epithelial barrier disruption through the activation of EGFR and ERK (figure 1c) [9, 70].

Air pollutant-induced mucociliary dysfunction in airway epithelium
Mucociliary clearance is mediated by the airway surface liquid (ASL) as well as ciliary function [72]. Both
mucus and hydration of the ASL affect the airway epithelial layer, and both are impacted by cigarette
smoke (CS) in patients with COPD [73], and possibly by air pollutants. Ciliary function is dependent on
ciliary length, beat frequency and numbers of cilia, all of which are affected in COPD and asthma [74] as
well as in response to air pollutants [75]. Diesel exhaust-derived PM has been shown to induce ciliary
dysfunction by reducing ciliary beat in AECs from both healthy individuals and patients with asthma [76, 77].
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Furthermore, while 24 h exposure with higher concentrations of PM2.5 (6 and 12 µg·mm−2) reduced ciliary
beat in ALI-cultured nasal epithelial cells, 12 h exposure with lower concentrations of PM2.5

(1.5 µg·mm−2) promoted ciliary beating, suggesting involvement of an adaptive response in ciliary beat
upon exposure to lower concentrations and shorter PM exposures [78]. Furthermore, genome-wide analysis
of human AECs exposed to high doses of PM2.5 organic extract showed attenuation of cilia and
enrichment of mucus marker genes, suggesting PM2.5-induced impairment of mucociliary clearance [79].
In line with this, loss of cilia has been observed in mice exposed to PM2.5 for 28 days [80]. Chronic
exposure of rats to airborne PM for 7 months induced COPD-like phenotypes in the airways with an
increase in mucin 5AC (MUC5AC) expression and mucus metaplasia [81]. MUC5AC expression is partly
regulated by the EGFR pathway. Of note, low-dose PM2.5 was shown to increase MUC5AC expression in
mice trachea and human AECs which was associated with an increase in the EGFR ligand amphiregulin
[82]. This PM-induced increase in MUC5AC was further shown to be mediated by activation of the
EGFR-PI3K-AKT axis in vitro [83]. Additionally, PM from wood smoke increase MUC5AC expression in
AECs via activation of EGFR and downstream signalling p38/mitogen-activated protein kinase (MAPK),
glycogen synthase kinase 3β (GSK3β) and β-catenin [84]. Activation of MAPK and ERK was also
associated with PM-induced increase in the expression of MUC5B and MUC5AC in AEC [85, 86].
Oxidative stress may contribute to this mucus hypersecretion in AECs, as ROS-mediated activation of
ERK1/2 aggravates MUC5A overexpression in AECs exposed to PM [87]. Nevertheless, mucus
hypersecretion could be transiently beneficial in acute exposures, since it efficiently traps PM and impedes
its transportation to the epithelium as evidenced by attenuation in ROS in differentiated AECs exposed to
iron-rich PM from an underground railway [88]. In line, it was shown that MUC5AC expression was
unaffected by acute exposure of AECs to PM; instead, the accumulation of mucus-containing vesicles
within the cytoplasm of goblet cells was associated with PM exposure [89]. Therefore, chronic exposure to
air pollutants may more pathologically contribute to airway obstruction by inducing ciliary destruction and
a shift to hypersecretory phenotype in the epithelium.

Dysregulation of non-coding RNAs: a potential mechanism for air pollutant-induced airway epithelial
barrier disruption
Non-coding RNAs, including microRNAs (miRs) and long non-coding RNAs (lncRNAs), are
single-stranded RNA sequences regulating many homeostatic processes in the lung such as cellular
differentiation, remodelling, host defence and mucociliary function by post-transcriptional modifications of
mRNAs [90, 91]. Differentially-regulated miRs have been observed in airway diseases and linked to the
pathogenesis of asthma and COPD [92]. More importantly, several miRs, such as miR34c, miR145,
miR146a, miR155, miR223 and miR4516, were reported to regulate epithelial barrier function in intestinal
and airway epithelium [93–98]. For instance, TGFβ-mediated increase in expression of miR-145, which is
also highly expressed in the airway epithelium of patients with asthma and patients with COPD [92, 99],
was shown to reduce E-cadherin, β-catenin and claudin-1 gene expression in airway epithelium in mice
[98]. Ambient PM is also shown to disturb miRs and lncRNAs regulation in AECs, leading to
dysregulated expression of miR-29–3 bp, miR-375 and metastasis-associated lung adenocarcinoma
transcript 1 (MALTA1) [100–102]. Extracellular vesicles (EVs) are a group of membrane-derived cellular
cargo transporters promoting paracrine signalling during homeostasis and diseases by regulating apoptosis
and innate immune responses to foreign particles and pathogens including by transferring miRs [103, 104].
It was shown that ambient PM increases the release of thiol-dependent EVs in AECs in vitro [105]. This
may alter EV properties, for example, by modifying miR profiles, as it has been observed in CS-stimulated
AECs [106, 107]. In addition to miRs, specific lncRNAs have been demonstrated to affect airway
epithelial barrier dysfunction, including MALTA1. Notably, ambient PM2.5 was shown to reduce
E-cadherin gene expression in AEC in vitro, in which an NF-κB-mediated increase in MALTA1
expression was proposed to be involved [100, 108]. Moreover, PM2.5 may induce airway epithelial barrier
disruption via another lncRNA, maternally expressed gene 3 (MEG3). Higher expression of MEG3 has
been observed in the lungs of patients with COPD and this was associated to disease severity [109]. Both
PM2.5 and CS induce apoptosis and autophagy in AECs via a similar mechanism through MEG3 [109,
110], which may lead to loss of airway barrier integrity. In addition, MEG3 overexpression has been
shown to induce barrier disruption in AECs by decreasing E-cadherin gene expression, leading to
inhibition of basal cell differentiation to club, goblet and ciliated cells [111]. In summary, these
observations show that non-coding RNAs may mediate various of the effects of air pollution on airway
epithelial barrier function.

Mechanisms underlying barrier disruptive effects of airborne nanoparticles
The extensive use of nanotechnology has caused a massive increase in engineered nanoparticle production,
which has led to increased atmospheric levels of these particles [112]. Evidence suggests that a broad
range of physicochemical properties of engineered nanoparticles can influence lung epithelial cell
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responses and barrier integrity [113]. Long-term inhalation of atmospheric nanoparticles, such as carbon
nanotubes, copper oxide (CuO), titanium dioxide (TiO2) and silver nanoparticles, potentially causes airway
injuries which my lead to the development of asthma and COPD [114]. Of note, CuO nanoparticles that
have diverse applications in industrial products were shown to increase mucus secretion via
MAPK-mediated increase in MUC5AC expression both in healthy donor-derived AECs and in a murine
asthmatic model, suggesting a potential contribution of CuO to the pathogenesis of asthma [115, 116].
TiO2 nanoparticles are the most abundantly produced nanomaterial in commercial products [117, 118].
These particles have been shown to induce dose-dependent inflammation and injury of the lower airways
[96, 119]. A recent study showed that TiO2 nanoparticles also disrupt airway epithelial barrier structure and
function through oxidative stress-mediated loss of TJs and AJs as well as inducing inflammation and
enhanced multiple pro-inflammatory cytokines in vitro and in vivo [120]. Furthermore, TiO2 induces
mucociliary dysfunction in AECs through mucus hypersecretion via MAPK-mediated increase in
expression of MUC5B [121]. In vitro studies have shown that SiO2 nanoparticles disrupt TJs through
ROS-mediated activation of ERK [122] and impair ciliary beat activity through inhibition of a
calcium-permeable channel in AECs [123]. Aerosolised graphene oxide, an emerging nanomaterial, also
impairs airway epithelial barrier function as 1-month exposed ALI-cultured AECs showed reduced TEER
levels, which were likely to be mediated through blockage of autophagy and lysosomal-mediated alteration
in trans-cellular ions flux (figure 1c) [124]. These studies put forth the notion that nanoparticles not only
contribute to the development of airway diseases but may also aggravate pre-existing airway diseases by
provoking airway barrier disruption.

It should be noted that many in vitro studies used high deposited PM doses on a surface by exposing
submerged cultures to concentrated PM [31, 34, 35, 125]. These studies have mimicked PM exposure by
using concentrations that reflect exposure accumulated over multiple years in a short exposure model.
Therefore, the impact of lower concentrations of PM in a longer exposure time should be considered in
future experimental studies.

Immune-mediated alterations in airway epithelial barrier function upon exposure to air pollutants
Air pollutant-induced airway barrier dysfunction may lead to altered immune responses and increased
susceptibility to infection, and thus plays a major role in the pathogenesis of asthma and COPD. Immune
mediators including cytokines, chemokine and proteases produced by innate immune cells, including
AECs, may contribute to airway epithelial barrier disruption. As such, air pollutants may not only directly
induce disruption of cell–cell contacts, but may also lead to barrier disruption by stimulating release of
these immune mediators (table 1). In particular, long-term exposures to these factors may induce
exaggerated pro-inflammatory responses, which may compromise cell contacts. Notably, chronic exposure
of rats to PM from biomass fuels induced an inflammatory phenotype with increased neutrophils in the
bronchoalveolar lavage (BAL), which was accompanied with airway epithelial barrier disruption [81].
Accumulation of neutrophils in the airway submucosa can lead to epithelial barrier disruption by the

TABLE 1 Immune mediators and host defence molecules involved in air pollutant-induced physicochemical airway epithelial barrier disruption in
asthma and COPD

Innate/adaptive
immune
response

Cytokine/
chemokine

Levels upon air
pollutant
exposure

Levels in the airways
of patients

with COPD/asthma

Effects on
airway epithelial

barrier

Mechanism of effect
on barrier

References

Th1 TNF-α ↑ AECs (PM) ↑ COPD Disruptive EGFR-mediated ERK activation [81, 126]
IFN-γ

Th17 IL-17A ↑ AECs (PM) ↑ COPD Disruptive PM-induced increase in mtROS
Increased mucus production

[127–130]

IL-1 family IL-1β ↑ AECs (PM) ↑ COPD Disruptive ADAM17-mediated activation of HER2
Increased mucus production

[127, 128,
131–133]

IL-33 ↑ AECs (ozone, PM) ↑ COPD/ asthma Protective Reduction in recruitment of neutrophils [39, 134]
HDPs β-defensin 1 ↓ AECs (diesel

exhaust, PM)
↓ COPD/allergic asthma Protective Reduction in bacterial clearance [135, 136]

CC16 ↓ AECs (PM)
↑serum (ozone)

↓ COPD Protective Reduction in bacterial and
viral clearance

[137–139]

Th: T-helper cells; TNF: tumour necrosis factor; IFN: interferon; AEC: airway epithelial cell; PM: particulate matter; EGFR: epidermal growth factor
receptor; ERK: extracellular signal-regulated kinase; IL: interleukin; mtROS: mitochondrial reactive oxygen species; ADAM17: A disintegrin and
metalloprotease 17; HER2: human epidermal growth factor receptor 2; HDP: host defence peptide; CC16: club cell secretory protein 16.
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release of neutrophil-derived cytokine oncostatin M and serine proteases, which were shown to disrupt
cell–cell contacts in the AECs [140, 141]. PM2.5 induces an increase in interleukin (IL)-1β levels through
mtROS-mediated NLRP3 inflammasome activation in lung tissue and BAL of mice, which may also
trigger airway barrier disruption [142]. IL-1 family members, including IL-1β and IL-33, directly or
indirectly regulate airway barrier function [9] and are upregulated in AECs in response to air pollutants
[39, 134, 143]. IL-1β induces ADAM17-mediated activation of human epidermal growth factor receptor
2 (HER2) through increased release of neuregulin (NRG1), leading to airway barrier dysfunction as
demonstrated by a reduction in TEER and a decrease in claudin18 in vitro [131, 132]. Activation of
HER2 has also been shown to induce disassembly of AJs by phosphorylating β-catenin leading to
segregation from E-cadherin in AECs [133]. The inflammasome is known to subsequently cleave IL-1β
into its active form. Inhibition of the NLRP3 inflammasome, NRG1 and HER2 kinase was shown to
prevent IL-1β-induced airway epithelial permeability [144]. Higher inflammasome activity has been
observed in patients with asthma and patients with COPD [145, 146], and the air pollutants ozone,
PM2.5 and PM10–2.5 have been shown to induce inflammasome activation in the airways in vitro and in
vivo [71, 147, 148].

Moreover, IL-1β and IL-17A augment mucus production by activation of NF-κB subunit p65, leading to
hypersecretion of MUC5B and MUC5AC [127, 128], which together with air pollutant-induced ciliary
dysfunction may aggravate airway obstruction. By contrast, several cytokines were shown to induce
epithelial barrier protective effects and yet their release was increased upon exposure to air pollutants.
IL-33 is such a cytokine that was shown to be released upon exposure to ozone, diesel exhaust and
PM10–2.5 [39, 149] and to exert airway epithelial barrier protective effects in ozone-induced lung injury
model in vivo by restoring expression of E-cadherin, ZO-1 and claudin-4 proteins possibly via regulating
neutrophil recruitment [39].

Activation of adaptive immune system may contribute to airway epithelial barrier dysfunction. T-helper
cytokines that play a key role in pathogenesis of asthma and COPD, such as those produced by T-helper
(Th)1, Th2 and Th17 cells, have been shown to contribute to epithelial damage [9, 150]. Exposure to air
pollutants has been shown to activate these adaptive immune responses and increase release of their
mediators, including pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-13, IL-17A and IL-22 (figure
1b) [81, 129, 149, 151]. The receptors of these cytokines are expressed by AECs and all of these cytokines
have been reported to induce airway epithelial barrier disruption upon CS exposure [9]. For instance, the
expression of Th1-type cytokines IFN-γ and TNF-α was induced by air pollutants in airways of rats [81],
and both cytokines have been shown to disrupt TJs in AECs in vitro through EGFR-mediated activation of
ERK [126]. Air pollutant-induced Th17 cytokines IL-17A and IL-17F may also disrupt airway barrier
function [9]. PM exposure induced an upregulation in IL-17A in AECs in vitro [129]. IL-17A upregulation
was shown to suppress E-cadherin expression in AEC in vitro [130]. PM2.5-induced elevation of IL-17A
in AECs has also been shown to promote mitochondrial dysfunction, which may lead to increased
mtROS levels and further reduction in cell integrity [130]. Furthermore, IL-22 as a key effector in Th17
differentiation was also shown to contribute to airway barrier dysfunction by reducing E-cadherin in
AECs from patients with severe asthma [152]. IL-22 levels increased in the airways of both patients with
severe asthma and severe COPD [152, 153]. The barrier disruptive action of IL-22 only occurs with
TGF-β co-stimulation [152], suggesting the additive action of IL-22 on TGF-β, as exogenous IL-22
increases TGF-β expression in the lungs of mice [154]. Interestingly, IL-22-gene deleted mice had
improved barrier function with decreased IFN-γ in BAL [155], further suggesting that complex
interaction with other cytokines may choose the effect on barrier function. Mice exposed to urban PM
for 4 days also showed a AhR-dependent increase in IL-22 in their lungs, which may affect barrier
function [156]. Th2-driven responses as a dominant phenotype in allergic asthma have also been linked
to dysregulated airway barrier function [150]. This Th2 phenotype is also observed upon exposure to air
pollutants as observed by an increase in Th2 cytokines IL-4 and IL-13 upon PM exposure [149, 151].
Notably, mice that chronically inhaled PM2.5 showed disrupted sinonasal epithelial barriers as
demonstrated by a decrease in E-cadherin and claudin-1 expression, which was accompanied with an
increase in IL-13 in the sinonasal epithelium [143]. IL-13 and IL-4 were shown to disrupt airway
epithelial barriers in vitro through the Janus-associated kinase [157]. Together, dysregulated
pro-inflammatory and immune responses upon long-term exposure to air pollutants may exacerbate
airway epithelial barrier dysfunction in patients with asthma and COPD.

Air pollutant-induced airway epithelial dysfunction and susceptibility to microbial infection
Dysregulated innate immune responses and susceptibility to respiratory infections
Disrupted airway epithelium with impaired innate immune responses as a consequence of exposure to air
pollutants may increase the risk of airway infections by facilitating respiratory pathogens to invade the
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epithelium [9, 158]. ROS-mediated epithelial barrier disruption induced by air pollutants may directly
enhance pathogen entrance through a more permeable epithelium. Indeed, it was shown that PM exposure
increases internalisation and colonisation of Pseudomonas aeruginosa in airway epithelium, which was
associated with ROS-mediated disassembly of TJs [159]. In addition to increasing bacterial internalisation
through disruption of barrier function, air pollution impairs airway epithelial antimicrobial responses to
respiratory pathogens leading to decreased clearance of pathogens and disease exacerbation (table 1).
Airway epithelial-derived host defence peptides (HDPs) are a group of antimicrobial agents released into
the extracellular space in response to pathogens [30]. Altered secretion of certain HDPs such as
β-defensins has been observed in patients with asthma and patients with COPD as well as in response to
noxious particles and was associated with pathogenesis of the diseases [135, 160–162]. Whole diesel
exhaust was shown to downregulate host defence peptide β-defensin-2 in AECs from patients with COPD
stimulated with Haemophilus influenzae [136]. In line with these observations, PM was shown to decrease
airway epithelial HDPs and in particular β-defensin1/2 and stimulate P. aeruginosa growth in vitro and
in vivo [163], which was reported to be mediated by ROS [158]. More clinically relevant, a study revealed
that children exposed to PM2.5 in a polluted area had decreased airway epithelial-derived salivary
agglutinin, an antimicrobial glycoprotein, suggesting that PM-exposed individuals may potentially be more
vulnerable to respiratory infections. PM also reduces P. aeruginosa clearance in the airway epithelium by
altering HDPs and impairing mucociliary function via thyroid transcription factor 1 which regulates club
cell-derived HDPs [164]. In line, PM was shown to enhance respiratory syncytial virus (RSV) infection in
mice by attenuating club cell-derived secretory proteins (CCs) [137]. This air pollutant-induced impairment
in HDPs may lead to increased inflammatory responses to pathogens as observed in the airway epithelium
of patients with asthma exposed to PM and RSV [165]. Additionally, PM upregulates host cell surface
proteins that can be hijacked by respiratory pathogens to colonise and enter the epithelial cells. Indeed, it
was shown that PM10–2.5 increases attachment of Streptococcus pneumoniae to the airway epithelium via
an increase in platelet-activating factor receptor in vitro, thereby promoting airway infection [166].
Furthermore, nitrogen dioxide as a gas component of ambient air pollution increases airway epithelial
expression of intercellular adhesion molecule-1 (ICAM1) [167], which is exploited by major pathogens
involved in COPD exacerbation, i.e. rhinovirus and non-typeable H. influenzae, to attach to AECs [168, 169].
Interestingly, high expression of ICAM1 was notable in the goblet cells of patients with airway complications
[170], suggesting a potential link between air pollutant-induced increase in pathogen attachment and mucus
overproduction in COPD exacerbation. The air pollutant-induced susceptibility to respiratory pathogens upon
exposure to air pollutants may either be caused by or lead to altered composition of microbiota in the airways.

Air pollutant-induced dysbiosis in lung microbiome
Over the past decade, the involvement of the lung microbiome in the maintenance of respiratory health and
the development and progression of respiratory disease has gained an increasing amount of attention. The
core constituents of the healthy human lung microbiome are the phyla Bacteroidetes and Firmicutes, with
Prevotella (Bacteroidetes), Streptococcus and Veillonella (Firmicutes) as the most abundant genera (figure
2a) [171]. The lung microbiome composition can be influenced by environmental and lifestyle factors. In
contrast to the gut, where decreased microbial richness has been associated with disease, in the lung
increased diversity has been associated with disease, including asthma [172]. Moreover, alterations in the
composition of the bacterial constituents in the lung has been observed in different lung disease states
including, but not limited to, asthma, COPD, cystic fibrosis, respiratory infections and pulmonary fibrosis
[173]. Of note, overrepresentation of Proteobacteria and Firmicutes has been reported in the lung of both
asthma and COPD patients [9, 174]. Understanding the influence of airborne toxicants on lung
microbiome composition is an area of ongoing research. However, to date there are only few descriptive
studies which provide the first insights in this field. Exposure of experimental animals to high doses of
PM2.5 via intratracheal instillation was shown to increase diversity and richness of the lung microbiome
when compared with medium dose-treated controls [175, 176]. Specifically, in rats, Proteobacteria were
decreased following PM2.5 exposure, whereas Bacteroidetes, Cyanobacteria and Firmicutes increased
significantly with increasing PM2.5 concentrations [176]. Normal lung microbiome in mice and rats
predominantly include Proteobacteria following with other phyla such as Actinobacteria, Firmicutes and
Bacteroidetes in rat and Bacteroidetes, Cyanobacteria and Firmicutes in mice [175, 176]. In contrast,
chronic exposure of mice to lower doses of concentrated PM2.5 was shown to decrease richness and
diversity of the lung microbiome compared with that in mice who were exposed to filtered-air [177]. In
humans, short-term exposure to ozone led to a decreased airway epithelial barrier function as observed by
an elevation in serum CC16 and an altered composition of nasal flora with a decrease in abundance of
Firmicutes and Actinobacteria [138]. In line, short-term exposure to both PM2.5 and PM10–2.5 was
negatively associated with abundance of Firmicutes, Actinobacteria and Proteobacteria in human nasal
passage [178]. Moreover, children living in polluted areas had higher microbial diversity in the sputum
than those living in less-polluted areas (figure 2b) [179]. The PM2.5-induced changes in the sputum
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microbiome has been linked to a decline in respiratory function, and these changes lasted for at least
14 days following exposure [180]. In addition, PM2.5 has been suggested to increase the risk of developing
respiratory infections [181], and thus may lead to alterations in the lung microbiome and promote acute
exacerbations of asthma and COPD, which are often associated with microbial infections. Intriguingly,
there is evidence suggesting that PM2.5 can carry both airborne bacteria and bacteria-derived components
to the lung [182]. However, whether this directly contributes to changes in the lung microbiome and the
development of respiratory infections or exacerbations of chronic lung diseases warrants further research.
A shift in microbiota towards Proteobacteria and Firmicutes including S. pneumoniae, H. influenzae and
P. aeruginosa has been observed in the sputum of patients undergoing COPD exacerbations. Several of
these pathogens have been reported to induce an increase in the permeability of AECs [9]. In addition to
outdoor pollutants such as PM, household air pollution in Malawi was linked to alterations in the lung
microbiome, with elevated proportions of Neisseria and Streptococcus in the lung [183], although bacterial
diversity and relative abundance at the phyla level were not significantly different. Overall, the air
pollutant-induced airway dysbiosis may provide a therapeutic insight into controlling airway epithelial
barrier dysfunction in asthma and COPD.

Airway epithelium

Bacteroidetes

Firmicutes

Proteobacteria

a)

Microbial

diversity

AJs

TJs

Firmicutes

Proteobacteria

Actinobacteria

Other bacteria

b)

PM

Microbial

diversity

FIGURE 2 Air pollutant-induced microbial dysbiosis in airway epithelium may enhance airway epithelial permeability. a) Healthy human airway
microbiome is mainly composed of Firmicutes, Proteobacteria and Bacteroidetes. b) Upon acute exposure to various air pollutants, the
composition of the microbiome in the upper airways changes, with an increased abundance of Firmicutes, Bacteroidetes and Cyanobacteria in rats,
while fewer Actinobacteria, Proteobacteria and Firmicutes are observed in humans. PM induces dissemination of microbiome from upper to the
lower airways where it exerts pathogenic actions, as observed by the abundance of Firmicutes and Proteobacteria in the lower airways of
individuals exposed to PM. PM-induced dysbiosis in lung microbiome may induce airway barrier disruption as pathogenic Firmicutes and
Proteobacteria, including Streptococcus pneumoniae and Pseudomonas aeruginosa, that are known to disrupt airway barriers are overrepresented
in the lower airways, which may exacerbate pre-existing epithelial damage in patients with asthma and patients with COPD. AJ: adherens junction;
PM: particulate matter; TJ: tight junction. Figure partially created with BioRender.com.
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Therapeutic strategies for restoration of airway epithelial barrier function in air pollutant-induced
asthma and COPD
Due to the complex pathogenesis of airway diseases involving a plethora of factors, single therapy may not
be as effective as combinational therapy. Although combinational therapy with inhalational corticosteroid
(ICS) and long-acting bronchodilators (LABA/LAMA) is routinely prescribed to asthmatics and patients
with COPD to control airway obstruction and inflammation, its potential to reverse barrier disruption
induced by air pollutants is not evident. Budesonide, as a FDA-approved corticosteroid frequently used in
asthma and COPD to suppress inflammation, failed to show any effect on PM2.5-induced barrier
dysfunction in ALI-cultured AECs [35]. Moreover, tiotropium, a widely used LAMA, was unable to
reduce excessive ROS produced in response to PM in an ovalbumin-induced mouse model of asthma
[184], suggesting that it may not be effective on ROS-mediated barrier dysfunction. Therefore, considering
supplementary therapeutics aimed at restoring airway epithelial barrier function may counteract mucosal
and submucosal damage induced by air pollutants and as such may improve lung function in patients with
progressive airway diseases. This barrier protective strategy can be triggered by inhibiting excessive
oxidative burden, reducing autophagy and suppressing pathways involved in hyper-inflammatory response.
Of note, eliminating PM-induced excessive ROS in nasal epithelial cells of mice by ROS scavengers
including N-acetyl-cysteine (NAC) has been described to restore TJ assembly in vivo [32]. In line with
this, pre-treatment of nasal epithelial cells with NAC exerted similar protective effects on TJs in response
to PM2.5 in vitro [159, 185]. Interestingly, treatment with an antioxidant was effective in inhibition of AhR
activation as the upstream regulator of ROS production in AECs in response to air pollutants [48], which
may thus also restore defects in epithelial barrier function. Furthermore, it may suppress pro-inflammatory
signals leading to barrier dysfunction, as excess ROS activates NF-κB signalling by phosphorylating the
IκB subunit and increasing translocation to the nucleus, which may trigger further barrier dysfunction by
inducing pro-inflammatory cytokine release [186]. Treatment with NAC also reduced PM-induced increase
in ROS in AECs in vitro, which subsequently inhibited IκB phosphorylation and release of
pro-inflammatory cytokines [186]. Furthermore, oral pre-treatment of mice with the macrolide
Azithromycin was shown to reduce airway barrier dysfunction induced by short-term inhalation of SO2 by
suppressing inflammatory responses [38]. Inhibition of autophagy and ROS production by an antioxidant
resveratrol may be an additional effective strategy to simultaneously overcome PM-induced cell junction
disruption and mucus overproduction in AECs [125]. Resveratrol as an antioxidant and sirtuin 1 activator
restored airway epithelial integrity via targeting mitochondrial function and reducing ROS, thus it may be
similarly effective against air pollutant-induced airway epithelial damage [187, 188]. Furthermore,
co-inhalation of hydrogen gas as an antioxidant, which has already been shown to improve lung function
in a CS-induced rat model of COPD [189], was shown to reduce MUC5AC expression and oxidative
damage in the airways of rats exposed to PM2.5 via amelioration of AhR-Nrf2 [190]. Lower levels of
dietary antioxidants such as α-tocopherol have been observed in the airways of individuals exposed to air
pollution [191], while their intake has been shown to suppress the air pollution-induced decline in lung
function in patients with asthma [191, 192]. This suggests that receiving sufficient antioxidants in the diet
may help to prevent respiratory disease in patients living in polluted areas, although controlled dietary
intervention studies are needed to further support this conclusion. In addition to antioxidants, vitamin D3
(VitD3) supplementation may also restore airway epithelial barrier function by upregulating the expression
of TJ proteins and in a broader sense by stimulating epithelial HDPs production [193]. Low levels of
VitD3 observed in the serum of infants and women have been associated with high levels of air pollution
[194, 195], making it a potential target for therapy. Of note, 1 day pre-treatment with VitD3 diminished
PM2.5-induced increase in ROS and activation of NF-κB in AECs [196], which may lead to reduction in
ROS-mediated barrier damage. Furthermore, VitD3 supplementation suppressed TGFβ-induced decrease in
E-cadherin in AECs and inhibited epithelial-mesenchymal transition (EMT) [197]. In addition,
transcriptomic analysis of AECs exposed to PM revealed that VitD3 reduces PM-induced increase in
claudin7 expression as a TJ component that known to promote EMT in intestinal epithelial cells [198,
199], suggesting a protective role for VitD3 against EMT. Together, employing these therapeutic strategies
along with conventional ICS and LABA/LAMA may reduce the mucosal damage and improve lung
function in the patients with asthma and COPD, particularly for those who reside in highly polluted areas.

Conclusion
Inhalation of PM and noxious gases that are emitted into the air in cities on a daily basis is a risk factor
for the development of asthma and COPD. Current knowledge on the pathogenesis of these lung diseases
confirms the negative impacts of air pollutants on lung function in patients with airway diseases. Airway
epithelial barrier disruption is one of the central features of asthma and COPD, and air pollution is
considered to be a major trigger for its development. We have summarised the key mechanisms regulating
airway epithelial barrier disruption upon exposure to various air pollutants, of which ROS-mediated
mechanisms appear to be the common mechanism. Airway epithelial barrier dysfunction induced by air
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pollutants perpetuates inflammation and airway remodelling and increases susceptibility to infections
which may explain the higher rate of exacerbations observed in the patients with asthma and patients with
COPD living in polluted areas. As high levels of urban gas phase air pollutants were shown to be
particularly associated with occurrence of COPD exacerbations [200], it is essential to widely scrutinise the
impacts of these pollutants on airway epithelial barriers. Although changes in the lung microbiome induced
by air pollutants may facilitate airway infection and as such exacerbations, the direct link with barrier
dysfunction is unknown and requires further investigations. Furthermore, due to the role of viral and fungal
pathogens in airway epithelial barrier dysfunction, it is relevant to investigate the impact of air pollutants
on the lung virome and mycobiome and to delineate how putative changes may contribute to barrier
dysfunction. Restoring barrier function by therapeutic compounds, particularly those suppressing excessive
ROS production by AECs, such as resveratrol and for instance VitD3 in combination with the routine ICS/
LABA/LAMA medications, may be an effective strategy to prevent development of new cases as well as
exacerbations in current patients with asthma and patients with COPD residing in polluted areas.
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