Supplementary appendix

Index:

- Supplementary table 1: Extensive description of case reports/series and clinical trials of humans with a surfactant-processing mutation involved in fibrotic IP
- Reference list supplementary table 1
- Search strategy in Pubmed and Embase

Supplementary table 1

Extensive description of case reports/series and clinical trials of humans with a surfactant-processing mutation involved in fibrotic IP

Gene	Diagnosis	Drug	Outcome after treatment	Ref
mutation				
Adult case repo	orts and series			
SFTPC p.I73T	Adult with	Prednisone	No improvement, pulmonary	(1)
	CPFE		function test and HRCT	
			worsened	
SFTPA2	1 Adult with	Prednisone and	Remission of disease	(2)
p.G231V	НР	avoidance of birds		
	1 Adult with	Prednisone	No improvement	
	PF and			
	broncho-			
	alveolar			
	carcinoma			
ABCA3	Adult with PF	Antibiotics	Ineffective	(3)
p.G964D		Prednisone and	Minimal progression of lung	
		azithromycin	function impairment. HRCT	

			scan: disappearance of	
			ground-glass areas with	
			persistence of fibrosis	
ABCA3	Adult with	Steroids and azithromycin	Moderate improvement,	(4)
p.G964D	restrictive		transient, sick-same after 5	
	lung disease#		years	
HPS*	Adult with	Antibiotics and oxygen	Not effective, lung function	(5)
	HPS	inhalation	deteriorated, patient died	
HPS1 IVS5+5	Adult with	Prednisolone,	Vital capacity decreased and	(6)
G>A	HPS	cyclosporine A	the areas of lung opacity	
			deteriorated	
		+ Pirfenidone	Respiratory symptoms	-
			stabilized and serum KL-6	
			level decreased for a few	
			months, later progression,	
			increase in areas of diffuse	
			lung opacity and gradual	
			decrease of lung volume.	
			Oxygen therapy was	
			administered, died of an acute	
			exacerbation.	
HPS4	Adult with	Corticosteroids,	Breathing condition, clinical	(7)
p.Q620X	HPS	pirfenidone	marker levels and radiological	
			characteristics stabilized.	
			Corticosteroid tapered, later	
			gradual progression of bilateral	
			diffuse ground-glass opacity	
			with mild traction	
			bronchiectasis, condition still	
			considered stable	
			considered stable	

HPS1	Adult with	Prednisolone, pirfenidone,	Progressively deterioration of	(8)
p.L668P	HPS	azathioprine	diffuse reticulations, later died	
HPS*	Adult with	Oral corticosteroids	No symptomatic improvement,	(9)
	HPS		died	
HPS4	Adult with	High dose steroids and	No effect; still alive but	(10)
p.P685delC	HPS	azathioprine	progressively dyspnoeic	
HPS*	Adult with	Prednisone	Resolution of dyspnoea	(11)
	HPS and			
	pulmonary			
	sarcoidosis			
HPS*	Adult with	Prednisolone and	Gradual progression, oxygen	(12)
	HPS	pirfenidone	therapy initiated	
Paediatric case	reports/series w	l ith <i>SFTPC</i> mutations		
SFTPC p.I73T	4 Children	1/5 Systemic steroids	No improvement	(13)
p.I38F, p.V39L	with DIP , 1	5/5 Hydroxychloroquine	2 out of 5: improved lung	
	child with	o/o r tydroxyornoroquine	function, later on reduced	
	chronic			
	interstitial		exercise capacity	
	pneumonitis		3 out of 5 free of symptoms,	
	(p.V39L)		improved pulmonary function	
			test	
SFTPC	Child with	Hydroxychloroquine and	Improvement on chest film,	(14)
p.A116D	NSIP	supplemental oxygen	weight gain, no longer	
			supplemental oxygen required	
SFTPC p.I73T	Child with	Corticosteroids and	Condition improved	(1)
	ILD	supplemental oxygen		

SFTPC	Child with	Corticosteroids and	Respiratory symptoms	(15)
c.460+1 G →	cellular or	supplemental oxygen	(tachypnea and cyanosis)	
A	NSIP		improved somewhat	
SFTPC p.I73T	5 Children	5/5 Mehtylprednisolone,	Decrease in retractions,	(16)
	with chronic	4/5 Hydroxychloroquine,	oxygen requirement and in	
	ILD	5/5 Supplemental oxygen	breath rate	
Different	17 Children	14/17 Hydroxychloroquine	12/14 moderate improvement	(17)
SFTPC	with		- good response, 2/14 no	
BRICHOS/	ILD##(NSIP		improvement	
non BRICHOS	PAP, DIP)	15/17 Systemic steroids	14/15 moderate improvement	-
		10/17 Gyaterina starolas	– good response, 1/15 no	
			improvement	
			Improvement	
		7/17 surfactant	2 moderate improvement –	
			good response, 5 no	
			improvement	
		3/17 Colchicine	3 no improvement	
SFTPC	22 Children	18/22	4 still with oxygen (did not	(18)
14 non	with chronic	Methylprednisolone,	receive HCQ) 16 weaned off	
BRICHOS, 6	ILD at	11/22	oxygen, of which 4 symptom	
BRICHOS	diagnosis	Hydroxychloroquine, 5/22	free, 12 with progressive	
		Azithromycin 20/22	clinical improvement,	
		Supplemental oxygen	moderate dyspnoea and	
			exercise tolerance	
SFTPC	Child with	Home ventilator support,	Resolution of ground glass	(19)
p.G97S	CPI pattern	oxygen, pulse	opacities, thickening of	
	with globular	methylprednisolone,	interlobular septa persisted,	
			ventilation support was	

	alveolar	azithromycin,	discontinued. Supplemental	
	proteinosis	hydroxychloroquine	oxygen requirement remained.	
SFTPC	2 Children	Hydroxychloroquine,	1: minute ventilation (V _E)	(20)
p.l73T, p.l38F	with CPI	prednisone, ranitidine,	remained high later improved	
		TMP-SMX, two months	and became normal,	
		after therapy began, pulse	respiratory system compliance	
		therapy of	(C _{rs}) continued to decline	
		methylprednisolone, later	improved after	
		hydroxychloroquine alone	methylprednisolone, 2:	
			improved V _E , . Functional	
			residual capacity declined,	
			later on improved and became	
			normal. Crs continued to	
			decline, later on improved	
			reaching normal values	
SFTPC p.I73T	Child with	Methylprednisolone,	Pneumatoceles resorbed after	(21)
	CPI,	hydroxychloroquine,	10 days. Weaned off oxygen,	
	pneumatocel	azithromycin	steroid treatment was stopped,	
	es after		radiological improvement	
	biopsy			
SFTPC p.I73T	Child with	Hydroxychloroquine,	Improvement of cough and	(22)
	ILD	oxygen supplementation	dyspnoea, three months	
			completely asymptomatic,	
			disappearance ground glass	
			abnormalities, six months	
			disappearance micronodules	
	Child with	Supplemental oxygen and	No improvement	
	ARDS/DIP	steroids		

		Steroids pulse therapy	Initial improvement, but	
			thereafter progression of ILD	
		Lhydrovyshlorogyino	Improvement in acturation	<u> </u> -
		Hydroxychloroquine	Improvement in saturation,	
			discontinuation of oxygen	
			therapy	
		Hydroxychloroquine	Clinically and radiologically	_
		replaced by azithromycin	stable	
	Child with	Hydroxychloroquine and	No effect, died	-
	DIP	steroids	Two choot, alou	
		Steroids		
SFTPC p.I73T	Child with	Bronchodilators, inhaled	No effect	(23)
	chILD	corticosteroids and		
		antileukotrienes,		
		azathioprine,		
		hydroxychloroquine and		
		intravenous		
		immunoglobulins,		
		exogenous surfactant		
SETDC n 172T	Child with	Supplemental ovugen	Significant couts	(24)
SFTPC p.I73T		Supplemental oxygen,	Significant acute	(24)
	PAP and	whole lung lavages,	improvements of gas	
	NSIP	systemic corticosteroids	exchange with a reduced need	
		and azathioprine	for additional oxygen, later	
			reduced effect	
		Additional corticosteroid	Still oxygen dependent, delay	_
		pulse therapy plus	in growth	
		azathioprine		

SFTPC Dexon	Child with	Oral and intravenous	Some improvement in	(25)
4	respiratory	corticosteroids,	respiratory status, still	
	distress	hydroxychloroquine,	continuous supplemental	
		supplemental oxygen	oxygen requirement and	
			persistent respiratory distress	
SFTPC	8 Children	2 Children ausminus antal	Little offeet died	(20)
		2 Children supplemental	Little effect, died	(26)
p.E66K,	with	oxygen, pulse steroids		
p.l73T,	idiopathic	and hydroxychloroquine		
p.V102M,	diffuse lung	Supplemental oxygen,	Alive on oxygen, listed for	
p.A155P	diseases	pulse steroids,	transplant	
		hydroxychloroquine		
		Supplemental oxygen,	Alive on room air	
		hydroxychloroquine		
		Supplemental oxygen,	Alive on room air	
		steroids,		
		hydroxychloroquine,		
		azithromycin		
		Supplemental oxygen,	Alive on oxygen	
		pulse steroids,		
		hydroxychloroquine		
		Supplemental oxygen,	Alive on oxygen	
		pulse steroids,		
		bronchodilators,		
		antibiotics		
		andololos		
		Steroids, supplemental	Alive on room air	1
		oxygen		

SFTPC	2 Children	Methylprednisolone and	No effect	(27)
p.L188Q	with	hydroxychloroquine		
	respiratory			
	distress			
	(NSIP- like			
	pattern)			
SFTPC*	Child with	Corticosteroids,	Child gained weight,	(28)
	СРІ	hydroxychloroquine and	discharged, later respiratory	
		continuous oxygen	function slowly and	
			progressively declined,	
			underwent lung transplantation	
SFTPC p.I73T	Child with	Supplemental oxygen,	No effect, died	(29)
	NSIP/PAP	antibiotics and oral		
		corticosteroids		
SFTPC p.I73T	Child with	Whole lung lavages,	Restored gas exchange and	(30)
	PAP/ILD	systemic corticosteroids	growth velocity, normal	
		and azathioprine	psychomotor development.	
SFTPC	1 Child with	Clearance, steroids,	Initially could not be weaned of	(31)
p.G182R,	PAP/NSIP	hydroxychloroquine,	mechanical ventilation, age of	
p.L188Q,		mechanical ventilation	6 decannulated	
p.C189W	1 Child with	Clearance, steroids,	Age of 5 successfully	_
	respiratory	azathioprine, mechanical	decannulated	
	failure	ventilation		
	1 Child with	Steroids, azithromycin,	Decannulated age of 3, no	-
	respiratory	hydroxychloroquine,	pulmonary-related	
	failure	mechanical ventilation	hospitalizations anymore	

SFTPC	Child with	Hydroxychloroquine,	Respiratory improvement,	(32)
p.L81V	surfactant	oxygen therapy	stable with minimal symptoms	
	protein C			
	deficiency			
CCTDC*	Child with	Customia starcida	Cood voorong	(22)
SFTPC*		Systemic steroids,	Good response	(33)
	NSIP	azathioprine,		
		hydroxychloroquine		
Different	15 Children	All methylprednisolone	All alive, 11 patients still	(34)
SFTPC	with	5/15 Azithromycin	symptomatic with cough,	
mutations	interstitial	8/15 Hydroxychloroquine	dyspnea, or exercise	
	chronic lung		intolerance.	
	disease			
Paediatric case	reports/series w	ith <i>ABCA3</i> mutations		
i acaiamo case	reporto/series w	nui 7120/10 matations		
ABCA3*/SFT	Child with	Surfactant	Good	(33)
PC	DPLD/surfact			
	ant			
	dysfunction	Systemic steroids	None, later on died	_
ABCA3*	Child with	Systemic steroids,	Good,	
	СРІ	Surfactant		
		Chloroquine	None, later on died	_
	Child with	Systemic steroids,	None, later on died	
	DIP	hydroxychloroquine		
ABCA3	Child with	Methylprednisolone,	Minimal improvement, died	(32)
c.358_359del	ABCA3	oxygen therapy	from progressive respiratory	
	deficiency		failure	

ABCA3	Child with	Methylprednisolone,	Ineffective, no improvement in	(35)
p.W1148X	PAP-like	antibiotics, antivirals and	respiratory function and chest	
and p.T1114A	features	antifungals, oxygen,	X-ray findings	
		mechanical ventilation		
		BAL with bovine	Improved radiographic findings	
		surfactant	improved radiographic infamgs	
		Surfactant		
		Hydroxychloroquine	Decreased oxygen	
			administration	
ABCA3	Child with	Prednisone and	Stable condition	(3)
p.G964D	(possible)	macrolides	Clastic container.	
p.000.12	IPF	macronacs		
ABCA3	Child with	Dexamethasone and	Some effect, no CPAP	(36)
p.A307V	respiratory	surfactant, CPAP	required, later reduced effect	
	distress		again CPAP required	
		Methylprednisolone,	No CPAP required, only nasal	-
		azithromycin,	cannula	
		hydroxychloroquine		
ABCA3	Child with	Pulse steroids, antibiotics	No improvement, died	(37)
p.Y1515X	RDS	,	,	,
ABCA3	2 Children	CPAP, corticosteroids and	Little effect, died	(38)
p.R194G and	with IRDS	hydroxychloroquine		
V1615GfsX15				
ABCA3	Child with	Methylprednisolone, oral	No improvement	(39)
p.D253H	DPLD	prednisone, oxygen		
		therapy		

		Azithromycin	No steroids required, weaned	
			off oxygen	
ABCA3	Child with	Oxygen supplementation,	No improvement	(40)
			No improvement	(40)
p.R280C and	DIP	surfactant therapy,		
p.E690G		corticosteroids		
		Hydroxychloroquine	Improvement FEV1	
45040	01.11.11	D	0	(44)
ABCA3	Child with	Dexamethasone,	Some improvement, later	(41)
p.D507del CA	DIP	supplemental oxygen,	further deterioration by	
Ter 508,		surfactant therapy	lowering dose dexamethasone	
p.D696N		Methylprednisolone,	Slow, but notable	-
		azithromycin,	improvement, still oxygen	
		hydroxychloroquine	requirement, remained	
			tachypneic	
ABCA3	Child with	Methylprednisolone,	Only transient and very limited	(42)
p.K914R,	ILD	antibiotics	effects	
p.L1238_E12				_
39insGG		+ Hydroxychloroquine	Reduced oxygen and	
			corticosteroids required.	
			Improvement on radiological	
			and clinical aspects	
ABCA3	Child with	Home ventilator,	Respiratory mechanics and	(43)
c.59G>T and	severe	methylprednisolone,	gas exchange noticeably	
c.2646_2647i	respiratory	hydroxychloroquine,	improved, less hypercapnia	
nsC	distress	azithromycin		
	syndrome			
ABCA3	Child with	Methylprednisolone,	Respiratory symptoms	(44)
p.H778R,	DIP like	prednisone and	completely disappeared ,	
p.L1252P	pattern		complete resolution of ground	

		hydroxychloroquine,	glass opacities, improved lung	
		clarithromycin	function	
	2.01.11	All 1 70		(45)
Different	9 Children	All corticosteroids, 7/9	1 died, 3 transplanted – 2 died	(45)
ABCA3	with PAP	Hydroxychloroquine	5 without transplantation, 3/5	
mutations	pattern, DIP		improvement of hypoxaemia,	
	pattern and		2/5 no improvement	
	NSIP pattern		4/5 stable lung function	
			1/5 slow decline FEV1	
ABCA3	Child with	Antibiotics, supplemental	No clinical improvement,	(46)
p.L798P	DIP	oxygen, exogenous	increased oxygen requirement	
p.R1612P		surfactant,		
		methylprednisolone,		
		hydroxychloroquine		
ABCA3	Child with	Antibiotics, surfactant,	Short term improvement of	(47)
p.R1561Stop	respiratory	dexamethasone, inhaled	respiration, increasing reticular	
	distress with	nitric oxide,	pattern on HRCT, later	
	cyanosis	methylprednisolone,	increased hypoxemia	
		hydroxychloroquine		
ABCA3 large	Child with	N-CPAP, surfactant	No effect, died of respiratory	(48)
deletion exon	IRDS	therapy, dexamethasone	failure	
2-5		, , , , , , , , , , , , , , , , , , , ,		
ABCA3	Child with	Supplemental oxygen and	No effect, died	(49)
ΔF1203 and	IRDS	systemic corticosteroids		
c.1375ins15		and diuretics		
ABCA3	Child with	Prednisolone and	No improvement, patient died	(50)
p.R20L and	ILD	supplemental oxygen		
c.4483del25				

ABCA3	Child with	CPAP, mechanical	Worsening of disease, died	(51)
heterozygous	cerebropulmo	ventilation and antibiotics		
p.E292V	nary			
	dysgenetic			
	syndrome			
ABCA3	Child with	Supplemental oxygen,	Despite treatment high oxygen	(52)
p.S1116F	RDS	mechanical ventilation,	and mechanical ventilation	
		exogenous surfactant,	required, died of respiratory	
		antibiotics, and inhaled	failure	
		nitric oxide		
ABCA3	19	16/19 Surfactant	7 No effect, 9 moderate	(4)
mutation	Children###		improvement	
	(14 RDS, 4	19/19 Systemic steroids	14 No effect, 4 moderate	
	RDS/PAP, 1		improvement, 1 good	
	PAP)		improvement	
		0/4014	5.11 (1.10)	
		9/19Hydroxychloroquine	5 No effect, 3 moderate	
			improvement, 1 good	
			improvement	
		2/19 Azithromycin	2 No effect	-
Heterozygous	16	12/16 Surfactant	8 No effect, 4 moderate,	-
ABCA3	children### (9		transient improvement	
mutation	with RDS, 4			
	with	12/16 Systemic steroids	8 No effect, 3 moderate,	
	RDS/PAP, 1		transient improvement, 1 good	
	PAP, 2		improvement	
	chILD)	8 /16Hydroxychloroquine	3 No effect, 3 moderate,	
	Jilleb)		transient improvement, 2 good	
			improvement	

ABCA3	Child with	Macrolides,	no effect	(53)				
p.M1227R	DIP	dexamethasone,						
and		mechanical ventilation						
Ins1510fs/ter1		Surfactant	Transient effect	_				
519		Curractant	Transient enect					
ABCA3	11 Children	5 Prednisolone,	Dead	(54)				
	with ILD	·	Deau	(34)				
Heterozygous	WITH ILD	surfactant, oxygen or						
R288K (7		corticosteroids						
patients)		6 Oxygen, aspirin,	Sick-better					
R288K,		surfactant,						
P766S		dexamethasone,						
(heterozygou		montelukast, salbutamol,						
s, 1 patient),		steroids,						
R288K,		hydroxychloroquine,						
S693L		azathioprine, azithromycin						
(heterozygou		or antibiotics						
s, 1 patient),								
R288K,								
Q215K (1								
patient)								
Paediatric case	Paediatric case report with AP3B1 mutation							
AD2D4	Child with	Overgon overtore:	Clinically stable DE are 4.4	(FF)				
AP3B1	Child with	Oxygen, systemic	Clinically stable PF, age 14	(55)				
p.R509X and	HPS2	corticosteroids, G-CSF	dyspnoea on mild exertion					
p.E659X								
Clinical trials								

HPS1†	21 Adults	11 treated with	Pirfenidone superior to	(56)
	with HPS	pirfenidone 10 placebo	placebo: ΔFVC of	
			0.46%/month (p=0.587)	
			Restricted group including only	
			patients with initial FVC values	
			>50% of predicted: difference	
			in pulmonary function:	
			~0.7%/month (p=0.02)	
HPS1 or 4‡	35 Adults	23 treated with	No statistically significant	(57)
	with HPS	pirfenidone, 12 placebo	difference in lung function	

HP: hypersensitivity pneumonitis; PF: pulmonary fibrosis; CPFE: combined pulmonary fibrosis and emphysema; HPS: Hermansky Pudlak syndrome; DIP: desquamative interstitial pneumonia; NSIP: nonspecific interstitial pneumonia; ILD: interstitial lung disease; PAP: pulmonary alveolar proteinosis; CPI: chronic pneumonitis of infancy; IRDS: infant respiratory distress syndrome; ARDS: Acute respiratory distress syndrome; chILD: childhood interstitial lung disease; BAL: bronchoalveolar lavage; (N-) CPAP: (Nasal-) continuous positive airway pressure;

ABCA3 mutations were compound heterozygous or homozygous mutations, unless otherwise stated

*specific mutation not mentioned in the article, diagnosis based on absence of dense bodies platelets under electron microscopy or genetic testing

case also reported in (3)

1 case also reported in (24)

1 case also reported in (3)

1 case also reported in (46)

† 20 of these patients were Puerto Ricans homozygous for a 16-bp duplication in exon 15 of the *HPS1* gene, which leads to a frameshift. The other patient was a Puerto Rican with a 3904-bp deletion in the *HPS3* gene

‡ 33 of these patients were Puerto Ricans homozygous for the known 16-bp duplication in exon 15 of the HPS1 gene. Two patients were non-Puerto Ricans, and the mutations in these patients are not reported

References:

- (1) Cottin V, Reix P, Khouatra C, Thivolet-Bejui F, Feldmann D, Cordier JF. Combined pulmonary fibrosis and emphysema syndrome associated with familial SFTPC mutation. Thorax 2011 Oct;66(10):918-919.
- (2) Wang Y, Kuan PJ, Xing C, Cronkhite JT, Torres F, Rosenblatt RL, et al. Genetic Defects in Surfactant Protein A2 Are Associated with Pulmonary Fibrosis and Lung Cancer. Am J Hum Genet 2009 2009/01;84(1):52-59.
- (3) Campo I, Zorzetto M, Mariani F, Kadija Z, Morbini P, Dore R, et al. A large kindred of pulmonary fibrosis associated with a novel ABCA3 gene variant. Respir Res 2014 2014/04;15(1).
- (4) Kroner C, Wittmann T, Reu S, Teusch V, Klemme M, Rauch D, et al. Lung disease caused by ABCA3 mutations Thorax 2017 Mar;72(3):213-220.
- (5) Takahashi A, Yokoyama T. Hermansky-Pudlak syndrome with special reference to lysosomal dysfunction. A case report and review of the literature. Virchows Arch A Pathol Anat Histopathol 1984;402(3):247-258.
- (6) Furuhashi K, Enomoto N, Fujisawa T, Hashimoto D, Inui N, Nakamura Y, et al. Hermansky-Pudlak syndrome with nonspecific interstitial pneumonia. Intern Med 2014 /;53(5):449-453.
- (7) Sakata Y, Kawamura K, Ichikado K, Suga M, Yoshioka M. Hermansky-Pudlak syndrome type 4 with interstitial pneumonia. Respir Med Case Rep 2013 /;9(1):38-41.
- (8) Kanazu M, Arai T, Sugimoto C, Kitaichi M, Akira M, Abe Y, et al. An intractable case of hermansky-pudlak syndrome. Intern Med 2014 2014/;53(22):2629-2634.
- (9) Liza AF, Aziah AM. Albinism and lung fibrosis in a young man the first case of adult Hermansky-Pudlak Syndrome reported in Malaysia. Med J Malays 2012 /;67(6):620-621.
- (10) Bachli EB, Brack T, Eppler E, Stallmach T, Trueb RM, Huizing M, et al. Hermansky-Pudlak syndrome type 4 in a patient from Sri Lanka with pulmonary fibrosis. Am J Med Genet A 2004 Jun 1;127A(2):201-207.
- (11) Gruson L, Berk T. A case of hermansky-pudlak syndrome with pulmonary sarcoidosis. J Clin Aesthet Dermatol 2009 Oct;2(10):41-44.
- (12) Ideno S, Hatori E, Takeda J, Morisaki H. Anesthetic management of a patient with Hermansky-Pudlak syndrome undergoing video-assisted bullectomy. J Clin Anesth 2015 2015/05;27(3):243-246.
- (13) Avital A, Hevroni A, Godfrey S, Cohen S, Maayan C, Nusair S, et al. Natural history of five children with surfactant protein C mutations and interstitial lung disease. Pediatr Pulmonol 2014 Nov;49(11):1097-1105.
- (14) Rosen DM, Waltz DA. Hydroxychloroquine and surfactant protein C deficiency. N Engl J Med 2005 Jan 13;352(2):207-208.
- (15) Nogee LM, Dunbar AE, Wert SE, Askin F, Hamvas A, Whitsett JA. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. New Engl J Med 2001 2001/02;344(8):573-579.
- (16) Abou Taam R, Jaubert F, Emond S, Le Bourgeois M, Epaud R, Karila C, et al. Familial interstitial disease with I73T mutation: A mid- and long-term study. Pediatr Pulmonol 2009 Feb;44(2):167-175.

- (17) Kröner C, Reu S, Teusch V, Schams A, Grimmelt A-, Barker M, et al. Genotype alone does not predict the clinical course of SFTPC deficiency in paediatric patients. Eur Respir J 2015 2015/07;46(1):197-206.
- (18) Thouvenin G, Taam RA, Flamein F, Guillot L, Bourgeois ML, Reix P, et al. Characteristics of disorders associated with genetic mutations of surfactant protein C. Arch Dis Child 2010 /;95(6):449-454.
- (19) Arikan-Ayyildiz Z, Caglayan-Sozmen S, Isik S, Deterding R, Dishop MK, Couderc R, et al. Survival of an infant with homozygous surfactant protein C (SFTPC) mutation. Pediatr Pulmonol 2014 /;49(3):E112; E115.
- (20) Hevroni A, Goldman A, Springer C. Infant pulmonary function testing in chronic pneumonitis of infancy due to surfactant protein C mutation. Pediatr Pulmonol 2015 2015/06;50(6):E17-E23.
- (21) Sismanlar T, Aslan AT, Griese M. Life-threatening, giant pneumatoceles in the course of surfactant protein C deficiency. Pediatr Pulmonol 2015 2015/07;50(7):E25-E28.
- (22) Salerno T, Peca D, Menchini L, Schiavino A, Boldrini R, Esposito F, et al. Surfactant Protein C-associated interstitial lung disease; Three different phenotypes of the same SFTPC mutation. Ital J Pediatr 2016 2016/02;42(1).
- (23) Banac S, Dessardo S, Lah-Tomulić K, Frleta N, Sindičić-Dessardo N, Šaina G, et al. Lethal respiratory failure due to a surfactant protein C gene mutation. Signa Vitae 2012 2012/;7(2):47-49.
- (24) Brasch F, Griese M, Tredano M, Johnen G, Ochs M, Rieger C, et al. Interstitial lung disease in a baby with a de novo mutation in the SFTPC gene. Eur Respir J 2004 Jul;24(1):30-39.
- (25) Henderson LB, Melton K, Wert S, Couriel J, Bush A, Ashworth M, et al. Large ABCA3 and SFTPC deletions resulting in lung disease. Annals Am Thorac Soc 2013 /;10(6):602-607.
- (26) Peca D, Boldrini R, Johannson J, Shieh JT, Citti A, Petrini S, et al. Clinical and ultrastructural spectrum of diffuse lung disease associated with surfactant protein C mutations. Eur J Hum Genet 2015 2015/08;23(8):1033-1041.
- (27) Chibbar R, Shih F, Baga M, Torlakovic E, Ramlall K, Skomro R, et al. Nonspecific interstitial pneumonia and usual interstitial pneumonia with mutation in surfactant protein C in familial pulmonary fibrosis. Mod Pathol 2004 /;17(8):973-980.
- (28) Hime NJ, Fitzgerald D, Robinson P, Selvadurai H, Van Asperen P, Jaffe A, et al. Childhood interstitial lung disease due to surfactant protein C deficiency: frequent use and costs of hospital services for a single case in Australia. Orphanet J Rare Dis 2014 Mar 19;9:36-1172-9-36.
- (29) Percopo S, Cameron HS, Nogee LM, Pettinato G, Montella S, Santamaria F. Variable phenotype associated with SP-C gene mutations: fatal case with the I73T mutation. Eur Respir J 2004 Dec;24(6):1072-1073.
- (30) Tredano M, Griese M, Brasch F, Schumacher S, De Blic J, Marque S, et al. Mutation of SFTPC in Infantile Pulmonary Alveolar Proteinosis with or without Fibrosing Lung Disease. Am J Med Genet 2004 2004/04;126 A(1):18-26.
- (31) Liptzin DR, Patel T, Deterding RR. Chronic ventilation in infants with surfactant protein C mutations: An alternative to lung transplantation. Am J Respir Crit Care Med 2015 2015/06;191(11):1338-1340.
- (32) Hines EJ, Walsh M, Armes JE, Douglas T, Chawla J. Interstitial lung disease in infancy: A general approach. J Paediatr Child Health 2016 2016/04;52(4):370-376.

- (33) Griese M, Haug M, Brasch F, Freihorst A, Lohse P, Von Kries R, et al. Incidence and classification of pediatric diffuse parenchymal lung diseases in Germany. Orphanet J Rare Dis 2009 2009/;4(1).
- (34) Mechri M, Epaud R, Emond S, Coulomb A, Jaubert F, Tarrant A, et al. Surfactant protein C gene (SFTPC) mutation-associated lung disease: high-resolution computed tomography (HRCT) findings and its relation to histological analysis. Pediatr Pulmonol 2010 /;45(10):1021-1029.
- (35) Yokota T, Matsumura Y, Ban N, Matsubayashi T, Inagaki N. Heterozygous ABCA3 mutation associated with non-fatal evolution of respiratory distress. Eur J Pediatr 2008 Jun;167(6):691-693.
- (36) Tan JK, Murray C, Schultz A. ABCA3 lung disease in an ex 27 week preterm infant responsive to systemic glucocorticosteroids Pediatr Pulmonol 2016 Jan;51(1):E1-3.
- (37) Mukhtar GMA, Al Otaibi WH, Al-Mobaireek KFA, Al-Saleh S. Adenosine triphosphate-binding cassette member A3 gene mutation in children from one family from Saudi Arabia. Ann Thorac Med 2016 2016/07;11(3):227-229.
- (38) Piersigilli F, Peca D, Campi F, Corsello M, Landolfo F, Boldrini R, et al. New ATP-binding cassette A3 mutation causing surfactant metabolism dysfunction pulmonary type 3. Pediatr Int 2015 2015/10;57(5):970-974.
- (39) Thouvenin G, Nathan N, Epaud R, Clement A. Diffuse parenchymal lung disease caused by surfactant deficiency: dramatic improvement by azithromycin. BMJ Case Rep 2013 Jun 24:2013:10.1136/bcr-2013-009988.
- (40) Williamson M, Wallis C. Ten-year follow up of hydroxychloroquine treatment for ABCA3 deficiency. Pediatr Pulmonol 2014 /;49(3):299-301.
- (41) Hallik M, Annilo T, Ilmoja ML. Different course of lung disease in two siblings with novel ABCA3 mutations. Eur J Pediatr 2014 Dec;173(12):1553-1556.
- (42) Kitazawa H, Moriya K, Niizuma H, Kawano K, Saito-Nanjo Y, Uchiyama T, et al. Interstitial lung disease in two brothers with novel compound heterozygous ABCA3 mutations. Eur J Pediatr 2013 /:172(7):953-957.
- (43) Hayes D,Jr, Lloyd EA, Fitch JA, Bush A. ABCA3 transporter deficiency. Am J Respir Crit Care Med 2012 Oct 15;186(8):807.
- (44) Thavagnanam S, Cutz E, Manson D, Nogee LM, Dell SD. Variable clinical outcome of ABCA3 deficiency in two siblings. Pediatr Pulmonol 2013 Oct;48(10):1035-1038.
- (45) Doan ML, Guillerman RP, Dishop MK, Nogee LM, Langston C, Mallory GB, et al. Clinical, radiological and pathological features of ABCA3 mutations in children. Thorax 2008 /;63(4):366-373.
- (46) Goncalves JP, Pinheiro L, Costa M, Silva A, Goncalves A, Pereira A. Novel ABCA3 mutations as a cause of respiratory distress in a term newborn. Gene 2014 Jan 25;534(2):417-420.
- (47) Winter J, Essmann S, Kidszun A, Aslanidis C, Griese M, Poplawska K, et al. Neonatal respiratory insufficiency caused by an (homozygous) ABCA3-stop mutation: A systematic evaluation of therapeutic options. Klin Padiatr 2014 /;226(2):53-58.
- (48) Carrera P, Ferrari M, Presi S, Ventura L, Vergani B, Lucchini V, et al. Null ABCA3 in humans: large homozygous ABCA3 deletion, correlation to clinical-pathological findings. Pediatr Pulmonol 2014 Mar;49(3):E116-20.

- (49) Uchida DA, Wert SE, Nogee LM, Carroll TR, Chatfield BA. Pulmonary nodules in a newborn with ATP-binding cassette transporter A3 (ABCA3) mutations. Pediatrics 2011 /;127(5):e1347; e1351.
- (50) Prestridge A, Wooldridge J, Deutsch G, Young LR, Wert SE, Whitsett JA, et al. Persistent tachypnea and hypoxia in a 3-month-old term infant. J Pediatr 2006 Nov;149(5):702-706.
- (51) Shanklin DR, Mullins AC, Baldwin HS. Cerebropulmonary dysgenetic syndrome. Exp Mol Pathol 2008 /;85(2):112-116.
- (52) Moore GP, Lines MA, Geraghty MT, De Nanassy J, Kovesi T. Novel mutation in ABCA3 resulting in fatal congenital surfactant deficiency in two siblings. Am J Respir Crit Care Med 2014 2014/03;189(6):750-752.
- (53) Maly J, Navratilova M, Hornychova H, Looman AC. Respiratory failure in a term newborn due to compound heterozygous ABCA3 mutation: the case report of another lethal variant J Perinatol 2014 Dec;34(12):951-953.
- (54) Wittmann T, Frixel S, Höppner S, Schindlbeck U, Schams A, Kappler M, et al. Increased risk of interstitial lung disease in children with a single R288K variant of ABCA3. Mol Med 2016 2016/;22:183-191.
- (55) Gochuico BR, Huizing M, Golas GA, Scher CD, Tsokos M, Denver SD, et al. Interstitial lung disease and pulmonary fibrosis in hermansky-pudlak syndrome type 2, an adaptor protein-3 complex disease. Mol Med 2012 /;18(1):56-64.
- (56) Gahl WA, Brantly M, Troendle J, Avila NA, Padua A, Montalvo C, et al. Effect of pirfenidone on the pulmonary fibrosis of Hermansky-Pudlak syndrome. Mol Genet Metab 2002 2002/;76(3):234-242.
- (57) O'Brien K, Troendle J, Gochuico BR, Markello TC, Salas J, Cardona H, et al. Pirfenidone for the treatment of Hermansky-Pudlak syndrome pulmonary fibrosis. Mol Genet Metab 2011 /;103(2):128-134.

Search strategy with three search items in Pub Med

(("Idiopathic Interstitial Pneumonias" [Mesh] OR "Lung Diseases, Interstitial"[Mesh:NoExp] OR "Pulmonary Fibrosis"[Mesh] OR interstitial pneumon*[tiab] OR interstitial lung diseas*[tiab] OR pulmonary fibros*[tiab] OR lung fibros*[tiab] OR "Pneumocytes"[Mesh] OR pneumocyte*[tiab] OR alveolar epithelial cell*[tiab]) AND ("Pulmonary Surfactant-Associated Proteins"[Mesh] OR surfactant associated protein*[tiab] OR lung-surfactant protein*[tiab] OR SFTP*[tiab] OR SP-C[tiab] OR SP-A[tiab] OR SPC[tiab] OR SPA[tiab] OR "Pulmonary Surfactant-Associated Protein C"[Mesh] OR "Pulmonary Surfactant-Associated Protein A"[Mesh] OR "ATP-Binding Cassette Transporters" [Mesh] OR ATP binding cassette transporter*[tiab] OR ABC transporter*[tiab] OR ABCA3[tiab] OR "Hermanski-Pudlak Syndrome"[Mesh] OR hermansky pudlak syndrom*[tiab] OR hermanski pudlak syndrom*[tiab] OR HPS[tiab] OR "HPS1 protein, human" [Supplementary Concept] OR "HPS4 protein, human" [Supplementary Concept] OR "Hps1 protein, rat" [Supplementary Concept] OR "Hps1 protein, mouse" [Supplementary Concept] OR "Hps4 protein, mouse" [Supplementary Concept]) AND ("Pharmaceutical Preparations" [Mesh] OR "Physiological Effects of Drugs" [Mesh] OR "Drug Therapy"[Mesh] OR "drug therapy" [Subheading] OR drug*[tiab] OR therap*[tiab] OR pharmaceutic*[tiab] OR medication*[tiab] OR treat*[tiab] OR "drug effects" [Subheading] OR intervention*[tiab]) AND (english[la]))

Search strategy with three search items in Embase

('interstitial pneumonia'/exp OR 'interstitial lung disease'/de OR 'lung fibrosis'/exp OR (interstitial NEXT/1 pneumon*):ab,ti OR ("interstitial lung" NEXT/1 diseas*):ab,ti OR ((pulmonary OR lung) NEXT/1 fibros*):ab,ti OR 'lung alveolus cell'/exp OR pneumocyte*:ab,ti OR ("alveolar epithelial" NEXT/1 cell*):ab,ti) AND ('surfactant associated protein'/exp OR (('surfactant associated' OR 'lung-surfactant') NEXT/1 protein*):ab,ti OR SFTP*:ab,ti OR 'SP-C':ab,ti OR 'SP-A':ab,ti OR SPC:ab,ti OR SPA:ab,ti OR 'surfactant protein C'/exp OR 'surfactant protein A'/exp OR 'ABC transporter'/exp OR (('ATP binding cassette' OR ABC) NEXT/1 transporter*):ab,ti OR ABCA3:ab,ti OR (('hermansky pudlak' OR 'hermanski pudlak') NEXT/1 syndrom*):ab,ti OR HPS:ab,ti) AND ('pharmaceutics'/exp OR 'drug effect'/exp OR 'drug therapy'/exp OR 'drug therapy'/lnk OR 'pharmaceutics'/lnk OR drug*:ab,ti OR therap*:ab,ti OR pharmaceutic*:ab,ti OR medication*:ab,ti OR treat*:ab,ti OR intervention*:ab,ti) NOT 'conference abstract'/it AND [english]/lim

Search strategy with two search items Pubmed.

(("Idiopathic Interstitial Pneumonias"[Mesh] OR "Lung Diseases, Interstitial"[Mesh:NoExp] OR "Pulmonary Fibrosis"[Mesh] OR interstitial pneumon*[tiab] OR interstitial lung diseas*[tiab] OR pulmonary fibros*[tiab] OR lung fibros*[tiab] OR "Pneumocytes"[Mesh] OR pneumocyte*[tiab] OR alveolar epithelial cell*[tiab]) AND ("Pulmonary Surfactant-Associated Proteins"[Mesh] OR surfactant associated protein*[tiab] OR lung-surfactant protein*[tiab] OR SFTP*[tiab] OR SP-C[tiab] OR SP-A[tiab] OR SPC[tiab] OR SPA[tiab] OR "Pulmonary Surfactant-Associated Protein C"[Mesh] OR "Pulmonary Surfactant-Associated Protein A"[Mesh] OR "ATP-Binding Cassette Transporters" [Mesh] OR ATP binding cassette transporter*[tiab] OR ABC transporter*[tiab] OR ABCA3[tiab] OR "Hermanski-Pudlak Syndrome"[Mesh] OR hermansky pudlak syndrom*[tiab] OR hermanski pudlak syndrom*[tiab] OR HPS[tiab] OR "HPS1 protein, human" [Supplementary Concept] OR "HPS4 protein, human" [Supplementary Concept] OR "Hps1 protein, rat" [Supplementary Concept] OR "Hps1 protein, mouse" [Supplementary Concept] OR "Hps4 protein, mouse" [Supplementary Concept]) AND (english[la])) NOT ((("Idiopathic Interstitial Pneumonias"[Mesh] OR "Lung Diseases, Interstitial"[Mesh:NoExp] OR "Pulmonary Fibrosis"[Mesh] OR interstitial pneumon*[tiab] OR interstitial lung diseas*[tiab] OR pulmonary fibros*[tiab] OR lung fibros*[tiab] OR "Pneumocytes"[Mesh] OR pneumocyte*[tiab] OR alveolar epithelial cell*[tiab]) AND ("Pulmonary Surfactant-Associated Proteins"[Mesh] OR surfactant associated protein*[tiab] OR lung-surfactant protein*[tiab] OR SFTP*[tiab] OR SP-C[tiab] OR SP-A[tiab] OR SPC[tiab] OR SPA[tiab] OR "Pulmonary Surfactant-Associated Protein C"[Mesh] OR "Pulmonary Surfactant-Associated Protein A"[Mesh] OR "ATP-Binding Cassette Transporters" [Mesh] OR ATP binding cassette

transporter*[tiab] OR ABC transporter*[tiab] OR ABCA3[tiab] OR "Hermanski-Pudlak Syndrome"[Mesh] OR hermansky pudlak syndrom*[tiab] OR hermanski pudlak syndrom*[tiab] OR HPS[tiab] OR "HPS1 protein, human" [Supplementary Concept] OR "HPS4 protein, human" [Supplementary Concept] OR "Hps1 protein, rat" [Supplementary Concept] OR "Hps1 protein, mouse" [Supplementary Concept] OR "Hps4 protein, mouse" [Supplementary Concept] OR "Hps4 protein, mouse" [Supplementary Concept]) AND ("Pharmaceutical Preparations"[Mesh] OR "Physiological Effects of Drugs"[Mesh] OR "Drug Therapy"[Mesh] OR "drug therapy" [Subheading] OR drug*[tiab] OR therap*[tiab] OR pharmaceutic*[tiab] OR medication*[tiab] OR treat*[tiab] OR "drug effects" [Subheading] OR intervention*[tiab]) AND (english[la]))

Search strategy with two search items Embase

'interstitial pneumonia'/exp OR 'interstitial lung disease'/de OR 'lung fibrosis'/exp OR (interstitial NEXT/1 pneumon*):ab,ti OR ('interstitial lung' NEXT/1 diseas*):ab,ti OR ((pulmonary OR lung) NEXT/1 fibros*):ab,ti OR 'lung alveolus cell'/exp OR pneumocyte*:ab,ti OR ('alveolar epithelial' NEXT/1 cell*):ab,ti AND ('surfactant associated protein'/exp OR (('surfactant associated' OR 'lung-surfactant') NEXT/1 protein*):ab,ti OR sftp*:ab,ti OR 'sp-c':ab,ti OR 'sp-a':ab,ti OR spc:ab,ti OR spa:ab,ti OR 'surfactant protein c'/exp OR 'surfactant protein a'/exp OR 'abc transporter'/exp OR (('atp binding cassette' OR abc) NEXT/1 transporter*):ab,ti OR abca3:ab,ti OR (('hermansky pudlak' OR 'hermanski pudlak') NEXT/1 syndrom*):ab,ti OR hps:ab,ti) NOT 'conference abstract'/it AND [english]/lim AND ('case report'/de OR 'clinical article'/de OR 'clinical trial'/de OR 'cohort analysis'/de OR 'comparative study'/de OR 'controlled study'/de OR 'human'/de OR 'human tissue'/de OR 'major clinical

study//de OR 'retrospective study//de) AND 'article'/it NOT ('interstitial pneumonia'/exp OR 'interstitial lung disease'/de OR 'lung fibrosis'/exp OR (interstitial lung disease'/de OR 'lung fibrosis'/exp OR (interstitial NEXT/1 pneumon*):ab,ti OR ('interstitial lung'NEXT/1 diseas*):ab,ti OR ((pulmonary OR lung) NEXT/1 fibros*):ab,ti OR 'lung alveolus cell'/exp OR pneumocyte*:ab,ti OR ('alveolar epithelial' NEXT/1 cell*):ab,ti AND ('surfactant associated protein'/exp OR (('surfactant associated' OR 'lung-surfactant') NEXT/1 protein*):ab,ti OR sftp*:ab,ti OR 'sp-c':ab,ti OR 'sp-a':ab,ti OR spc:ab,ti OR spa:ab,ti OR 'surfactant protein c'/exp OR 'surfactant protein a'/exp OR 'abc transporter'/exp OR (('atp binding cassette' OR abc) NEXT/1 transporter*):ab,ti OR abca3:ab,ti OR (('hermansky pudlak' OR 'hermanski pudlak') NEXT/1 syndrom*):ab,ti OR hps:ab,ti) AND ('pharmaceutics'/exp OR 'drug effect'/exp OR 'drug therapy'/exp OR 'drug therapy'/lnk OR 'pharmaceutics'/lnk OR drug*:ab,ti OR therap*:ab,ti OR pharmaceutic*:ab,ti OR medication*:ab,ti OR treat*:ab,ti OR intervention*:ab,ti) NOT 'conference abstract'/it AND [english]/lim)

Include: antibody and cells used for ILD research

Exclude: siRNA/shRNA, overexpression gene, acute respiratory distress syndrome, cell therapy, only ventilation/oxygen therapy, bronchoalveolar lavage or lung transplantation