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Abstract
During submaximal exercise, minute ventilation (V′E) increases in proportion to metabolic rate (i.e. carbon
dioxide production (V′CO2

)) to maintain arterial blood gas homeostasis. The ratio V′E/V′CO2
, commonly

termed ventilatory efficiency, is a useful tool to evaluate exercise responses in healthy individuals and
patients with chronic disease. Emerging research has shown abnormal ventilatory responses to exercise
(either elevated or blunted V′E/V′CO2

) in some chronic respiratory and cardiovascular conditions. This
review will briefly provide an overview of the physiology of ventilatory efficiency, before describing the
ventilatory responses to exercise in healthy trained endurance athletes, patients with asthma, and patients
with obesity. During submaximal exercise, the V′E/V′CO2

response is generally normal in endurance-
trained individuals, patients with asthma and patients with obesity. However, in endurance-trained
individuals, asthmatics who demonstrate exercise induced-bronchoconstriction, and morbidly obese
individuals, the V′E/V′CO2

can be blunted at maximal exercise, likely because of mechanical ventilatory
constraint.

Introduction
During submaximal exercise, minute ventilation (V′E) increases in proportion to metabolic rate (i.e. oxygen
consumption (V′O2

); and carbon dioxide production (V′CO2
)) to maintain arterial blood gas and acid–base

balance. The response of V′E relative to V′CO2
(V′E/V′CO2

) during exercise is said to reflect ventilatory
efficiency [1]. Examining the V′E/V′CO2

relationship during exercise has become a common tool to evaluate
exercise responses in patients with respiratory or cardiovascular abnormalities. Further, ventilatory
inefficiency (i.e. high V′E/V′CO2

) can help to explain why some individuals with normal lung function
present with abnormally high dyspnoea upon exertion [2]. While the V′E relative to V′O2

response has also
demonstrated prognostic value in various disease states [3–5], the V′E–V′CO2

response has been shown to
have superior prognostic value [3, 6]. Further, V′E/V′CO2

shows less variability than V′E/V′O2
during

moderate intensity exercise, due to the tight control of ventilation relative to the arterial partial pressure of
CO2 [7–10], and therefore V′E/V′CO2

is typically the preferred variable to evaluate ventilation relative to
metabolic demand. This review will briefly provide an overview of the physiology and clinical utility of
V′E/V′CO2

, before describing the ventilatory responses to exercise in healthy trained endurance athletes,
patients with asthma, and patients with obesity.
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Pulmonary gas exchange and ventilatory efficiency
Alveolar ventilation (V′A) is defined as the ventilation which takes part in gas exchange. The relationship
between V′A, V′CO2

, and the alveolar partial pressure of CO2 (PACO2
) can be described by the following

equation [11]:

PACO2 ¼ (V 0
CO2

=V 0
A)� K (1)

Both V′A and PACO2
are reported under body temperature ambient pressure, saturated (BTPS) with water

vapour. V′CO2
is reported at 0°C, 760 mmHg, standard temperature and pressure dry (STPD). K is a

conversion factor (normally=863 at sea level and at a normal body temperature of 37°C) used to convert
V′CO2

, from STPD to BTPS [11, 12]. Due to technical limitations, arterial PCO2
(PaCO2

) is often used as a
surrogate for PACO2

. Importantly, all of the CO2 in the expired gas originates from V′A, and, assuming
complete gas exchange (i.e. negligible ventilation-perfusion mismatch, diffusion limitation and/or shunt),
alveolar and arterial PCO2

are equal (PACO2
≈PaCO2

) [13]. While alveolar ventilation is generally well
matched to perfusion in healthy individuals with normal lung function [6, 14–16], a portion of gas remains
in conducting airways and does not participate in gas exchange and is termed anatomical dead space.
Further, alveoli that are ventilated but not perfused represent alveolar dead space. The sum of alveolar and
anatomical dead space makes up the total dead space ventilation (V′D), while the total expired minute
ventilation (V′E) is a combination of V′A and V′D and is displayed as:

V 0
E ¼ V 0

A þ V 0
D (2)

V′E can be measured noninvasively at the mouth with expired gas analysis, while V′A and V′D are more
technically difficult to evaluate. If PaCO2

is measured by arterial blood gas analysis, then V′A can be
determined using equation 1. Additionally, total physiologic dead space as a proportion of tidal volume
(VD/VT) can be determined using Enghoff’s modified Bohr equation [13, 17]:

VD=VT ¼ (PaCO2 � PECO2 )=(PaCO2 ) (3)

Where PECO2
is the mixed expired partial pressure of CO2. The relationship between PaCO2, V′E/V′CO2

and
VD/VT can be described by the modified alveolar ventilation equation:

V 0
E=V

0
CO2

¼ K=(PaCO2 � (1� (VD=VT)) (4)

K is the same conversion factor applied to equation 1, used to convert V′CO2
from STPD to BTPS [11, 12].

During exercise, PaCO2
is determined by equation 1. In practice, individuals often hyperventilate

immediately prior to exercise and at low exercise intensities, and therefore PaCO2
is often slightly reduced.

Once breathing is stabilised, the increase in ventilation is appropriate for metabolic demand and PaCO2

remains relatively constant (within 1–3 mmHg of resting values) at submaximal intensities in healthy
individuals [7–10, 18]. To compensate for excessive metabolic acidosis during high intensity exercise, V′A
increases disproportionately to V′CO2

(often termed the respiratory compensation point) [19]. The net effect
is a drop in PaCO2

below resting values, and an increase in V′E/V′CO2
. As such, PaCO2

typically drops to
30–35 mmHg at maximal exercise, while a PaCO2

between 35–38 mmHg at maximal exercise would be
suggestive of a borderline effective alveolar hyperventilation, and a PaCO2

>38 mmHg would be indicative
of an inadequate compensatory hyperventilatory response to exercise [20].

In many respiratory and cardiovascular conditions, increased dead space and hyperventilation frequently
co-exist. Without direct measurements of PaCO2

, it can be difficult to quantify the contribution of each to
V′E/V′CO2

. Often, the end-tidal partial pressure of CO2 (PETCO2
) is used as a surrogate for PaCO2

, as it can
be easily acquired noninvasively using a breath-by-breath metabolic measurement system. However,
multiple studies have shown inaccuracies between arterial blood-gas derived PaCO2

and expired gas derived
PETCO2

in patients with pulmonary gas-exchange abnormalities and increased alveolar dead space [21–24].
Therefore, care should be taken when using end-tidal values to infer PaCO2

and calculate dead space
ventilation.

In various chronic respiratory and cardiovascular conditions, V′E/V′CO2
is elevated at rest and throughout

exercise compared to healthy individuals. The increased V′E/V′CO2
is secondary to alveolar hyperventilation

(low PaCO2
) and/or high dead space. The mechanisms for hyperventilation are multifactorial and complex,
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however, increased afferent stimulation from chemoreceptors, ergoreceptors, baroreceptors and pulmonary
c-fibres have been identified [25–30]. In some chronic conditions, V′E/V′CO2

is blunted during exercise,
secondary to alveolar hypoventilation (increased PaCO2

). Alveolar hypoventilation can be secondary to
expiratory flow limitation (EFL) and severe ventilatory mechanical constraint [31, 32].

Shortly after the onset of exercise, VD/VT falls from values around 0.28–0.35 to approximately 0.20 in
healthy individuals, and stays relatively constant during exercise [33–36]. If total dead space or VD/VT is
abnormally elevated, the total ventilation must increase to maintain V′A and PaCO2

. Following equation 4,
an elevated VD/VT (assuming a preserved PaCO2

) would therefore increase V′E/V′CO2
[37]. The potential

causes for increased dead space include: 1) a tachypnoeic breathing pattern (small tidal volume and rapid
breathing frequency) [38, 39], 2) increased ventilation–perfusion mismatching, specifically areas of
ventilation with no perfusion [40], 3) an increase in the mean ventilation-perfusion ratio (i.e. a rightward
shift in the overall relationship) secondary to alveolar hyperventilation and/or impaired cardiac output
[41, 42], and 4) intrapulmonary shunt, as PaCO2

would increase relative to PECO2
; see equation 3 [40, 43].

Analyzing the V′E/V′CO2
response to exercise

During cardiopulmonary exercise testing, the slope of the V′E–V′CO2
relationship can be determined using

linear regression. Typically, the V′E–V′CO2
slope is calculated from the start of exercise up to the

respiratory compensation point [6, 14, 16]. Minute ventilation rises disproportionally to V′CO2
at

near-maximal intensities, secondary to excessive metabolic acidosis and respiratory compensation [19], and
therefore when data points past the respiratory compensation point are included, the V′E–V′CO2

slope can
be inflated. In addition to the V′E–V′CO2

slope, the y-intercept (V′E when V′CO2
=0) of the regression

equation can also be reported [44, 45]. The y-intercept is usually small (<3 L·min−1) in healthy
participants [6], and an elevated y-intercept may be suggestive of ventilatory inefficiency. Because of the
typical hyperventilation at the start of exercise (see above), the V′E/V′CO2

ratio is elevated during light
exercise and progressively decreases to its lowest point (nadir V′E/V′CO2

) in tandem with VD/VT, just prior
to the respiratory compensation point [14, 16]. In most healthy individuals, the V′E/V′CO2

ratio at the nadir
and anaerobic threshold are often similar [6], and the nadir V′E/V′CO2

ratio may be of more clinical utility,
since the V′E/V′CO2

ratio at the anaerobic threshold may not always be identified in clinical populations [46].
Not surprisingly, in healthy individuals at maximal exercise, the V′E/V′CO2

ratio is higher than the nadir
V′E/V′CO2

ratio, because of hyperventilation secondary to excessive metabolic acidosis (figure 1).

SUN et al. [6] have created prediction equations for the nadir V′E/V′CO2
ratio and V′E–V′CO2

slope based on
participant age (in years), sex (nadir only) and height (in cm):

Nadir V 0
E=V

0
CO2

¼ 27:94þ 0:108 (age)þ 0:97 (if female)� 0:0376 (height) (5)

V 0
E–V

0
CO2

slope ¼ 34:38þ 0:082 (age)� 0:0723 (height) (6)

As demonstrated in these equations, V′E/V′CO2
(slope and nadir) increases progressively with age, and the

nadir V′E/V′CO2
is slightly higher in females than in males [6]. These equations can be helpful in

determining the normal response to exercise, and therefore were used in figure 1 to demonstrate the normal
nadir V′E/V′CO2

ratio and V′E–V′CO2
slope response to exercise. Within the manuscript text, these reference

equations were also used to evaluate the response in endurance-trained athletes, as well as in participants
with asthma or obesity when normative control groups were not presented for comparison.

Ventilatory efficiency in endurance trained athletes
Endurance trained athletes typically achieve a maximum rate of oxygen consumption (V′O2max) that is
50–100% greater than normally active young healthy individuals [47], and as such the requirement for CO2

clearance can become challenging [48]. To enable CO2 clearance at high absolute metabolic rates,
endurance athletes must achieve higher ventilation rates than healthy individuals of moderate fitness. In
endurance trained athletes during submaximal exercise, ventilation is sufficient to maintain PaCO2

and acid–
base balance. However, some endurance trained athletes may demonstrate a ventilatory limitation at
maximal exercise intensities, which could lead to inadequate compensatory hyperventilation and blunt the
V′E/V′CO2

response [49–53].

Ventilatory responses to submaximal exercise
As endurance-trained athletes have superior cardiovascular conditioning, they typically demonstrate lower
V′E at a given submaximal work rate when compared to untrained individuals due to less reliance on
anaerobic metabolism [54, 55]. However, these between-group (trained versus untrained) differences
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disappear when V′E is normalised to metabolic rate (figure 1). Multiple studies have demonstrated no
difference in V′E/V′CO2

in moderate-to-highly endurance trained male athletes (V′O2max 55–
70 mL·kg−1·min−1) during submaximal exercise, when compared to individuals with normal to low
aerobic fitness (V′O2max ∼40 mL·kg−1·min−1) [56–59], or predicted values [6]. To our knowledge, there are
no studies that compare V′E/V′CO2

slope, nadir and y-intercept values between trained and untrained
individuals. Therefore, we analysed unpublished data from our laboratory, and found that the V′E/V′CO2

slope, nadir and y-intercept were similar between 16 endurance trained (V′O2max 67±7 mL·kg−1·min−1) and
16 untrained (V′O2max 43±4 mL·kg−1·min−1) age- and sex-matched healthy individuals (table 1). Although
there are limited data directly comparing arterial blood gas derived parameters in trained versus untrained

Normal
Athlete

a)

140

160

120

80

100

60

40

20

0

V'
E 

L·
m

in
–1

V'CO2
 L·min–1 Work rate W Work rate W

10 2 43 5 6

40b)

36

32

28

24

0

V'
E 

/V
' C

O
2

500 100 200150 250 350300

Normal
Asthma + EIB

Normal
Morbid obesity

42
c)

39

36

33

30

P a
CO

2 
m

m
H

g

500 100 200150 250 350300

d)

140

160

120

80

100

60

40

20

0

V'
E 

L·
m

in
–1

10 2 43 5 6

40e)

36

32

28

24

0

V'
E 

/V
' C

O
2

500 100 200150 250 350300

42
f)

39

36

33

30

P a
CO

2 
m

m
H

g

500 100 200150 250 350300

g)

140

160

120

80

100

60

40

20

0

V'
E 

L·
m

in
–1

10 2 43 5 6

40h)

36

32

28

24

0

V'
E 

/V
' C

O
2 

500 100 200150 250 350300

42
i)

39

36

33

30

P a
CO

2 
m

m
H

g

500 100 200150 250 350300

FIGURE 1 Representative ventilatory and gas exchange responses to incremental exercise in a–c) an endurance trained athlete, d–f ) an asthmatic
with exercise induced bronchoconstriction and g–i) an individual with morbid obesity, when compared to a healthy individual of average aerobic
fitness. EIB: exercise-induced bronchoconstriction; V′E: minute ventilation; V′CO2

: carbon dioxide production; V′E/V′CO2
: ventilatory equivalent for

carbon dioxide production; PaCO2
: arterial partial pressure of carbon dioxide.
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individuals, previous studies in elite endurance trained athletes with arterial blood sampling have shown
that submaximal PaCO2

and VD/VT values are similar to values observed in moderately trained healthy
individuals [55, 60, 61], and are within normal ranges (table 1) [20, 33–36]. When combined, it is evident
that the ventilatory response to submaximal exercise and therefore ventilatory efficiency is not altered by
aerobic fitness in young, healthy individuals. Should an abnormal (lower or higher) V′E/V′CO2

response to
submaximal exercise develop, further clinical investigation would be warranted (see the “Pulmonary gas
exchange and ventilatory efficiency” section for explanation of potential mechanism(s)).

Ventilatory responses at maximal exercise
At high metabolic rates, elite endurance trained athletes may exhibit a blunted V′E/V′CO2

ratio at maximal
exercise intensities [51, 53, 62–65]. Although data are limited, arterial blood gas-derived VD/VT values at
maximal exercise are generally within normal ranges in endurance trained athletes [53, 64, 66], when
compared to normative data (table 1) [33–36]. Some endurance trained athletes demonstrate an inadequate
compensatory hyperventilatory response at maximal exercise, as PaCO2

fails to drop <35 mmHg (figure 1)
[50, 51, 53]. Importantly, the higher PaCO2

typically observed in some endurance trained athletes is not
necessarily the result of alveolar hypoventilation per se, but rather an inadequate compensatory
hyperventilatory response to excessive metabolic acidosis (table 1) [20, 53].

Several mechanisms for inadequate compensatory hyperventilation in endurance trained individuals are
possible. First, respiratory muscle fatigue: multiple studies have shown evidence of respiratory muscle
fatigue during heavy exercise in healthy individuals [67–69]. However, experimental data linking
respiratory muscle fatigue to inadequate hyperventilation are lacking. Second, altered chemoreflex function:
previous work has examined central (V′E response to hypercapnia) and peripheral (V′E response to
hypoxia) chemoreceptor function in athletes [53, 61, 63, 70–73]. However, findings are inconsistent, and it
is therefore difficult to conclude that a blunted chemoreflex is predictive of an inadequate hyperventilatory
response to exercise [20]. Third, mechanical ventilatory constraint: multiple studies have shown evidence
of EFL and dynamic mechanical ventilatory constraint at near maximal ventilatory rates in young, trained
healthy males and females [53, 62, 74]. Importantly, previous work has shown that when nitrogen is
replaced by helium in the inspired gas (i.e. a less dense gas promoting greater airflow), endurance trained
athletes achieve a higher V′E and V′E/V′CO2

, and lower PaCO2
at maximal exercise [64, 75, 76]. These

experimental studies support the hypothesis that mechanical ventilatory constraint is a primary cause of
inadequate hyperventilation in endurance trained athletes.

Because V′E/V′CO2
may be blunted in exceptional athletes at maximal exercise, it may be difficult to

distinguish physiological from pathological responses. However, elevated V′E/V′CO2
responses to either

submaximal or maximal exercise would be considered abnormal [6], and in such cases, potential
cardiovascular or pulmonary abnormalities should be investigated.

TABLE 1 General ventilatory and pulmonary gas exchange responses to submaximal and maximal exercise in
endurance trained athletes, asthmatics and obese when compared to normative values

Variable Elite endurance
trained athlete

Asthmatic Obese

Male Female BMI 30–40 kg·m−2 BMI>40 kg·m−2

Submaximal exercise
V′E/V′CO2

nadir ↔ ↔ N/A N/A N/A
V′E/V′CO2

y-intercept ↔ ↔ N/A N/A N/A
V′E-to-V′CO2

slope ↔ ↔ N/A ↔ ↔
VD/VT ↔ ↔ ↔ ↔ ↔
PaCO2

↔ ↔ ↔ ↔ ↔
Maximal exercise
V′E/V′CO2

peak ↓ ↓ ↔ or ↓ ↔ ↓
VD/VT ↔ ↔ ↔ ↔ ↔
PaCO2

↑ ↑ ↔ or ↑ ↔ ↑

V′E/V′CO2
: minute ventilation relative to carbon dioxide production; VD/VT: total physiologic dead space as a

proportion of tidal volume; PaCO2
: arterial partial pressure of CO2; N/A: not available. The arrows represent the

direction of change compared to age and height matched normative values [6, 20, 33–36]. ↔: no difference;
↓: decrease; ↑: increase.
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In summary, the blunted hyperventilatory response to maximal exercise often observed in highly trained
endurance athletes is most likely secondary to mechanical ventilatory constraint, although the potential
contributions of respiratory muscle fatigue, and central and peripheral chemoreflexes cannot be excluded.

Sex differences in ventilatory efficiency in endurance trained athletes
It has been well documented that young healthy females have an elevated ventilatory response to
submaximal exercise (V′E/V′CO2

nadir, slope and y-intercept) when compared to males [6, 77–80],
secondary to increased dead space and alveolar hyperventilation [80–82]. Previous studies have shown that
the increased dead space (VD/VT) in females is due to a more rapid and shallow breathing pattern. This
breathing response adopted by females has been attributed to a compensatory strategy to minimise the total
work of breathing because of smaller lungs [74, 82–84]. It is unclear whether ventilatory responses to
submaximal exercise are different in endurance trained female athletes as compared to non
endurance-trained females. Elite endurance trained male and female athletes have similar V′E/V′CO2

ratios at
maximal exercise [49, 62]. Like males, some endurance trained female athletes experience EFL and
mechanical ventilatory constraint at heavy exercise intensities, which can result in an inadequate
hyperventilatory response (i.e. PaCO2

>35 mmHg) and a blunted V′E/V′CO2
ratio at maximal exercise

[49, 74, 82]. Similar to males, helium inhalation significantly increases the hyperventilatory response
(higher V′E and lower PaCO2

) to maximal exercise in females [74]. In summary, these findings suggest that
females generally have an elevated V′E/V′CO2

response to submaximal exercise when compared to males,
although it is unclear if differences exist between trained and untrained females.

Ventilatory efficiency in patients with asthma
Asthma is a heterogenous disease characterised by symptoms such as wheezing, coughing, chest tightness
and shortness of breath [85], with patients presenting with various degrees of bronchoconstriction, EFL,
dynamic hyperinflation and respiratory muscle weakness [86]; all of which can contribute to heightened
dyspnoea and exercise intolerance. Some studies have examined people with controlled to partly controlled
asthma, who may or may not demonstrate exercise-induced bronchoconstriction (EIB; defined as a ⩾10%
fall in forced expiratory volume in 1 s (FEV1) from baseline following exercise [87]). International
guidelines define well controlled asthma as: 1) no or minimal daytime asthma symptoms, 2) no night
waking due to asthma symptoms, 3) no activity limitation (including exercise), and 4) no or minimal need
for rescue medications [85]. It is common for patients with asthma to experience EIB, with EIB being
especially prevalent in uncontrolled asthma [85]. Due to the heterogeneity of asthma, diagnosis can be
challenging, especially when symptomatology and objective measures of lung function do not align
[85, 88, 89]. This review will focus on studies evaluating patients with clinical symptoms and
physiological confirmation of asthma with and without EIB [85].

Ventilatory responses to submaximal exercise
During submaximal exercise, patients with asthma breathe at a higher operating lung volume and adopt a
rapid and shallow breathing pattern [90]. Despite the tachypnoeic breathing pattern, it appears that patients
with asthma have a similar V′E/V′CO2

compared to healthy controls during submaximal exercise (figure 1)
[90–95]. Further, V′E/V′CO2

in asthmatics is unaffected following an inhaled short-acting β2-agonist [90].
To our knowledge, there are no studies that report y-intercept, slope or nadir V′E/V′CO2

in asthmatics.
Importantly, arterial blood gas derived PaCO2

and VD/VT during submaximal exercise in asthmatics are
similar to healthy controls and normative values (table 1) [20, 33–36, 96–98]. When combined, it is
evident that patients with controlled or partly controlled asthma (with and without EIB) have a normal
ventilatory response during submaximal exercise. Therefore, deviation (reduction or increase) in
submaximal V′E/V′CO2

responses from normal predicted values [6] would warrant further clinical
investigation, and may be indicative of comorbid cardiovascular and/or pulmonary vascular abnormalities.

Ventilatory responses at maximal exercise
Several studies report V′E/V′CO2

at peak exercise in asthmatics. Many studies have reported a normal V′E/V′CO2

response (table 1) [90, 92, 93], while others demonstrated a blunted V′E/V′CO2
at peak exercise in

asthmatics [98, 99]. Examining the patient characteristics appears to provide information as to why some
asthmatics show a blunted V′E/V′CO2

response to maximal exercise, while others do not. In looking at the
studies showing similar V′E/V′CO2

responses to controls, most of the asthmatics in these studies did not
demonstrate EIB [90, 92]. In contrast, in the studies demonstrating a blunted V′E/V′CO2

response at peak
exercise, most of the patients demonstrated EIB [98], or were categorised by the presence of EIB [99].
Indeed, HAVERKAMP et al. [99] compared asthmatics with and without EIB, and showed an appropriate
hyperventilatory response (i.e. PaCO2

<35 mmHg at peak) to high intensity constant load exercise in
asthmatics without EIB, and an inappropriate hyperventilatory response to exercise in patients with EIB
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(i.e. PaCO2
>35 mmHg at peak). Combined, these findings suggest that a blunted V′E/V′CO2

response to
exercise in asthma may be observed in those who demonstrate EIB (table 1 and figure 1).

A number of mechanisms for inadequate hyperventilation in asthmatics are possible including; respiratory
muscle fatigue [86, 100, 101], decreased central and/or peripheral chemosensitivity [102–104], and EFL
and respiratory mechanical constraint [98, 99, 105]. However, it is likely that respiratory mechanical
constraint is the primary cause of inadequate hyperventilation, as previous work has nicely demonstrated
that when airflow obstruction is reduced with inhaled corticosteroid therapy, V′E/V′CO2

at maximal exercise
is increased, PaCO2

reduced, and exercise tolerance improved in asthmatics [106]. Therefore, V′E/V′CO2
may

be useful in monitoring therapy effectiveness in asthmatics. However, there is currently no indication on
how V′E/V′CO2

pre-treatment may predict post-treatment outcomes.

Importantly, asthma has been shown to be associated with increased cardiovascular morbidity and
mortality [107]. Therefore, careful interpretation of the V′E/V′CO2

response to exercise is encouraged in
patients with asthma. While an elevated V′E/V′CO2

response to submaximal and/or maximal exercise could
be due to a dysfunctional breathing pattern (e.g. hyperventilation syndrome [95]), it may be secondary to
comorbid cardiovascular and/or pulmonary vascular abnormalities, and additional follow-up should be
considered when a high V′E/V′CO2

response is observed in asthma.

When combined, it is evident that V′E/V′CO2
is similar during submaximal exercise in asthmatics as

compared to non-asthmatics. However, V′E/V′CO2
at maximal exercise can be blunted in asthmatics, which

is likely explained by mechanical ventilatory constraint secondary to EIB.

Ventilatory efficiency in patients with obesity

Based on BMI, individuals with obesity are often classified as mild/class I (30–34.99 kg·m−2), moderate/
class II (35–39.99 kg·m−2) and morbid/class III (>40 kg·m−2) obesity. Exercise limitation is common in
patients with obesity and the underlying mechanisms are complex and multifactorial, however, it is widely
believed that respiratory abnormalities and elevated dyspnoea are important contributors.

Ventilatory responses to submaximal exercise
It is well established that ventilation is higher at rest and at any given work rate during incremental
exercise in adults with obesity (even mild obesity) when compared to non-obese [108–112]. The increased
ventilation in obesity reflects the higher metabolic cost (i.e. V′O2

and V′CO2
) of external work, which is

primarily due to the increased energy requirement of lifting heavier limbs during weight-supported exercise
(i.e. cycling) and, to a greater extent, weight-bearing exercise (i.e. walking) [108, 109, 111, 113, 114].
Additionally, the increased work and oxygen cost of breathing have been identified as potential
contributors to the increased metabolic demand at rest and during exercise in obesity [109, 115–117].
Although sub-maximal exercise ventilation is consistently elevated at a given work rate in females and
males with obesity compared to non-obese, the between-group differences in ventilation disappear when
normalised to metabolic rate (i.e. V′E/V′CO2

versus work rate) (figure 1) [108, 118, 119].

Due to the extra mass loading on the thorax (direct result of extra adipose tissue), patients with obesity
have reduced chest wall compliance and breathe at lower lung volumes [108, 120–123]. Further,
individuals with obesity generally adopt a rapid and shallow breathing pattern to minimise the work of
breathing, especially at higher ventilatory rates [108]. Despite the rapid and shallow breathing pattern, both
arterial PCO2

(or PETCO2
) and VD/VT are generally within normal ranges during submaximal exercise [23,

108, 113, 119, 124]. Further, multiple studies have reported a normal V′E–V′CO2
slope, even in morbid

obesity, when compared to either non-obese control groups or normative values (table 1 and figure 1) [6,
108, 125–127]. However, one small study [128] in morbidly obese females (n=14, BMI: 49±7 kg·m−2)
demonstrated a blunted V′E–V′CO2

slope, compared to non-obese controls, which suggests individuals
nearing the super-obesity category (BMI>50 kg·m−2) may be prone to mechanical ventilatory constraints at
submaximal exercise intensities. In general, deviation in submaximal V′E/V′CO2

responses from normal
predicted values [6] may warrant further clinical investigation in patients with obesity. Specifically, should
a patient show a higher than predicted V′E/V′CO2

response to submaximal exercise, cardiovascular and/or
pulmonary abnormalities should be considered.

Ventilatory responses at maximal exercise
Although the V′E/V′CO2

response during submaximal exercise is relatively preserved in individuals with
obesity, the ventilatory response during heavy to maximal exercise is more complex, and greater variability
is often observed between different classifications of obesity. To our knowledge, there is no previous work
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using arterial blood gas derived PaCO2
during exercise in mild-moderate obesity. A few small studies

reporting PETCO2
data would suggest that respiratory mechanical abnormalities do not impair people with

mild-moderate obesity, as they generally show a normal hyperventilatory response at maximal exercise
[108, 112].

Interestingly, in patients with morbid obesity, a divergent ventilatory response at maximal exercise has
been identified (table 1 and figure 1). Using arterial blood gas sampling, multiple studies have shown
inadequate compensatory hyperventilation (i.e. PaCO2

between 35–38 mmHg) or an absence of
compensatory hyperventilation (PaCO2

>38 mmHg) at maximal exercise in males and females with morbid
obesity [23, 111, 128–130]. The underlying mechanism(s) for the inadequate and/or absent
hyperventilatory response in patients with morbid obesity is not fully understood. However, it is suggested
the large amount of fat mass surrounding the chest-wall and diaphragm in patients with morbid obesity
results in severe EFL and mechanical ventilatory constraint at high ventilatory rates [108]. The net effect
is: 1) an inability to increase alveolar ventilation sufficiently to compensate for the increased metabolic
acidosis at heavy exercise and, 2) premature exercise termination. This conclusion is supported by multiple
studies demonstrating an increase in peak V′E/V′CO2

and reduced PaCO2
and/or PETCO2

following bariatric
surgery in patients with morbid obesity [124, 130]. As such, the change in V′E/V′CO2

observed at peak
exercise may be a useful clinical tool when evaluating responses following interventions such as bariatric
surgery.

Due to the increasing prevalence of obesity, and the multi-comorbid nature of the disease [131], the
authors stress the importance of careful interpretation of ventilatory responses to submaximal exercise in
these patients. Furthermore, because other known drivers of ventilation (e.g. elevated physiological dead
space, arterial O2 desaturation, altered baseline PaCO2

, earlier metabolic acidosis) do not appear to be
altered in patients with obesity [108, 111, 118, 119, 129, 132, 133], the presence of an elevated V′E/V′CO2

response to submaximal exercise is unlikely to be secondary to obesity itself, and may suggest comorbid
cardiovascular and/or pulmonary abnormalities.

When combined, the obesity-related research indicates that V′E/V′CO2
during submaximal exercise is

normal across all classifications of obesity, while V′E/V′CO2
at maximal exercise appears blunted in patients

with morbid obesity secondary to mechanical ventilatory constraint.

Prognostic utility of V′E/V′CO2

Although there is evidence that an elevated V′E/V′CO2
response to exercise is prognostic of mortality in

conditions such as chronic heart failure, chronic obstructive pulmonary disease, and pulmonary
hypertension [26, 134, 135], it is currently unknown if V′E/V′CO2

can be used as a prognostic tool in
athletes, asthma or obesity. Further, there is little research demonstrating the prognostic value of a low or
blunted V′E/V′CO2

response to exercise. However, the V′E/V′CO2
response to exercise can be a valuable tool

and may help identify abnormal ventilatory responses to exercise or signal the presence of underlying
cardiovascular and/or pulmonary disease.

Conclusion
V′E/V′CO2

can provide important information to evaluate the ventilatory response to exercise and help to
determine underlying mechanism(s) of exercise intolerance. The purpose of this review article was to
describe the ventilatory responses to exercise in healthy trained endurance athletes, patients with asthma,
and patients with obesity. In summary, moderately trained athletes, asthmatics, and individuals with
obesity have normal V′E/V′CO2

responses to submaximal exercise. Despite representing distinct health and
disease states, highly endurance trained athletes, asthmatics with EIB, and individuals with morbid obesity
can display inadequate hyperventilatory responses (i.e. blunted V′E/V′CO2

) at maximal exercise secondary to
mechanical constraints on ventilation.
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