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ABSTRACT The complexity of asthma is underscored by the number of cell types and mediators
implicated in the pathogenesis of this heterogeneous syndrome. Type 2 CD4+ T-cells (Th2) and more
recently, type 2 innate lymphoid cells dominate current descriptions of asthma pathogenesis. However,
another important source of these type 2 cytokines, especially interleukin (IL)-5 and IL-13, are CD8+ T-
cells, which are increasingly proposed to play an important role in asthma pathogenesis, because they are
abundant and are comparatively insensitive to corticosteroids. Many common triggers of asthma
exacerbations are mediated via corticosteroid-resistant pathways involving neutrophils and CD8+ T-cells.
Extensive murine data reveal the plasticity of CD8+ T-cells and their capacity to enhance airway
inflammation and airway dysfunction. In humans, Tc2 cells are predominant in fatal asthma, while in
stable state, severe eosinophilic asthma is associated with greater numbers of Tc2 than Th2 cells in blood,
bronchoalveolar lavage fluid and bronchial biopsies. Tc2 cells strongly express CRTH2, the receptor for
prostaglandin D2, the cysteinyl leukotriene receptor 1 and the leukotriene B4 receptor. When activated,
these elicit Tc2 cell chemotaxis and production of chemokines and type 2 and other cytokines, resulting
directly or indirectly in eosinophil recruitment and survival. These factors position CD8+ Tc2 cells as
important and underappreciated effector cells contributing to asthma pathogenesis. Here, we review recent
advances and new insights in understanding the pro-asthmatic functions of CD8+ T-cells in eosinophilic
asthma, especially corticosteroid-resistant asthma, and the molecular mechanisms underlying their
pathologic effector function.

Introduction
The complex heterogeneity of asthma is reflected in the number of cell types, mediators and pathways
described in the pathogenesis of this syndrome [1]. The clinical variability between patients and even in
the same patient at different stages of their disease suggest different mechanistic pathways [2, 3].
T-lymphocytes play a major role in the pathophysiology of asthma, but that alone does not address
involvement of the many different subsets of T-cells. Moreover, the pathogenesis of asthma has been
linked to the production of type 2 cytokines, which can be expressed by several cell types in the lung. Type
2 CD4+ T-cells (Th2) and their capacity to secrete pro-allergic cytokines, interleukin (IL)-4, IL-5 and
IL-13 dominate descriptions of asthma pathogenesis [4], particularly eosinophilic and
corticosteroid-responsive asthma. Type 2 innate lymphoid cells (ILC2), which are lineage-negative and lack
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a T-cell receptor (TCR), have received attention based on their early presence and capacity for similar type
2 cytokine production [5]. Th9 cells act via IL-9 to enhance pro-allergic cytokine expression, airway mast
cell recruitment, eosinophilia, airway hyperresponsiveness (AHR) and mucus cell metaplasia in murine
models [6]. Th17 cells and their release of IL-17 are proposed to trigger a neutrophilic response in the
airways leading to corticosteroid-refractory asthma [7], although, to date, blockade of IL-9 [8] and IL-17
[9] have not proved effective in clinical trials. Invariant natural killer T-cells were implicated in promoting
AHR in mice [10], although these cells proved to be rare in human airways [11], in contrast to the
abundant mucosal associated invariant T-cell subset [12]. Countering these pro-allergic lymphocyte
responses are regulatory T-cells, natural and inducible, attenuating asthma responses through secretion of
IL-10 and transforming growth factor-β [13–15]. In contrast to CD4+ T-cells, the role of CD8+ T-cells was
suggested to balance the responses of CD4+ T-cells through the secretion of interferon (IFN)-γ [16].
However, until recently few studies have directly examined the presence or role of CD8+ T-cells in asthma
pathogenesis. Nonetheless, in experimental models and where they have been examined in human asthma,
CD8+ T-cells were proposed to play an important role in asthma pathogenesis, in large part because they
are insensitive to corticosteroids compared with CD4+ T-cells and because they have the capacity to
undergo transcriptional reprogramming from IFN-γ-secreting cells (Tc1) to type 2 cytokine secreting cells
(Tc2), especially producing IL-13 and IL-5 [17]. These two factors position CD8+ Tc2 cells as potentially
important effector cells in asthma pathogenesis, especially in severe, corticosteroid-resistant asthma.

Corticosteroid-resistant asthma
Corticosteroids have multiple mechanisms of action, so it is likely that their effects in asthma occur via
several mechanisms, acting on corticosteroid-sensitive cells which undergo apoptosis or in attenuating
susceptible pathways and functional programmes. Although corticosteroids remain “first-line” therapy in
asthma, increasingly there is a recognition that some patients experience severe asthma with persistent
symptoms despite high-dose inhaled or oral corticosteroids [18]. It is likely that other cell types and
pathways, which are corticosteroid-resistant, underlie the immunopathology in these individuals, labelled
as corticosteroid-resistant asthmatics. Furthermore, corticosteroids have incomplete efficacy in preventing
or treating exacerbations [19, 20], supporting this notion that the diverse triggers for these events (table 1)
involve distinct cell types which are more intrinsically corticosteroid-resistant, including neutrophils, Th17
cells [21] and potentially CD8+ T-cells [17]. It is for this group of severe asthmatics that many of the
newer biologic agents have been targeted.

CD8+ Tc2 cells in experimental allergic airways disease
In addition to CD4+ Th2 cells and type 2 ILCs, the role of type 2 cytokine-secreting CD8+ Tc2 cells in
allergic airways disease has been demonstrated extensively in models of experimental asthma. A number of
studies in mice reported that CD8+ T-cells play a protective role in allergic disease [22–26]. Regulatory or
suppressive effects on lung allergic responses were associated with secretion of type 1 cytokines such as
IL-12 and IFN-γ [16, 25, 26]. In contrast, the plasticity of CD8+ T-cells and their pro-asthmatic activities
have now been confirmed in many studies. Depletion of CD8+ T-cells attenuated AHR and airway
inflammation in mice exposed to allergen exclusively via the airways, in the absence of systemic
sensitisation [27]. The responses were restored following reconstitution of CD8+ T-cells, but not
IL-13-deficient CD8+ T-cells. CD8+ Tc2 cells have been shown to be prime sources of type 2 cytokines
[28–32]. Mice deficient in CD8 develop significantly lower AHR, eosinophilic inflammation and IL-13
levels in bronchoalveolar lavage (BAL) fluid compared with wild-type mice, and these responses are
restored by adoptive transfer of antigen-primed CD8+ T-cells [24, 28, 33]. The capacity of CD8+ T-cells to

TABLE 1 Common triggers for asthma exacerbations are mediated by different pathways, frequently involving
steroid-unresponsive neutrophils and CD8 cells

Allergen exposure Viral infection
Ozone/diesel

exhaust Cigarette smoke Bacterial infection

Predominant pathway Th2 cells, IgE Th1 cells,
leukotrienes

Th1 cells,
leukotrienes

Th1 cells,
leukotrienes

Th17 cells, IL-1β,
IL-6, TNF

Predominant effector
cells

Eosinophils, Mast-cells,
CD4 T-cells

Neutrophils, CD8
T-cells

Neutrophils, CD8
T-cells

Neutrophils, CD8
T-cells

Neutrophils

Steroid
responsiveness

High Low Low Low Low

Th1/2 cells: type 1/2 CD4+ T-cells; IL: interleukin; TNF: tumour necrosis factor.
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produce type 2 cytokines in mice was dependent on interactions between CD4+ and CD8+ T-cells with
allergen-sensitised CD4+ T-cells providing the critical differentiation factor, IL-4 [28].

Transcriptional reprogramming of CD8+ T-cells from a Tc1 to a Tc2 phenotype
CD8+ T-cells, similar to other T-cell subsets, exhibit plasticity and can undergo transcriptional
reprogramming, redirecting their functional activities. Antigen-specific CD8+ T-cells committed to IFN-γ
production, when exposed to IL-4 in vitro or in an atopic environment, transit through distinct
differentiation stages characterised by changes in transcription and translation, resulting in
IL-13-producing CD8+ T-cells [34] (figure 1). In CD8+ T-cells, IL-4 resulted in the epigenetic poising of
the Il13 locus through the gain of permissive and loss of repressive histone modifications, which were
co-regulated with recruitment of RNA polymerase II. In addition, IL-4 was required for Gata3 expression
in CD8+ T-cells and IL-4-dependent recruitment of GATA3 protein to the Il-13 promoter. Thus, in an
allergic inflammatory lung microenvironment containing IL-4, eosinophilic asthma resulted from CD8+

T-cells epigenetically poised for Tc2 conversion via differential histone modifications at lineage-specific
promoter regions [34].

Corticosteroid-insensitivity of CD8+ T-cells
How might these Tc2 cells contribute to corticosteroid-resistant disease? Corticosteroids effectively
suppress inflammatory responses through repression of many immune genes by means of interaction with
the glucocorticoid receptor. However, susceptibility to corticosteroids differs among T-cell subpopulations
and states of maturity [35]. Administration of corticosteroids to asthmatic patients results in significant
decreases in numbers of CD4+ but not CD8+ T-cells in peripheral blood [36]. Activated human [37] and
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FIGURE 1 Under the influence of interleukin-(IL)-4, type 2 CD8+ (Tc2) cells differentiate from naïve CD8+ T-cells or arise by transcriptional
reprograming of Tc1 cells. Tc2 cells highly express chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), a receptor
for prostaglandin D2 (PGD2). In addition, Tc2 cells express the cysteinyl leukotriene receptor 1 (CysLT1) and leukotriene B4 receptor (BLT-1).
Inflammatory stimuli, such as cross-linking of immunoglobulin (Ig)E on mast cells, leads to production of eicosanoids. Through CRTH2, PGD2
elicits Tc2 cell chemotaxis, activation and production of chemokines, type 2 cytokines and other cytokines, resulting directly or indirectly in
eosinophil recruitment and survival. In turn, airway eosinophilia is associated with airway remodelling and exacerbations. ATF2: activating
transcription factor-2; CCL: C-C motif chemokine ligand; GM-CSF: granulocyte–macrophage colony-stimulating factor; LT: leukotriene; MKP:
mitogen-activated protein kinase phosphatase; Th2 cells: type 2 CD4+ T-cells; TNF: tumour necrosis factor.
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mouse [38] CD8+ T-cells are more resistant to corticosteroids than CD4+ T-cells. Therefore, other than
CD4+ T-cells, CD8+ T-effector cells are proposed to play an important role in the pathophysiology of
inflammatory diseases, especially after initiation of corticosteroid treatment.

Glucocorticoid insensitivity of lymphocytes has also been described in a number of human diseases [39–43]
with data demonstrating that human CD8+ T-cells, similar to mouse CD8+ T-cells, are relatively
corticosteroid-insensitive compared to CD4+ T-cells [37, 44]. One mechanism which may explain this
differential sensitivity to corticosteroids is lower expression of the DNA binding protein and histone
acetyltransferase activating transcription factor-2 (ATF2) in CD8+ than CD4+ T-cells [44]. While the
inhibitory (transrepression) immunosuppressive effects of corticosteroids on cytokine secretion and cell
proliferation are similar in both subsets, as ATF2 is required for corticosteroid-induced transactivation,
CD8+ T-cells have reduced corticosteroid-induced transactivation including reduced IL-10 induction [44].

CYP11A1 activation is required for CD8+ Tc2 differentiation
Activation of the steroidogenic enzyme, CYP11A1 is an essential component in the development of
Tc2-mediated experimental asthma. This mitochondrial P450 cytochrome is the first and rate-limiting
enzyme in steroidogenesis converting cholesterol to pregnanolone. In the presence of IL-4, CYP11A1
enzymatic activation was a critical regulator of Tc2 conversion, resulting in increased IL-13 and decreased
IFN-γ production [34, 45]. Of interest, vitamin D3 is a key modulator of the functional conversion of
CD8+ T-cells from an IFN-γ- to an IL-13-producing cell [45]. This appears to be, at least in part, through
the regulation of CYP11A1 enzymatic activation, an effect driven by vitamin D3-mediated changes in the
recruitment of vitamin D receptor (VDR) transcription factors to the promoter region of CYP11A1. This
was parallelled by changes in the enzymatic activation of CYP11A1 and the prevention of lung allergic
responses. Of note, in humans, an epistatic effect between genetic variants in CYP11A1 and VDR was
shown with protective effects on the development of asthma in children [45].

Hypoxia enhances CD8+Tc2 differentiation
Another feature distinguishing CD8+ T-cells from CD4+ T-cells is the response to tissue hypoxia, which
occurs in many pathological conditions including asthma and promotes expression of genes through
post-translational modifications and stabilisation of the α-subunits of hypoxia-inducible factors (HIF-1α
and HIF-2α) [46]. Although hypoxia can inhibit T-lymphocyte function, robust T-cell responses occur at
many hypoxic inflammatory sites [47, 48] and hypoxic exposure significantly amplified CD8+ Tc2
differentiation, with increased release of IL-13 in vitro and augmentation of lung allergic responses in vivo
[49]. The IL-4-dependent increases in Tc2 differentiation under hypoxia were dependent on HIF-1α. This
combination of corticosteroid insensitivity and activation of the hypoxia response pathway and HIF-1α
upregulation resulting in increased IL-13 production in Tc2 cells may thus contribute to maintenance of
corticosteroid-resistant asthma.

CD8+ T-cells in human asthma
The discovery in the early 1990s of the pathogenic role of type-2 cytokines constituted a key conceptual
advance. The seminal work by ROBINSON et al. [50] used in situ hybridisation to show elevated type 2
cytokine mRNA for IL-2, -3, -4 and -5 in BAL fluid cytospins from atopic asthmatics compared to healthy
controls. Follow-up studies demonstrated activation measured by CD25 upregulation of CD4+ cells, but
not CD8+ cells, during allergen challenge [51], and was associated with symptoms and impaired lung
function [52]. Many subsequent studies supported the paradigm of pathogenic type 2 secreting CD4+ Th2
cells in asthma pathogenesis, dominating asthma thinking and research [1, 53]. Importantly, many of these
studies did not directly examine the presence or function of CD8+ T-lymphocytes. Moreover, in many of
the molecular studies identifying type 2 signatures in cells from the airways of asthmatics, the specific cell
source of these cytokines was not determined [20], even though numbers of CD8+ T-cells outnumbered
CD4+ T-cells [54–57]. It is only more recently that other type 2 cytokine secreting cells in the lung have
been identified [57–62] and that CD8+ T-cells have also been recognised as major producers of type 2
cytokines. Indeed, human blood CD8+ T-cells produce more IL-4 than CD4+ T-cells [63]. This was
subsequently confirmed by in situ hybridisation and immunohistochemistry on bronchial biopsies,
showing that IL-4 and IL-5 were produced by both CD4+ and CD8+ T-cells, as well as mast cells and
eosinophils within the airways [64]. Moreover, CD8+ cells secreting IL-4, -5 and -13 and specific for the
dominant house dust mite aeroallergen Derp 1 are found in human atopic disease and associated with
disease severity, with responses believed to be mediated through antigen cross-presentation [32].

CD8+ T-cells in fatal asthma
In human asthma, indirect evidence for the pathogenic involvement of CD8+ T-cells is provided by studies
of post mortem samples. Fatal asthma is characterised by infiltrates of T-cells, macrophages and activated
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eosinophils, which, in contrast to stable asthma, is associated with a CD8+ T-cell predominance, with
CD8+ cells outnumbering CD4+ cells 2:1 in the interstitium of distal airways, and 6:1 in the lamina
propria of proximal airways [65]; in another study, CD8+ cells were present, but numbers were not
increased [66]. In addition, asthma death was associated with activated peribronchial cytotoxic CD8+

T-cells with higher expression of CD25 and a 10-fold higher expression of the cytotoxicity marker perforin
[67]. These cells expressed both type-1 (IFN-γ) and type 2 (IL-4) cytokines, but asthma death was
associated with an increase of more than double in the ratio of type 2 to type 1 cells, implicating Tc2 cells
specifically in the inflammatory process. Similarly, a post mortem study from Brazil found higher numbers
of granzyme A- and granzyme B-expressing cells in the lamina propria and adventitia in fatal asthma, out
of which ∼50% of granzyme-positive cells were CD8+ [68].

CD8+ T-cells in stable asthma
While observations from fatal asthma may not be fully generalisable, a number of clinical studies have
observed associations between airway CD8+ T-cell frequencies and stable asthma. CD8+ T-cell frequencies
were increased in BAL fluid in asthma; this increase was greater for CD8+ cells than for CD4+ or CD3+

cells [69, 70], and was correlated with AHR [70]. Increased BAL fluid CD8+ cells have been described
specifically associated with eosinophilic lung diseases including asthma [71].

In bronchial biopsies, CD8+ T-cells were enriched in the lamina propria in asthma [57, 72], being present
despite regular inhaled corticosteroid treatment, and were also associated with AHR measured by
methacholine challenge, while AHR did not correlate with CD4+ T-cells.

More recently, the Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes (U-BIOPRED)
study performed a large transcriptomic and immunohistochemical analysis on epithelial brushings and
biopsies from 107 patients with moderate–severe asthma and identified two distinct subtypes associated
with high type 2 cytokine expression [73]. The group characterised by the highest submucosal
eosinophilia, high exhaled nitric oxide fraction, frequent exacerbations and high oral corticosteroid use
were marked by significantly increased CD3+ and CD8+ T-cells, but with no differences in CD4+ T-cells,
again showing a strong association between CD8+ cells and eosinophilic airways disease. In contrast, in
type-2-low, IL-6-high asthma, sputum transcriptomics found lower expression of CD8+ T-cell signatures
[74].

Activation of CD8+ T-cells
Significant activation of circulating CD8+ T-cells in peripheral blood has been seen in severe asthma and
correlated with downregulation of specific microRNAs (miR-146a/b and miR-28–5p) and differential
expression of multiple intronic long noncoding RNAs which might regulate CD8+ T cell activities [75].
Asthma is associated with increased expression in circulating CD8+ T-cells, specifically of mitogen kinase
kinase 3, a proinflammatory member of the p38 mitogen activated protein kinase pathway implicated in
neutrophil recruitment [76].

Multiple genome wide association studies have identified ORMDL3 as an important asthma-susceptibility
locus associated with childhood asthma [54, 77–79]. A recent epigenetic analysis of human peripheral
blood leukocyte subsets found decreased DNA methylation levels in the 5′ untranslated region of
ORMDL3 specifically in CD8+ T-cells, which might explain the increased ORMDL3 mRNA expression
observed in CD8+ T-cells compared with other leukocytes [79]. As increased ORMDL3 expression
promotes T-cell activation and pro-inflammatory cytokine production, this also associates CD8+ T-cells in
the link between this risk-allele and asthma pathogenesis.

Within the airways, CD8+ T-cells may be activated by allergens cross-presented by class I major
histocompatibility complex on airway dendritic cells [25], and indeed BAL fluid CD8+ frequencies are
increased after segmental allergen challenge [80]. Additionally, activated human CD8+ T-cells express the
receptors for the key airway epithelial cell alarmins IL-33 [81] and thymic stromal lymphopoietin (TSLP)
and its ligation by TSLP enhances their proliferation [82, 83]. TSLP also acts indirectly via pulmonary
inflammatory dendritic cells to enhance antiviral CD8+ T cell responses [84] and to induce
IL-5/-13-producing CD4+ [85] and CD8+ T-cells [86]. Likewise, IL-33 potently enhances antiviral CD8+

T-cell responses [87]. An association of CD8+ cells with cigarette use [56] suggests that smoke may also
activate CD8+ cells, while Tc2 cells in both mice and humans express perforin and granzyme [88] and
induction of granzyme A mRNA and protein have been demonstrated in response to diesel fume
particulates in human bronchoscopy samples [89].

CD8+ Tc2 conversion during viral infection
Viruses play a key role in acute asthma [90], being responsible for ∼80% of asthma exacerbations [91].
Thus, it might be expected that viral infections contribute to an association between CD8+ cells and
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asthma (table 1). Although the mechanisms supporting these associations are incompletely understood,
viral infection of epithelial cells can trigger the release of important alarmins such as IL-25 and IL-33
increasing type 2-related airway inflammation and mucin production [92, 93]. In experimental models of
asthma, virus-specific CD8+ T-cells can switch to IL-5 production and induce airway eosinophilia [94]. In
vitro studies showed that IL-4 could switch virus-specific CD8+ T-cells to IL-5 production. Thus, a viral
infection which leads to recruitment of virus-specific CD8+ T-cells to the airways, in an atopic asthma
environment, the presence of IL-4 could trigger CD8+ Tc2 conversion and release of type 2 cytokines.
Severe respiratory syncytial virus (RSV) infection in early life is suspected to play a role in the later
development of wheezing and asthma [95]. In contrast to initial RSV infection at a later stage, early
infection in mice with RSV followed by reinfection at a later stage resulted in increased AHR, airway
eosinophilic inflammation, mucus hyperproduction and IL-13-producing CD8+ T-cells [96, 97]. Inhibition
of IL-13 abolished AHR and mucus hyperproduction. As discussed later, a unique population of
IL-6Rα-high effector memory CD8+ T-cells was found in peripheral blood of asthmatics with an increased
frequency compared to healthy control subjects [98]. These effector memory CD8+ T-cells exclusively
produced IL-5 and IL-13 in response to asthma-associated RSV and bacterial superantigens [98]. These
data, in contrast to those from an in vitro study [99], suggest that Tc2 cell populations arising from
polarisation early in life might persist long term in vivo.

Longitudinal studies of CD8+ cells are associated with lung function decline
Few longitudinal studies have investigated T-cell subsets. However, one study performed bronchoscopies
before and 2 years into a 7.5-year prospective follow-up of a cohort of adults with atopic asthma [100].
Over time, decline in post-bronchodilator forced expiratory volume in 1 s (FEV1) correlated not with
typical markers of eosinophilic inflammation (bronchial biopsy eosinophils) or remodelling (subepithelial
reticular membrane thickness), but with bronchial biopsy CD8+ cells measured either at baseline or at the
2-year time point. A strength of this study is that the findings were confirmed by subsequent follow-up of
the same patients at 14 years [101]. Decline in FEV1 was highest in those with high CD8+ numbers at
baseline or those with high CD8+ numbers or high granzyme B expression at the 14-year time point; these
associations were specific to CD8+ cells, being weaker or not observed with CD4+ cells.

Subsets of peripheral blood CD8+ cells
These human studies describe disease associations with CD8+ cells, but what is known of type 2
cytokine-secreting CD8+ T-cells, specifically? Definitions of Tc2 cells vary between studies and are based
either on intracellular expression of a type 2 cytokine (IL-4 [102], IL-5 [64], IL-13 [4, 88]) in CD8+ T-cells
or on co-expression of CD8 with a surrogate surface marker such as the prostaglandin D2 receptor 2,
CRTH2 [88]).

Resting blood CD8+ cells produce more IL-4 in asthma than in health [103], and several studies reported
increases in Tc2 cells in peripheral blood in asthma, while this association was typically stronger than with
Th2 cells. In one report, circulating CD8+IL-4+ cells were increased in allergic asthma [103], and in
another CD8+IL-5+ cells were significantly increased in eosinophilic asthma [104]; this was not true for
CD4+IL-5+ cells [104]. Similarly, peripheral blood CD8+IL-13+ Tc2 cells were increased in asthma, and
correlated most with severe disease and with the eosinophilic phenotype [88] (figure 2). In the same
cohort, significant increases in CD4+IL-13+ Th2 cells were observed only in mild disease [4, 88], but not
with eosinophilic disease. Tc2 frequencies were associated with nasal polyposis and with current cigarette
use. Moreover, a positive correlation was shown between frequencies of peripheral blood CD8+IL13+ Tc2
cells and type 2 lung inflammation, measured by expression of IL-4 by sputum T-cells, but again there was
no such association with blood CD4+IL13+ Th2 cells [88]. Similarly, we and others have found using
CRTH2 as a surface marker for type 2 cells, that CD4+CRTH2+ Th2 cells were not associated with
eosinophilic disease [88, 105], while peripheral blood CD8+CRTH2+ cells were strongly associated with the
severe eosinophilic phenotype [88].

Data regarding peripheral blood IFN-γ-secreting Tc1 cells are less clear-cut. Three studies reported
increased frequencies of IFN-γ-secreting CD8+ cells in peripheral blood in asthma versus health [106–108].
Conversely, another report found reduced blood Tc1 cells in allergic asthma [109] and we observed no
significant differences between asthma and health [110].

CD8+IL6-Rα+ cells
IL-6Rα expression has been described as a surface marker for effector memory CD8+ T (TEM)-cells. IL-6 is
a pro-inflammatory cytokine and biomarker of systemic inflammation and metabolic dysfunction, and has
been associated with more severe, obesity-related asthma [111], and with frequent exacerbations in poorly
controlled, non-type-2 asthma [112]. CD8+IL-6Rα+ TEM-cells express the type-2-associated nuclear
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transcription factor GATA3, produce high levels of IL-5 and IL-13 and are increased in the peripheral
blood of asthmatics [98].

Tc2 cells in human airway tissue
As with peripheral blood, BAL fluid CD8+ T-cell lines produced more IL-5 in asthma than in health [113].
Likewise, unstimulated sputum CD8+ T-cells produced more IL-4 and IL-5 in asthma than in health, and
this increase was related more closely to the severity of AHR for CD8+ than CD4+ T-cells, both in terms
of the magnitude and the statistical strength of the association [102]. Similarly, both CD8+ and CD4+ IL-4
producing T-cells were increased in BAL fluid in asthma and eosinophilic bronchitis, but the strength of
this association was stronger for Tc2 than Th2 cells [107].

BLT1 is the high-affinity receptor for leukotriene B4 expressed on a variety of cell types [114]. In
allergen-sensitised and -challenged mice, it was the CD8+BLT1+ and not the CD8+BLT1− T-cell subset
that was associated with IL-13-mediated asthma and dependent on LTB4 release from mast cells [115–
118]. Using BLT1 as a surface marker of type 2 cells, we found CD8+BLT1+ and CD8+BLT1+IL-13+ cells to
be more increased in BAL fluid in asthma than in health, with the highest expression of IL-13 found in
CD8+ rather than CD4+ cells [107]. Furthermore, this CD8+BLT1+IL-13+ subset in BAL correlated with
the presence of asthma and with markers of atopy (serum IgE), airway remodelling (reticular basement
membrane thickness) and the degree of airflow obstruction (FEV1 and forced expiratory flow at 25–75% of
forced vital capacity) [119].

This finding of a stronger disease association for Tc2 than Th2 cells emerges consistently from multiple
studies, including data from cohorts studied in Southampton and Oxford (UK). While some increases in
CD4+IL-13+ Th2 cells were demonstrated in bronchial biopsies in asthma overall, Th2 cells were only
significantly enriched in mild, steroid-naïve, atopic asthma, but were not associated with airway
eosinophilia [88]. Th2-cells were not enriched in steroid-treated moderate asthma, or subjects with severe
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FIGURE 2 Tc2 cells are enriched in eosinophilic asthma. a) Frequencies of CD3+CD8+CRTH2+ Tc2 and CD3+CD4+CRTH2+ Th2 cells in CD4+ or CD8+

T-cells in total peripheral blood leucocytes compared between healthy controls and severe asthma patient groups (eosinophilic and
non-eosinophilic) in a cohort from Oxford, UK by flow cytometry. b,c) Tc2 cells are increased in lung in eosinophilic asthma in a cohort from
Southampton, UK. Frequencies of CD3+CD8+IL-13+ and CD3+CD4+IL-13+ T-cells in b) bronchial biopsy and c) bronchoalveolar lavage (BAL)
compared between healthy controls and asthma groups (eosinophilic and non-eosinophilic) by intracellular cytokine staining. *: p<0.05, ***:
p<0.001. Reproduced and modified from [88] with permission.
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asthma on high dose inhaled or oral steroids [4]. In contrast, in the same cohort we observed increases in
CD8+IL-13+ Tc2 cells in eosinophilic asthma, in bronchial biopsies and in BAL fluid. Moreover, these high
bronchial biopsy CD8+IL-13+ Tc2 frequencies were associated with high bronchodilator reversibility.

How might Tc2 cells contribute to inflammation in eosinophilic asthma? The onset of severe eosinophilic
asthma commonly follows a viral respiratory tract infection, which could promote CD8+ T-cell activation,
and in the presence of IL-4, this would favour transcriptional reprogramming and conversion to Tc2 cells.
These cells might then be further activated either in an antigen-specific manner by aeroallergens or
viruses, or in a TCR-independent manner by inflammatory mediators. Since Tc2 cells express CRTH2 and
CysLT1 (receptors for prostaglandin D2 (PGD2) and leukotriene E4 (LTE4), respectively), we investigated
their ligands in the airways in asthma. PGD2 was increased in the airways of all severe asthma patients, but
elevated LTE4 was specific to the severe eosinophilic phenotype [88]. In vitro, PGD2 and LTE4 were
chemattractants for Tc2 cells. This attraction was synergistic and could be inhibited by a CRTH2
antagonist, and to a lesser extent by the CysLT1 antagonist montelukast. PGD2 and LTE4 synergistically
enhanced Tc2 production of IL-5 and IL-13, and this effect was more potent in Tc2 than Th2 cells. A
specific source of these inflammatory mediators could be mast cells. IgE cross-linking of mast cells
triggered release of PGD2 and LTE4 [88], which could induce both migration and production of IL-5 and
IL-13 by Tc2 cells. In turn, supernatants from stimulated Tc2 cells contained IL-5 and granulocyte–
macrophage colony-stimulating factor and could directly activate eosinophils and upregulate eotaxin
release from bronchial epithelial cells [88].

Conclusion
In summary, in addition to the many descriptions of involvement of CD4+ Th2 cells in human asthma,
increasingly, studies have shown increased frequencies and activation of Tc2 cells both in peripheral blood
and in airway tissues. In a number of these studies, the strength of Tc2 cell associations with eosinophilic
phenotypes and with markers of airways inflammation and bronchial hyperreactivity were consistently
stronger than those observed with Th2 cells, and were consistent with experimental findings in
allergen-sensitised mice. Recent mechanistic human studies have begun to elucidate how these cells could
participate in driving the type 2 pro-inflammatory responses in severe eosinophilic asthma. Phenotypic
differences between T-cell subsets suggest that Tc2 cells may be less steroid-responsive, and are implicated
in a variety of triggers known to elicit asthma exacerbations. Given the advances in technology and
approaches to limited cell number analyses in lung tissue and BAL fluid, it is important to combine
determinations of both CD4+ and CD8+ T-cell numbers and function in the various phenotypes of
asthma, not only in steady state, but over the longitudinal course of asthma in the same patient and in
cohorts.

Many questions remain unresolved, including what are the original environmental or genetic triggers for
Tc2 development? What are the critical epigenetic modifications which maintain these cells as a persistent
population expressing common transcriptional programmes? And ultimately, of greatest interest, how
might these underappreciated contributors to severe asthma be targeted therapeutically?
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