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Abstract
Exercise intolerance is a cardinal symptom of pulmonary arterial hypertension (PAH) and strongly impacts
patients’ quality of life (QoL). Although central cardiopulmonary impairments limit peak oxygen
consumption (V′O2peak) in patients with PAH, several peripheral abnormalities have been described over the
recent decade as key determinants in exercise intolerance, including impaired skeletal muscle (SKM)
morphology, convective O2 transport, capillarity and metabolism indicating that peripheral abnormalities
play a greater role in limiting exercise capacity than previously thought. More recently, cerebrovascular
alterations potentially contributing to exercise intolerance in patients with PAH were also documented.
Currently, only cardiopulmonary rehabilitation has been shown to efficiently improve the peripheral
components of exercise intolerance in patients with PAH. However, more extensive studies are needed to
identify targeted interventions that would ultimately improve patients’ exercise tolerance and QoL. The
present review offers a broad and comprehensive analysis of the present literature about the complex
mechanisms and their interactions limiting exercise in patients and suggests several gaps in knowledge that
need to be addressed in the future for a better understanding of exercise intolerance in patients with PAH.

Introduction
Pulmonary hypertension (PH) is a complex clinical entity currently classified into five groups according to
clinical presentation, pathological findings, pulmonary vascular haemodynamics and management
characteristics [1]. The haemodynamic definition of pulmonary arterial hypertension (PAH; Group 1) was
recently updated at the 6th World Symposium on Pulmonary Hypertension (WSPH), being now
characterised by the concomitant presence of mean pulmonary artery pressure (mPAP) >20 mmHg,
a pulmonary artery wedge pressure (PAWP) ⩽15 mmHg and a pulmonary vascular resistance (PVR)
⩾3 Wood units (WU) at rest [2]. Fatigue, exertional dyspnoea and a progressive reduction in daily life
activities are its prime symptoms [3]. Exercise intolerance is therefore of paramount importance in limiting
quality of life (QoL) in patients (figure 1). Contrary to initial beliefs, reduced exercise capacity is not
solely triggered by central cardiopulmonary impairments. Several research reports published in the last
decade suggest that skeletal muscle (SKM) and cerebrovascular impairments contribute in limiting exercise
capacity [12–15].

This review aims to discuss measurement of exercise intolerance in patients with PAH and salient
mechanisms responsible for the reduced exercise capacity in patients with PAH, which include
cardiorespiratory alterations, but also intrinsic dysfunction of peripheral and respiratory SKM morphology
and function. The role of exercise training as a treatment option, as well as several gaps in the knowledge
that need to be addressed to better understand exercise intolerance in those patients, is also discussed.
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Measurement of exercise intolerance in patients with PAH
Exercise testing in patients with PAH
The most commonly used test to comprehensively assess subjects’ exercise tolerance remains the
cardiopulmonary exercise test (CPET) that quantifies peak oxygen consumption (V′O2peak), carbon dioxide
production (V′CO2

) and minute ventilation (V′E) using inspiratory and expiratory gas analysis at both rest
and exercise [16]. In patients with PAH, compared with control groups, patients are characterised by lower
V′O2peak; higher V′E/V′CO2

rate and slope; lower arterial CO2 tension and end-tidal CO2 tension (PaCO2
and

PETCO2
); lower O2 pulse (oxygen uptake over heart rate ratio (V′O2

/HR)); and lower pulse oxygen saturation
(SpO2

) [17–19]. Moreover, CPET has the ability to detect exercise right-to-left shunt through a patent
foramen oval when patients present a sharp and sudden increase in V′E/V′CO2

rate accompanied by an
equally sharp and sudden decline in PETCO2

and SpO2
[20]. CEPT might have a utility in patients where PH

remains a possibility (systolic PAP ⩽36 mmHg on transthoracic echocardiography) instead of a likely
diagnosis [21]. However, CPET is not sensitive enough to differentiate right ventricle (RV) from left
ventricle (LV) dysfunction as only cardiac echography or invasive right heart catheterisation is able to
make the differential diagnosis between these conditions. Consistently, invasive CPET with concomitant
right heart catheterisation has recently gained in popularity to delineate the specific cardiorespiratory
components responsible for exercise intolerance in more complex clinical settings [22, 23]. Conversely, the
6-min walk test (6MWT), which is inexpensive, safe, easy to perform, and familiar to patients and hospital
staff [1], remains the most commonly applied test to assess exercise tolerance in patients with PAH on a
clinical basis. Although being considered a submaximal test in healthy subjects, this test induces similar
V′O2peak

responses as those observed during incremental CPET [24]. Interestingly, the 6MWT draws a
parallel with daily life activity. Patients who walk an average of 5000 steps·day−1 or less engage in fewer
moderate-to-intense daily life physical activities (>3.0 METs (metabolic equivalent of task)) compared
with their healthy counterparts [25, 26], correlating with the 6MWT results [25, 26]. Therefore, it is easy
to understand how a low V′O2peak may dramatically limit patient capacity to accomplish several domestic
activities (figure 1).

Exercise intolerance, disease severity and prognosis
V′O2peak, PETCO2

, V′E/V′CO2
slope, as well as changes in O2 pulse, peak systolic blood pressure and HR

during CPET were found to be related to survival in patients with PAH [27]. Nonetheless, only V′O2peak

(⩽10.4 mL·kg−1·min−1) and systolic peak blood pressure (⩽120 mmHg) were independent predictors of
mortality. A low 6MWT distance has also been associated with a lower survival [28]. Consistently,
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FIGURE 1 Exercise intolerance has a major impact on daily life activities. Patients rapidly reach anaerobic threshold in their daily activities, making
sustained efforts difficult. Average peak oxygen uptake (V′O2peak) used for comparison was 16.1 (1.4) mL O2.kg

−1·min−1 based on six studies [4–9].
V′O2

: standing quietly in a queue: 4.6 mL O2·kg
−1·min−1; standing, fidgeting: 6.3 mL O2·kg

−1·min−1; doing the laundry, folding clothes: 9.8 mL
O2·kg

−1·min−1; cooking, laying the table: 11.6 mL O2·kg
−1·min−1; walking outside, moderate effort: 12.3 mL O2·kg

−1·min−1; mowing the lawn, with a
power mower: 15.6 mL O2·kg

−1·min−1. Specific physical activity intensity was determined using the 2011 Compendium of Physical Activities [10].
NYHA: New York Heart Association; PAH: pulmonary arterial hypertension. Data from [11].
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exercise capacity is now a key component of the REVEAL 2.0 [29] and European Society of Cardiology
(ESC)/European Respiratory Society (ERS) [30] risk stratification tools, and current guidelines recommend
measurement of exercise tolerance for decision-making [1, 14]. As such, patients with V′O2peak

>15 mL·kg−1·min−1 (>65% of predicted value), V′E/V′CO2
slope <36 and a 6MWT >440 m have the lowest

risk of mortality at 1 year [31]. While both CPET and 6MWT may be used to risk stratifying patients using
the ESC/ERS risk score, CPET appears to have limited added discriminative value in prognosticating
patients already evaluated by a 6MWT [32]. However, a celling effect has been described in patients with
higher walking distance, in particular in those walking >450 m [33, 34]. Therefore, using CPET instead of
the 6MWT or using both tests in more fit patients may be more sensitive for risk stratification compared
with 6MWT only. While patients’ age, sex, height and weight influence exercise capacity independently of
PAH severity, adjusting 6MWT results according to patients’ characteristics has no impact on the exercise
test’s discriminative properties [35]. Interestingly, geographical location should be considered in risk
stratification [36]. In a Brazilian cohort of 104 patients, individuals with a lower 6MWT distance had
worse survival agreeing with international guidelines, but with a higher cut-off value for worse survival
(250 m instead of 165 m) potentially attributed to older age and sociocultural conditions [37].

Changes in exercise capacity as a marker of treatment response
Beside its discriminative property for disease severity and patients’ prognosis, the 6MWT has been
successfully used as a primary end-point in most randomised controlled trials in patients with PAH [38],
likely because its responsiveness to clinical changes is enhanced in patients with PAH owing to its
repeatability and simplicity of administration in clinical practice [4]. The minimal important difference in
the 6MWT in previously untreated PAH patients is approximately 33 m [39]. However, improvements in
6MWT were generally ∼10% and ∼5% from baseline in monotherapy and combination therapy trials
respectively [37, 40], and mean changes in 6MWT only modestly predicted the occurrence of morbidity/
mortality events [37, 40, 41]. To address some of the limitations of the 6MWT as a primary outcome
measure in clinical trials, researchers progressively included composite end-points reflecting time to
clinical worsening [42]. It is noteworthy, however, that PAH worsening, which accounted for 55–75% of
clinical worsening defining events in most trials, has been commonly defined by signs of PAH progression
together with a 10–20% decrease in 6MWT. Conversely, CPET suffers from a lack of responsiveness
following therapeutic intervention in patients with PAH, especially in the setting of a multicentre
randomised controlled trial [43–45], in keeping with previous studies documenting that peak exercise
capacity is not typically responsive to intervention in COPD [46]. This is contrasting to individual changes
in 6MWT following the addition of sildenafil to PAH monotherapy [38], individual CPET values [47] or a
heart rate recovery ⩾16 bpm after the 6MWT as predictors of subsequent clinical worsening [48].

Mechanisms of exercise intolerance in patients with PAH
Physical exercise requires the interaction of several physiological mechanisms. Both respiratory and
cardiovascular systems are coupled to meet the metabolic demand of the contracting SKM. In patients with
PAH, several respiratory and cardiovascular anomalies dampen the efficacy of O2 transport to active
muscles.

Impaired ventilation and blood gas during exercise
Impaired ventilation in patients with PAH has multiple complex origins. PAH is characterised by
heightened ventilatory response to exercise (V′E/V′CO2

slope) partially attributed to pulmonary vascular
remodelling leading to increased physiological dead space (VD/VT) ratio and high ventilation-perfusion (V′/
Q′) heterogeneity (figure 2) [17, 49, 50]. An interesting hypothesis about the negative V′E axis-intercept
from the V′E/V′CO2

slope has been raised by AGOSTONI et al. [51] and further reviewed by her team [52].
When passing the respiratory compensation point, the V′E/V′CO2

slope becomes steeper and the V′E
axis-intercept becomes negative, potentially showing a sheer increase in dead space ventilation toward the
end of exercise [52]. However, the prognostic value of V′E/V′CO2

slope analysis beyond the respiratory
compensation point remains to be investigated. While patients are frequently hypoxemic at rest, which even
worsens during exercise [17, 53], they also have hypocapnia even in the absence of hypoxemia [52, 54].
Therefore, ventilatory inefficiency is not solely explained by increased VD/VT. Using the modified
rebreathing protocol, increased ventilation at rest and exercise ventilatory inefficiency was recently shown
as the result of increased central chemoreflex activity [5]. Consistently, FARINA et al. [55] used hypoxia and
hypercapnia tests to further demonstrate that hyperventilation results from a combination of both increased
dead space and central chemoreflex activity (figure 2). Taken together, ventilatory inefficiency and
hypocapnia appear to be related, at least in part, to an increased central chemoreflex sensitivity that may
contribute to dyspnoea in patients.
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Intriguingly, patients with PAH exhibit a more dyspnoeic pattern in relation to higher V′E/V′CO2
slope and

lower O2 pulse compared with patients with left heart failure (HF) at comparable exercise state [56].
Conversely, patients with HF are much more likely to present exercise oscillatory ventilation (EOV) [57,
58], a respiratory pattern expected to result from delay in information transfer between pulmonary gas
exchanging capillaries and the peripheral and central chemoreceptors secondary to a fall in cardiac index
[59], increased peripheral and central chemoreflex sensitivity [60] and a reduced baroreflex damping
capacity [61]. Indeed, VICENZI et al. [62] found no EOV in a sample of 109 patients with PAH, whereas it
was identified in 22% of the 107 patients with HF reaching 40% in patients with isolated post-capillary PH.
The differential mechanisms responsible for EOV in HF compared with PAH remains, however, elusive.

Mechanical and respiratory muscle impairments
A significant reduction in maximal inspiratory and expiratory pressure were documented in patients with
PAH [63–65] and modestly correlated with exercise performance (figure 2) [63]. Human biopsy samples
of diaphragm muscle fibres revealed atrophy, hypocontractility and decreased capillary density [66, 67].
Furthermore, reduced nonvolitional and isolated fibre respiratory strength were also documented in rodent
PH models [68]. These abnormalities may contribute to respiratory mechanical disadvantage that leads the
inability of the VT to properly expand at the beginning of exercise to increase ventilation [69, 70]. More
recently, dynamic hyperinflation, an increase in end-expiratory lung volume traditionally observed in
patients with COPD, was also described in 60% of patients with PAH in the absence of obvious
obstructive lung abnormalities or impaired inspiratory flow-generating reserve of the inspiratory muscles.
Although its cause remained unknown, hyperinflation was associated with sensory consequences,
including increased breathing effort and unsatisfactory inspiration [70]. BOUCLY et al. [69] further
demonstrated that during exercise in patients with PAH, an inflection in tidal volume (V′T) response when
inspiratory reserve becomes critically reduced marks a transition from increased breathing effort to
unsatisfied inspiration, a far more unpleasant sensation associated with anxiety.

Impaired cardiac adaptation and reserve during exercise
In patients with PAH, RV function prevails as an important prognostic factor. Using cardiac magnetic
resonance imaging, VAN WOLFEREN et al. [71] determined that elevated RV end-diastolic volume index,
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FIGURE 2 Impaired cardiac adaptation and ventilatory response to exercise in patients with pulmonary arterial hypertension (PAH). RV: right
ventricle; LV: left ventricle; VD/VT: dead space/tidal volume ratio; V′/Q′: ventilation-perfusion ratio (normal ratio average 0.8).
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low end-diastolic LV volume index (a direct consequence of LV underfilling) and low stroke volume (SV)
index were strong independent predictors of mortality in patients with PAH. Compared with the LV, the
RV demonstrates a heightened sensitivity to afterload changes [72], which markedly increases upon
exercise in patients with PAH [73]. Moreover, according to the Frank-Sterling mechanism, when RV
pre-load extends the capacity of shortening of the longitudinal circumferential oblique muscle fibres it
results in insufficient myocardium contraction and low SV [74]. As such, increased pre-load forces the RV
to adapt, causing hypertrophy in an attempt to maintain normal SV, a process that ultimately leads to
maladaptive remodelling, followed by dilation and failure [75, 76]. Over time, RV maladaptation is
characterised by progressive O2 supply–demand imbalance resulting from coronary arterial remodelling
[77] and loss of capillaries [78], myocardial fibrosis [79] and metabolic remodelling from
mitochondrial-based fatty acid oxidation to O2-sparing anaerobic glycolysis (figure 2) [80]. As both
ventricles work in series and because of pericardial restraints [81, 82], an altered RV will also impact the
LV with an important impact on its geometry, structure, and function [83] that contribute in decreasing
global cardiac output (CO), especially during exercise [79, 84].

Consistently, several studies demonstrated that changes in cardiac and pulmonary haemodynamics during
exertion accurately predict improvements in exercise capacity and prognosis compared with changes in
resting haemodynamics [73, 85, 86], indicating that the incapacity of the RV to increase CO is an
important determinant of exercise intolerance [87, 88]. Indeed, in addition to increased afterload, impaired
chronotropic response to exercise [89], ventricular–pulmonary arterial decoupling amplified with exercise
[90], RV desynchrony [91], absence of RV end-systolic volume decrease with exercise [87] and depressed
contractile reserve [87, 92] were demonstrated to result in this blunted increase in CO during exercise
(figure 2) [56, 93]. In addition, in patients with a preserved systolic function adaptation, RV desynchrony
is associated with a lower V′O2peak [91]. Although its specific contribution to exercise intolerance in
patients with PAH remains also understudied, significant tricuspid regurgitation may also limit increases in
CO to meet exercise metabolic demands consistent with impaired LV pre-load [94].

Impaired cerebrovascular function and oxygenation
The regulation of cerebral blood flow (CBF) remains complex. Known determinants include systemic
blood pressure, CO, arterial blood gas content, autonomic nervous system and neurovascular coupling for
meeting local cerebral metabolic demand [95]. Sustained intense exercise leads to a mild cerebral
deoxygenation and metabolic perturbation in healthy individuals [96], similar to that seen in hypoxic
environment such as high altitude [97]. In heathy individuals, exercise in experimental hypoxic condition
leads to central fatigue that correlates with decreased cerebral oxygenation [96], suggesting that exercise
tolerance could be affected by impaired cerebral oxygenation. Recent evidence suggests that lower CBF
and oxygenation may be limiting exercise capacity in patients with HF [98–100]. Lower CO and higher
ventilatory response to exercise are also hypothesised to be involved in lower cerebral perfusion and
oxygenation [98, 101]. In addition, impaired CBF regulatory mechanisms are impaired as well in HF and
as a possible consequence, blood pressure modulations is buffered less efficiently and may fail to meet
increased metabolic demands with exercise [102–104]. Recently, we [5] and others [105, 106]
demonstrated that patients with PAH also have lower CBF and impaired regulatory mechanisms, altering
the buffering of blood pressure changes and potentially explaining why patients with PAH are more prone
to syncope after Valsalva-induced decreases in blood pressure [107]. At exercise, cerebral oxygenation was
also markedly impaired during incremental [5, 106] and endurance exercise [108], tightly correlating with
the exercise capacity of patients with PAH [5]. Interestingly, oxygen supplementation significantly
enhanced cerebral oxygenation, maximal workload and endurance time during exercise, attesting of its
probable relevance for exercise tolerance in patients with PAH [109].

Peripheral skeletal muscle limitation to exercise in patients with PAH
Morphological abnormalities
Several morphological and functional impairments have been observed in peripheral SKM (figure 3),
including reduction in both volitional [6, 7, 63, 110] and nonvolitional strength [6, 7]; and endurance [66].
The force-generating capacity of muscle fibres are typically proportional to their cross-sectional area
(CSA). MANDERS et al. [111] reported that the maximal force of isolated permeabilised fast-twitch
quadriceps fibres, normalised to fibre CSA, was significantly lower in patients with PAH. This diminished
maximal force was related to a decreased active stiffness in fast-twitch muscle fibres, suggesting a
reduction in the number of available active actin-myosin cross-bridge from a loss of the major contractile
protein myosin. In addition, numerous signalling abnormalities associated with SKM dysfunction have
been described in recent years. These include suppression of signalling pathways responsible for SKM
hypertrophic response, elevation of signalling pathways responsible for atrophic response and engagement
of ubiquitin-proteasome-mediated muscle proteolysis signalling [112–115]. A recent plasma metabolomics
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profile also found that patients with PAH are characterised by increased levels of circulating modified fatty
oxidation residues [116]. These metabolites could act as pro-inflammatory modulators, ultimately
promoting muscle catabolism. Interestingly, pharmacological blockade of excessive fatty oxidation was
shown to protect human myotubes and protect peripheral muscle against atrophy in cancer cachexia models
in vivo [117]. Pre-clinical data also indicates a potential role for nutrition, as supplementing mice with an
anti-inflammatory diet resulted in decreased RV hypertrophy, fibrosis and inflammation while preventing
SKM atrophy [118]. It is noteworthy, however, that despite molecular abnormalities promoting atrophy
being documented in patients with PAH, most studies in human PAH documented no changes in whole
muscle [6, 7, 63, 66] or fast-twitch fibre CSA [111].

SKM typology and oxidative capacity are also affected in patients with PAH (figure 3). A significant shift
in muscle fibre types from oxidative type I toward more glycolytic type IIx has been documented in most
studies involving human PH [6, 112, 119] and experimental PH [114] although this was not uniformly
observed [7, 66]. Consistently, a significant reduction in SKM oxidative capacity [6, 119, 120] were
repeatedly documented in muscle samples from both humans and rodents with PAH.

Skeletal muscle microcirculation abnormalities
Under normal physiologic circumstances, skeletal and respiratory muscles account for around 40% of the
body mass and are responsible for up to 30% of resting O2 consumption [121]. During exercise, the
proportion of the CO diverted to respiratory [122–124] and skeletal [125] muscles increase markedly, a
situation where the O2 cost of breathing approaches 10–15% of the total V′O2Max in healthy subjects [126].
TOLLE et al. [127] first documented profound impairments in systemic O2 extraction at the end of maximal
exercise in patients with PAH compared with patients with preserved and reduced ejection fraction HF
(HFpEF and HFrEF respectively). These results were substantiated by evidence from our group where
patients with PAH exhibited a decrease in muscle O2 saturation and increased deoxyHb-Mb during both
normoxic and hyperoxic submaximal exercise at the same workload despite near-normal systemic oxygen
delivery [7] and compatible with reduced total systemic O2 extraction and O2 utilisation from exercising
muscles [128]. These impairments were related to a lower capillary density rather than impaired systemic
blood flow and oxygen delivery, and correlated with V′O2peak, suggesting that impaired convective and
diffusive muscle O2 supply contributes to exercise intolerance [7], but also contribute to reduced daily
physical activity (figures 3 and 4) [129]. SKM capillary rarefaction was shown to be mediated, at least in
part, by a downregulation of the microRNA (miR)-126 resulting in the downregulation of the downstream
effectors of the vascular endothelial growth factor pathway (figure 3) [66]. This phenomenon was unique
to patients with PAH and not found in equally exercise intolerant patients with COPD [66]. Interestingly,
the restoration of miR-126 levels in monocrotaline-induced PH rats resulted in improved SKM perfusion
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FIGURE 3 Skeletal muscle (SKM) determinants of exercise intolerance in patients with pulmonary arterial hypertension (PAH).
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and treadmill distance while artificial diminution of miR-126 levels in the SKM of healthy rats has the
opposite effect [66], demonstrating a relatively maintained SKM plasticity in patients with PAH.

Diminished O2 transport might also result from endothelial dysfunction that characterises PAH and
markedly influences peripheral endothelium-dependent flow-mediated vascular tone [46, 131, 132]. For
example, slow-twitch muscle fibre vessels are more prone to endothelin-1 (ET-1)-induced vasoconstriction
than fast-twitch muscle fibre vessels, influencing endogenous vascular tone in the forearm and leg of
healthy subjects [132–135]. Similarly, detrained slow-twitch fibre vessels have less eNOS expression than
fast-twitch fibres [136, 137], and the combined inhibition of NO and prostaglandins markedly reduces
SKM blood flow [138, 139]. Consistently, endothelin receptor antagonists were recently shown to improve
angiogenesis of Sugen/hypoxia-induced PH [78, 140]. Interestingly, reduced capillary density was partly
restored by ET-1 receptor antagonist macitentan within the lungs, RV and muscles of treated rats [140],
raising questions on whether the pulmonary and systemic vascular defects could be connected by similar
molecular mechanisms.

Skeletal muscle mitochondrial function abnormalities
The reduction in SKM oxidative capacity previously described suggests significant mitochondrial
impairment in patients with PAH [112]. This hypothesis was further supported by the whole proteomic
profile of human PAH SKMs realised by our group, showing significant downregulation of key proteins
involved in the electron transport chain complex I, III, ATP synthase complex, citric acid cycle,
mitochondrial metabolism, ADP/ATP translocase and the fatty acid metabolism [119]. Bioinformatics
analyses from Gene Ontology enrichment confirmed a significant downregulation of protein complex
involved in oxidative metabolism and mitochondrial integrity, whereas electronic microscopy and
enzymatic activity confirmed abnormal mitochondrial crest structure and density [119]. Note that similar
mitochondrial dysfunction also occurs in PAH RV [141], but ENACHE et al. [142] reported that SKM
mitochondrial dysfunction precedes RV impairment in an experimental model of PAH supporting the
hypothesis that SKM defect is an early characteristic of the disease. However, no studies have explored the
impact of disease severity on mitochondrial function. One potential avenue to explore may be if peripheral
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muscle inflammation impact muscle mitochondrial function in a similar fashion than in pulmonary artery
smooth muscle cells [143]. Contrary to previous studies, SITHAMPARANATHAN et al. [144] showed a
prolonged phosphocreatine recovery time and abnormal SKM pH suggesting an altered O2 delivery over an
altered O2 utilisation as the main contributor to exercise intolerance, but normal mitochondrial function
and subunit protein abundance in the electron transport chain. However, the absence of paired control
subjects, the lack of measurements of the ATP cost of contraction or the limited details regarding the
exercise done to measure phosphocreatine recovery time preclude confident conclusions to be made from
that study. Interestingly, MCCULLOUGH et al. [145] demonstrated plasticity in mitochondrial function after
endurance exercise training in Sugen/hypoxia PAH rat model, especially for mitochondrial complex I
and III.

Exercise as an adjunct treatment strategy
For several years, exercise was contraindicated for patients with PAH who were considered at risk for
exercise-induced RV failure, syncope or sudden death [146]. In line with earlier concerns, HANDOKO et al.
[146] demonstrated that exercise training could be detrimental in monocrotaline rats with severe and
progressive PH, but resulted in improved exercise capacity, pulmonary haemodynamics and RV
capillarisation in their counterparts with stable PH. In humans, MERELES et al. [147] conducted the first
prospective randomised trial evaluating the effect of exercise and respiratory training in severe symptomatic
patients under optimised medical therapy. The first 3 weeks of training were in-hospital while the
remaining weeks of the program were done at home, supervised by phone. After 15 weeks of training, the
6MWT distance decreased in control group (−15±54 m) while it increased in the training group (+96
±61 m) with a mean difference of 111 m (95% CI 65 to 139 m, p<0.001), combined with a significant
improvement in QoL [147]. Since then, similar beneficial exercise training effects were demonstrated in
patients with PAH [148, 149], patients with PAH associated with connective tissue disease [150] and
patients with congenital heart disease [151], as well as patients with chronic thromboembolic PH [152].
Inspiratory muscles training as an add-on therapy to cardiopulmonary rehabilitation has also been
associated with a decreased sensation of dyspnoea [153, 154]. A meta-analysis of 16 studies confirmed
that exercise was likely associated with significant improvement in exercise tolerance and potentially better
pulmonary haemodynamics in patients with PAH [155]. Safety was also assessed. Adverse events were
more frequent in outpatients, including episodes of dizziness, pre-syncope, syncope, palpitations,
arrhythmia, fatigue, hypotension or O2 desaturation being observed in 4.7% of patients with overall
protocol dropout <1% [14, 155].

The mechanisms for improvements in exercise capacity are still lacking. EHLKEN et al. [156] investigates
the effects of exercise training on cardiopulmonary function and RV haemodynamics using the same
training planning as in MERELES et al. [147]. V′O2peak was significantly improved in the training group
(+3.1±2.7 mL O2·min−1·Kg−1 versus −0.2±2.3 mL O2·min−1·Kg−1), consisting of a 25% increase for the
training group versus 1% in controls [156]. 6MWT, QoL and resting pulmonary haemodynamics measured
invasively were also significantly improved with exercise. The specific mechanisms of pulmonary
haemodynamic improvements with exercise remain to be investigated, but the current hypothesis implicates
a training-induced reduction in pro-inflammatory cytokines and an antioxidant effect [157].

However, a disproportionate improvement in V′O2peak compared with resting pulmonary haemodynamics
after exercise (25% versus 15%) suggests that peripheral mechanisms may also contribute to exercise
intolerance. In support of this argument, the loss of capillary density has been closely coupled with SKM
fatigue independently of arterial blood flow, leading to long-term exercise intolerance if left untreated
following capillary occlusion in rats’ hindlimbs [158]. Therefore, muscle dysfunction, but primarily
capillary loss in patients with PAH, if left untreated, may curtail exercise rehabilitation improvements.
Partially supporting this idea, GONZALEZ-SAIZ et al. [8] focused on peak muscle power during bench
presses and leg presses in a randomised clinical trial over a 8-week period and found a significant
improvement in SKM power and strength, increased V′O2peak (+17% from baseline) and a better QoL and
daily physical activity in patients with PAH. This last study demonstrates that significant results may be
achieved over a relatively short period of time.

Gaps in knowledge
Pulmonary pressure, flow and distensibility during exercise
Moderate exercise induces a linear increase in CO and a concomitant minor decrease in PVR secondary to
dilation of compliant pulmonary capillaries and, although controversial, the potential recruitment of
additional capillaries in the upper lobes. Altogether, this results in relatively mild increases in mPAP [159, 160].
Before 2008, mPAP >30 mmHg upon exercise was defined as exercise PH (ePH), whatever exercise
intensity, type and position of exercise [161]. However, a systematic review documented that close to 50%
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of healthy individuals over 50 years of age reached such levels upon mild-to-moderate exercise without
any symptoms [162], so that this criterion was no longer considered as reflecting an abnormal response to
exercise.

More recently, NAEIJE et al. [163] proposed that the limit-of-normal for the mPAP–CO relationship ranges
between 0.5 and 3.0 mmHg·L−1·min−1, corresponding to a maximal total pulmonary resistance (TPR) of
3 WU during exercise. By testing this proposition, HERVE et al. [164] confirmed that a TPR of ⩾3 WU and
mPAP ⩾30 mmHg reached at maximal exercise delineated controls from patients with early pulmonary
vascular disease or left heart disease (LHD) with a sensitivity of 0.99 and a specificity of 0.95 amongst
169 individuals with resting mPAP ⩽20 mmHg. Most recently, HO et al. [165] prospectively analysed a
total of 714 patients with dyspnoea on exertion and preserved ejection fraction investigated with invasive
CPET using a slightly different approach. Over a median follow-up period of 3.7 years, individuals with a
mPAP/CO slope >3 mmHg·L−1·min−1 during exercise had a 2-fold increase risk of cardiovascular
hospitalisation or all-cause mortality including in the subgroup of patients with a resting mPAP
⩽20 mmHg [165]. Nonetheless, the proposed cut-off values (mPAP ⩾30 mmHg, TPR ⩾3 WU or mPAP/CO
slope >3 mmHg·L−1·min−1 during exercise) alone are insufficient to distinguish LHD from early
pulmonary vascular disease. Moreover, the appropriate interpretation of age-dependency of these measures
together with the limited data about the clinical relevance of ePH prevented its re-introduction in the
hemodynamic definition of PH [2].

Interestingly, the introduction of ambrisentan in patients with so-called ePH (resting mPAP: 18 mmHg; peak
exercise mPAP: 36 mmHg) resulted in a significant decline in peak exercise mPAP (−5.2±5.6 mmHg) and
PVR (−0.9±0.7 WU) together with a significant increase in CO (+2.3±1.4 L·min−1) and pulmonary
vascular compliance (+0.8±1.4 mL·mmHg−1) suggesting that ePH may respond to current PAH-specific
therapies [166]. Intriguingly, these improvements were not associated with statistically significant increases
in V′O2peak

. The mechanisms responsible for this disconnection remains elusive. However, how this increased
blood flow is distributed during exercise or following treatment may be important: if patients are expected
to benefit from favourable pulmonary vasodilation (in ventilated areas), these effects may be offset by less
favourable vasodilation resulting in V′/Q′ mismatch or increased shunt, as previously observed in patients
with COPD treated with calcium channel blockers [167] or prostacyclin [168].

Also of interest, the assessment of pulmonary vascular distensibility during exercise may eventually help
discriminating early pulmonary vascular disease during exercise prior to symptomatic exercise dyspnoea
[169]. Pulmonary vascular distensibility predicts aerobic capacity in healthy individuals. Athletes with the
highest maximal aerobic capacity have the greatest distensibility, increase in capillary blood volume and
lowest PVR at maximal exercise [170]. In recent cohort studies, decreased distensibility was not only
primarily observed in patients with PAH when compared with healthy controls, HFrEF and HFpEF, but
was also associated with right ventricle-pulmonary artery (RV-PA) uncoupling and decreased V′O2peak [171, 172].
The clinical relevance of impaired pulmonary vascular distensibility in term of its ability to distinguish
LHD from PAH with confidence remains, however, unknown [173]. Hopefully, an ERS Clinical Research
Collaboration called the pulmonary haemodynamics during exercise – research network (PEX-NET) will
provide answers regarding prognostic relevance of ePH in terms of mortality/lung transplantation (primary
end-point) and hospitalisation, development of PH at rest, or initiation of targeted PAH medication
(secondary end-points) [174].

Convective and diffusive O2 transport
Reduced V′O2

may result from either convective or diffusive O2 transport limitations [130]. Convective
elements include CO, systemic oxygenation, SKM blood flow, leg smooth muscle cells vasodilation and
O2 extraction; while diffusive elements include capillary-to-fibre ratio, capillary density and capillary red
blood cells transit time in the active muscle (figure 4) [130, 175, 176]. The specific contributions of
convective versus diffusive limitations in O2 transport in patients with PAH remain largely unknown. As
we previously mentioned, the proportion of the CO diverted to skeletal muscles increases markedly during
exercise [125]. Similarly, blood flow to the respiratory muscles increases substantially during maximal
exercise [122–124], a situation where the O2 cost of breathing in normal subjects approaches 10–15% of
the total V′O2max [126]. In healthy subjects, this “competition” for redistribution of CO is only relevant
during strenuous exercise [177]. However, in COPD and HF, increased flow distribution to the respiratory
muscles at the expense of the lower limb muscles is observed during submaximal exercise [178, 179],
contributing to excessive SKM fatigue, effort perception and decreased exercise capacity [180, 181]. Such
“vascular steal” by the respiratory muscles may also occur in patients with PAH since respiratory workload
is markedly increased at rest and during exercise secondary to mild obstructive and/or restrictive defects
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[53, 182], hyperventilation and increased dead space ventilation [17, 53, 54], resulting in major
interference with oxygen delivery to the working muscles.

Oxygen delivery at the microcirculation level may also be involved. Intriguingly, the incapacity to increase
V′O2peak following the addition of ambrisentan in patients with ePH [166] previously mentioned may have
resulted from the combination of increased systemic O2 delivery with a decreased systemic O2 extraction
[183]. Those two physiological mechanisms may explain this finding, in accordance to the Wagner
diagram (figure 4). First, a lower SKM capillary-to-fibre ratio and oxidative enzyme capacity [9, 119]
combined with a lower capillary density [66] may result in perfusion and oxidative metabolism mismatch
following drug-induced increases in limb blood flow resulting in decreased systemic O2 extraction.
Secondly, muscle atrophy and excitation-contraction impairment [112] combined with intrinsic muscle
mitochondrial dysfunction [119] may also contribute to impaired systemic O2 extraction. These studies all
argue in favour of the combined contributions of convective and diffusive O2 defects in patients with PAH
leading impaired V′O2peak.

Furthermore, endothelial dysfunction has also been demonstrated in the peripheral circulation of patients
with PAH (reviewed by NICKEL et al. [12]) and may also limit V′O2

. During exercise, in healthy subjects,
regional blood supply progressively shifts from other organs to exercising muscles, and within muscle
toward more oxidative fibres. Interestingly, CANO et al. [184] determined that heterogeneity in SKM may
have a greater impact on limiting V′O2

than V′/Q′ heterogeneity in the lungs, especially when
mitochondrial metabolic capacity is slightly higher than the potential to deliver O2 to the mitochondria
(e.g. lower capillary density hence diffusive component).

In HFrEF, using small muscle mass to prevent exceeding the cardiac pumping capacity that necessitates
enhancing sympathetic vasoconstriction within the exercising muscle, ESPOSITO et al. [185] first
demonstrated that V′O2

limitation comes from both convective and diffusive O2 transport defects in SKM,
whereas isolated lower leg cardiorespiratory rehabilitation restored muscle exercise capacity resulting from
increased capillary-to-fibre ratio and oxidative capacity in the trained leg muscles [186, 187]. In HFpEF,
the O2 pathway with the largest impact on exercise capacity was located in the periphery as well, more
precisely related to the O2 diffusion capacity and utilisation within exercising muscles [11, 188, 189].
Similar results were observed in COPD [190]. Therefore, altered convective and diffusive components of
O2 transport remain to be explored in patients with PAH and may explain at least in part the limited
increases in peak improvements V′O2

with current therapies.

Contribution of skeletal muscle ergoreflex to exercise intolerance
Within SKM, the ergoreflex consists of contraction-induced mechanical and chemical stimuli that activate
thinly myelinated (group III) and unmyelinated (Group IV) afferent nerve fibres projecting via the dorsal
horn of the spinal cord to various sites within the central nervous system [191]. In HFrEF, muscle
ergoreflex activity has been assessed using post-exercise regional circulatory occlusion. Its overactivation
was associated with abnormally elevated ventilatory response to exercise, attenuation of baroreflex and
peripheral chemoreceptor overactivation, suggesting an interplay between enhanced sympathetic overdrive
and exercise intolerance [192]. Furthermore, muscle ergoreflex overactivity was observed in both
noncachexic and cachexic patients with a strong association between muscle reflex overactivity and muscle
cachexia [193]. Spinal anaesthesia has been used to partially block group III/IV muscle sensory afferents
and resulted in reduced exercise ventilatory response to exercise [194], decreased peripheral fatigue sensing
leading to more profound muscle fatigue [195, 196] and a higher energy cost of muscle contraction [197]
in both healthy individuals and athletes. In COPD, the use of spinal anaesthesia also reduced ventilatory
response to exercise, hyperinflation and dyspnoea, resulting in prolonged endurance capacity [198].
Therefore, it remains plausible that ventilatory response to exercise, dyspnoea and enhanced muscle
sympathetic overdrive are also at interplay in patients with PAH, contributing to exercise intolerance.

Conclusion
Cardiorespiratory, cerebrovascular and SKM systems are affected in patients with PAH and translate into
clinical symptoms such as exertional dyspnoea, fatigue, weakness and RV failure symptoms. Exercise
testing is not only an objective measure of the patient’s functional status, but also represents an important
adjunct to prognostications and the assessment of response to therapy. In addition to currently approved
vasodilatory medications, cardiopulmonary rehabilitation also represents a key strategy to alleviate exercise
intolerance in patients with PAH. However, further studies are needed to: 1) fully determine the
mechanisms and relevance of ePH; 2) elucidate the role of convective and diffusive O2 transport in
limiting V′O2peak; and 3) elucidate the role of muscle ergoreflex in exercise intolerance in patients.
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