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ABSTRACT The incidence of indeterminate pulmonary nodules has risen constantly over the past few
years. Determination of lung nodule malignancy is pivotal, because the early diagnosis of lung cancer
could lead to a definitive intervention. According to the current international guidelines, size and growth
rate represent the main indicators to determine the nature of a pulmonary nodule. However, there are
some limitations in evaluating and characterising nodules when only their dimensions are taken into
account. There is no single method for measuring nodules, and intrinsic errors, which can determine
variations in nodule measurement and in growth assessment, do exist when performing measurements
either manually or with automated or semi-automated methods. When considering subsolid nodules the
presence and size of a solid component is the major determinant of malignancy and nodule management,
as reported in the latest guidelines. Nevertheless, other nodule morphological characteristics have been
associated with an increased risk of malignancy. In addition, the clinical context should not be overlooked
in determining the probability of malignancy. Predictive models have been proposed as a potential means
to overcome the limitations of a sized-based assessment of the malignancy risk for indeterminate
pulmonary nodules.

Introduction: the “size” of the problem
By definition, a lung nodule is a rounded or irregular opacity, which may be well or poorly defined,
measuring ⩽3 cm in diameter, surrounded by aerated lung on radiological imaging [1]. The definition
includes nodules in contact with pleura and excludes those associated with lymphadenopathies or pleural
disease [2]. An opacity <3 mm should be referred to as a micronodule [1].

With the introduction of multidetector computed tomography (MDCT), the number of detected lung
nodules, particularly those small in size, has dramatically increased. The prevalence of noncalcified lung
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nodules has been reported as 33% (range 17–53%) and 13% (range 2–24%), in a screening and
nonscreening study population, respectively [2]. Notably, screening studies include asymptomatic subjects
at high risk of developing lung cancer, among whom the majority have small noncalcified lung nodules on
thin-section MDCT [3], while in a nonscreening population a lung nodule represents an incidental
finding.

Since the increase in the detection rate of small pulmonary nodules, the clinical significance of these
findings represents a new challenge [2, 4], and the optimal management of each case becomes pivotal and
should be conducted according to the clinical setting.

After detecting a lung nodule, the main goal for physicians is to identify a nodule suspicious enough to
warrant further testing as early as possible, but avoiding unnecessary diagnostic or therapeutic procedures.
In cases of malignant nodules, the early diagnosis of lung cancer could provide a safe and definitive
solution. In this context, detection and follow-up using computed tomography (CT) play an important
role, even though the risk of false-positive results, as well as the biological cost in terms of radiation
burden from several CT scans required during follow-up and healthcare costs should all be taken into
account [4].

Nodule size and growth rate remain the most widely used predictors to assess probability of nodule
malignancy and to determine nodule management according to the international guidelines [2, 4–7].
Indications included in the guidelines are based on the existence of a directly proportional relationship
between the initial size, growth rate and risk of malignancy of nodules.

Until now, nodule management has been based on the measurement of nodule diameter, even though the
more recent guidelines introduced nodule volume as an indicator. The British Thoracic Society (BTS)
added initial volume and volume doubling time (VDT) calculations to the diameter, and the Fleischner
Society added volume [2, 7]. The data on volumetry are mainly derived from the Dutch–Belgian Lung
Cancer Screening trial (NELSON) evidence [8].

When considering size for managing an indeterminate pulmonary nodule the existence of a potential
inherent inaccuracy of nodule measurements in terms of diameter, volume and growth rate should be
taken into account.

In this review we debate the relevance of size and growth rate in nodule characterisation, as well as the
currently used methods for measuring pulmonary nodules, their limitations and factors influencing nodule
measurement variations and growth estimation. Special considerations on subsolid nodules (SSNs) are
included in this context. Finally, the risk prediction models that integrate clinical and nodule
characteristics besides size and the role of nodule size as a factor affecting the critical time for follow-up
are briefly discussed.

Size and malignancy
In the above-described scenario, a strong effect of the nodule size on predicting malignancy has been
underlined, even though the management of a pulmonary nodule cannot solely rely on size.

It has been widely demonstrated that there is a proportional increase in the risk of malignancy as the
nodule diameter increases, as reported in an extensive review [9]. MCWILLIAMS et al. [10] confirmed the
observation that nodule diameter is associated with lung cancer probability, with a significant nonlinear
relationship in patients undergoing low-dose CT screening (p<0.001 for nonlinearity).

It is worth noting that the prevalence of malignancy in nodules measuring <5 mm is very low, ranging
between 0 and 1% [8, 9]. In the National Lung Screening Trial (NLST), the prevalence of lung cancer
among patients with 4–6-mm nodules was very low: 0.49% (18 out of 3668 patients) at baseline, 0.3% (12
out of 3882 patients) in the first screening round and 0.7% (15 out of 2023 patients) in the second round
of screening [11, 12]. Moreover, in the NELSON study malignancy risk in subjects with nodules
measuring <5 mm or <100 mm3 was similar to the risk in subjects without nodules [8]. By taking into
account these observations, according to the recent guidelines the nodule size threshold (diameter or
volume) for determining the need for follow-up has been increased to 5 mm or 80 mm3 for BTS
guidelines and 6 mm or 100 mm3 for Fleischner Society guildeines [2, 7].

In table 1 we summarise the relationships between the diameter of pulmonary nodules and the prevalence
of malignancy, as reported in a large literature review [9], and between diameter, volume and VDT with
the prevalence of malignancy as reported in the NELSON screening study by HOREWEG et al. [8].

Apart from nodule size, it is well known that nodule appearance in terms of density affects the probability
of malignancy, reflecting histological differences between lesions.
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Data from the literature confirmed the above-described relationship between nodule size and malignancy
even when distinguishing lung nodules according to their density. The first screening trials demonstrated a
⩽1% malignancy risk in solid nodules <5 mm in diameter, as reported in the Early Lung Cancer Screening
Project (ELCAP), and in the Mayo Clinic CT screening trial the majority (80%) of cancers were >8 mm in
diameter [13–15].

Regarding SSNs, including pure ground-glass nodules (pGGNs), named nonsolid nodules and part-solid
nodules (PSNs), results derived from the ELCAP [14] and the following I-ELCAP screening studies [16,
17] demonstrated a prevalence of malignancy for small nodules of 0% (considering a maximum nodule
diameter of 5 mm) and <1% (considering a maximum nodule diameter of 6 mm). In both experiences an
increase in malignant cases was associated with an increase in nodule diameter [14, 16, 17]. Furthermore,
in the early ELCAP screening the prevalence of malignancy was higher among SSNs, particularly when
considering PSNs (18% for pGGNs and 63% for PSNs), than among solid ones (7%) [14].

Therefore, it has been suggested that for SSNs, management and T staging assessment, as included in the
tumour node metastasis classification, should be adjusted by measuring both the overall nodule size and
the solid component size [6, 18, 19].

Size changes: the growth rate
Small nodules are not reliably characterised by contrast enhancement evaluation or positron emission
tomography scanning and biopsy is difficult to perform on these nodules. However, the risks involved in a
surgical diagnosis would be excessive compared to the relatively low prevalence of malignancy in the small
nodules.

Nodule growth, determined by imaging surveillance, could be used as a diagnostic tool for assessing
malignancy [5]. By performing an “early” repeated CT within 30 days, YANKELEVITZ et al. [20] accurately
detected growth in nodules as small as 5 mm and ZHAO et al. [21] demonstrated that the majority of
resolving nodules disappeared at the same time point.

COLLINS et al. [22] advanced the theory of an exponential growth of tumours to predict the growth rate,
which assumes a uniform three-dimensional (3D) tumour increase. Therefore, growth is typically
expressed in terms of VDT, defined as the time taken for the nodule to double in volume or to increase
26% in diameter [5, 22].

LINDELL et al. [23] analysed the growth curves of lung cancer detected in a screening population, observing
that lung cancers may be associated with a fairly steady or accelerated growth, particularly the more
aggressive tumours. The authors concluded that the initial tumour size at one point and the interval
growth assessed between two points are not predictive of the future growth, therefore the likelihood of a
nodule to be malignant may be misinterpreted by using models assuming an exponential growth [23].

Interesting results have been reported on VDT by XU et al. [24], who retrospectively investigated the role
of morphological features, size and VDT in the differentiation between benign and malignant lung solid

TABLE 1 Relationship between nodule size, expressed as diameter and volume, and growth
rate, expressed as volume doubling time (VDT), with the prevalence of malignancy

Prevalence of malignancy %

NELSON screening study [8] Literature review [9]

Diameter mm
<5 0.4 0–1
5–10 1.3 6–28
⩾10 15.2 33–60
⩾20 64–82

Volume mm3

⩽100 0.6
100–300 2.4
⩾300 16.9

VDT days
⩾600 0.8
400–600 4
⩽400 9.9

Data from [8, 9].
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nodules detected in the NELSON trial. The study demonstrated that by using a multivariate model, when
follow-up data are available, nodule growth assessed by VDT at 1-year follow-up was the only strong
predictor for malignancy.

A wide range of growth rates for lung cancer has been reported in literature, according to different
methods used to measure the nodule (diameter, manual bidimensional or automated 3D volume), as well
as to the histological subtypes and radiological appearance [2]. The clinical setting seems not to affect the
nodule growth rate, in fact no significant differences between screening and nonscreening studies have
been demonstrated in this regard [25].

VDTs in the range of 20–400 days have been reported for malignant solid nodules, with a 98% negative
predictive value of malignancy for a VDT of >500 days (calculated using volumetric software) [26]. Longer
times have been considered for malignant SSNs, in particular 813±375 days and 457±260 days for pGGNs
and PSNs, respectively [2, 25–30]. Notably PSNs with a solid component ⩽5 mm showed significantly
longer VDT, compared to lesions with a solid portion >5 mm [31].

In the NELSON screening trial, growing nodules were stratified in risk groups according to VDT (high
risk <400 days; intermediate risk 400–600 days; low risk >600 days) [32]. Specifically, VDT stratified the
probabilities of malignancy as follows: 0.8% (95% CI 0.4–1.7%) for VDT ⩾600 days, 4.0% (95% CI 1.8–
8.3%) for VDT 400–600 days and 9.9% (95% CI 6.9–14.1%) for VDT ⩽400 days [32].

Size measurements: methods and limitations
Size measurements of lung nodules need to be accurate and precise to allow correct risk classification and
to assess changes in nodule size over time. Accuracy describes the difference between the mean value of
the object measured and its true value [33]. Precision refers to variability in performing different
measurements on the same experimental unit, when measurement setting is either stable or variable [33].
These characteristics are particularly relevant for small-sized nodules whose changes, even when doubled
in time, are difficult to recognise visually.

Lung nodules can be evaluated according to diameter, area or volume, calculated either by manual or
semi-automated/automated methods. Semi-automated methods allow the operator manual interaction with
the automated modality.

Results from the literature agree that volume measurement is a method with a better performance in
nodule sizing, as well as in assessing nodule’s growth [34, 35]. MEHTA et al. [36] added volumetric nodule
measurement to an existing prediction model for nodule malignancy estimation, showing an increase in
the number of nodules correctly classified. Notably, the study included only lesions <15 mm in diameter.
A more recent study on lung cancer probability applied to the NELSON population compared nodule
management strategies based on nodule volume (cut-offs 100 mm3 and 300 mm3 for an indeterminate and
a positive test, respectively) versus nodule diameter (cut-offs 5 mm and 10 mm for an indeterminate and a
positive test, respectively) [37]. The study concluded that the volume-based analysis had a sensitivity and
negative predictive value comparable to those resulting from the diameter-based analysis, whereas the
specificity and positive predictive values were higher [37].

In this context technical and practical issues need to be considered. Firstly, nodule diameter measurement
is not a reliable method for assessing the entire nodule dimension and it is affected by non-negligible
inter- and intra-observer variability. Secondly, volume measurement methods tend to be more susceptible
to the influence of technical parameters and software type used to perform volumetry. Moreover,
automated systems are not routinely used, mainly because they usually are not integrated in the picture
archiving and communication system [38] and their application may be time consuming.

One-dimensional and two-dimensional measurements
The most commonly used method to define nodule size consists in measuring the maximum nodule
diameter using a one-dimensional (1D) calliper, according to the RECIST (Response Evaluation Criteria in
Solid Tumours) criteria [39]. This method has been promoted as a more practical and simple system than
that of the World Health Organization [39]. Established in the late 1970s, the latter relies on
two-dimensional (2D) or cross-sectional area measurement, calculated by multiplying the tumour’s
maximum diameter in the transverse plane by its largest perpendicular diameter on the same image [39].
Interestingly, the 2D measurement showed a greater variability when applied to solid nodules compared to
1D and volumetric methods [40]. Moreover, as reported by JENNINGS et al. [34], in the assessment of
growth the use of the cross-sectional area did not perform significantly better than the diameter.

Another method of measuring nodule size is to assess the average diameter, calculated between the
maximal long-axis and perpendicular maximal short-axis diameters assessed on transverse CT sections.
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This method has been recommended by the Fleischner Society in the guidelines published in 2005 and
2013 for management of indeterminate pulmonary nodules, as it reflects the entire nodule dimensions
more accurately [4, 6].

There are some limitations of these methods affecting both accuracy and precision of nodule
measurements. When using 1D or 2D measurements we consider only the subset of data included in the
maximum cross-sectional diameter or area measured on the axial image [41]. It is worth noting that the
maximum nodule diameter may be in nonaxial images (figure 1a and b).

Errors and variability are particularly evident when considering small nodules. In a retrospective analysis
including only solid noncalcified pulmonary nodules <2 cm in diameter, REVEL et al. [42] stated that the
largest transverse cross-sectional nodule diameter manually measured by positioning an electronic calliper
is not reliable due to a poor intra- and inter-reader agreement (figure 1c and d). The best intra-reader
repeatability coefficient (5% error rates) was 1.32 and the 95% limits of agreement for the difference
among readers was ±1.73 [42]. From a clinical point of view, this means that by using the 1D method,
measurement values <1.32 and <1.73 mm cannot be distinguished from errors.

a) b)

c) d)

12.0 mm (2D)

12.2 mm (2D) 24.7 mm (2D)

10.7 mm (2D)
10.2 mm (2D)

FIGURE 1 Limitations of two-dimensional (2D) measurements. The axial diameter may not be the maximum
one in the evaluation of lung nodules. a) A small part-solid nodule in the apico-posterior segment of the left
upper lobe, with a maximum axial diameter of 12×12.2 mm; b) the sagittal multiplanar reconstruction shows
that the largest diameter of the same nodule is the sagittal one of 24.7 mm. The multiplanar evaluation of
nodule diameter is especially important to document asymmetrical growth of nodules. c), d) The low level of
agreement when measuring small nodules: for the same nodule in the right lower lobe two different
diameter values have been reported by two readers. Considering the nearest whole diameter of the two
values, it results in 1 mm difference in the maximum diameter, a significant difference when considering
small nodules.
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Furthermore, a study derived from NLST demonstrated that variations in 1D measurement of pulmonary
nodule diameter performed using electronic calliper account for much of the disagreement among readers
in the classification of the screening results as positive or negative, in particular when considering nodules
with irregular shape and indistinct margins [43].

In the attempt to reduce variability in nodule measurements, the latest version of the Fleischner Society
guidelines published in 2017 recommended the calculation of the average nodule diameter between the
long and the short axis in whichever plane (axial, coronal or sagittal) the nodule shows its maximum
dimension [7]. A following statement focused on recommendations for measuring pulmonary nodules
clarified that for nodules <1 cm the dimension should be expressed as average diameter, while for larger
nodules both short- and long-axis diameters taken on the same plane should be reported [44].

With regard to SSNs, visual evaluation is a difficult task as nodule margins tend to be ill-defined and have
a low contrast with respect to the surrounding lung parenchyma. In this context, uncertainties exist not
only in the nodule measurement, due to difficulties in delineating nodule margins and different
densitometric components of PSNs, but also in the classification of nodule morphological characteristics
(i.e. pGGN or PSN) [45, 46].

For SSNs a maximum variability of ±2.2 mm in measuring both the longest nodule diameter and the
average one has been reported [46]. The recent BTS guidelines corroborated these data and stated that for
SSNs an increase in the maximum diameter ⩾2 mm is strongly predictive of malignancy [2]. When
considering small SSNs (<1 cm) the variability in measuring nodule dimension was lower when using the
average diameter than the longest one [46]. The latest statement from the Fleischner Society on nodule
measurements supports this evidence and recommends the expression of the dimension of SSNs <1 cm as
average diameter, as for solid nodules [44].

Two recent studies focused on the evaluation of observer variability in visual classification of SSNs and the
potential implication on patient management, both in a screening and nonscreening setting [45, 47].
Agreement values were moderate (intra- and inter-observer agreement κ-values of 0.57 and 0.51,
respectively in the screening setting; inter-observer agreement κ-value of 0.56 in the nonscreening setting)
and discordance in nodule classification was mainly due to the assessment of the solid component, in
terms of presence and size [45, 47]. This variability is probably related to the lack of standardised criteria
on how to measure different densitometric components of SSNs and on which CT window setting (i.e.
lung or mediastinal) should be used, at the time of their publication.

A recent article demonstrated that the lung window setting has a comparable reproducibility, but higher
accuracy in SSN classification and measurement of the solid component than the mediastinal window
setting [48]. Moreover, LEE et al. [49] showed that the size of a solid portion displayed at the lung window
setting better correlates with the nodule invasive component. Conversely, by using a mediastinal window
setting, only areas >−160 Hounsfield units can be detected as solid, resulting in an underestimation of the
size of the solid portion (figure 2) [45, 46]. Therefore, on the basis of the updated literature,
recommendations from the Fleischner Society suggest the use of the lung window setting and the high
spatial frequency (sharp) filter to judge the presence of a solid component, and the measurement of both
the solid and nonsolid portions in a PSN. The same display window setting is recommended for
measuring solid nodules [44].

3D measurements
The most commonly reported 3D methods for nodule volume measurement are those performed using
manual or semi-automated/automated techniques.

When measuring volume manually, the region of interest (ROI) is first defined by outlining the 2D nodule
borders section by section and then applying 3D software that estimates nodule volume from the number
of voxels included within the multiple ROIs [50].

By using semi-automated/automated methods the ROI is defined automatically or by starting from a point
inside the nodule selected by the user. Afterwards a segmentation algorithm is applied to outline 3D
nodule borders and calculate the volume. Segmentation is often based on a threshold density technique
followed by voxel counting for the volume estimation. Alternative methods include the estimation of the
nodule shape in the continuous space of the object [50].

One of the first applications of volumetric analysis was the study by YANKELEVITZ et al. [41], who compared
the accuracy of 3D techniques in determining volume with the accuracy of 2D techniques in defining a
cross-sectional area. On synthetic spheres volume estimation was reliable as the area measurement and,
moreover, the VDT estimated on in vivo nodules appeared to be more consistent with the final pathologic
diagnosis, as opposed to 2D techniques [41].
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In a preliminary experience with nodule 3D evaluation, REVEL et al. [51] reported a maximum
measurement error of 6.38% (upper limit of the 95% limit of acceptability) and underlined that a 6.38%
increase in volume corresponds to a 2.1% increase in diameter (e.g. 0.1 mm and 0.2 mm for nodules
measuring 5 mm and 10 mm, respectively). Therefore, the precision of the 3D method can be considered
to be much higher than that of the manual method of measuring diameter.

Moreover, high intra- and inter-reader agreement has been reported in the literature for volumetry (up to
0.99) [52–55], and volumetry performance was independent from the observer experience [55].

Factors influencing nodule measurement variations
The performance of 1D and 2D measurements depends mainly on nodule size, technical conditions and
reading setting.

As regards size, major concerns exist in the measurement of small nodules. By using a field of view of
360 mm and an electronic matrix of 512×512, as is commonly applied in chest CT scan acquisition, the
pixel dimension is ∼0.7 mm [56]. Therefore, a small difference in calliper positioning, even of a single
pixel, could result in a significant difference in nodule size.

Regarding technical issues, nodules are better detected and characterised using thin and contiguous CT
sections, as confirmed by results in the literature [2, 57–61]. It has been well established that contiguous
thin-section CT scans reduce the partial volume effect that is responsible for errors in nodule margin
delineation and in density recognition. In particular, it has been suggested that thin-section images
increase sensitivity in detecting pGGNs and avoid the misinterpretation of solid nodules as SSNs [60].
Another parameter affecting accuracy in nodule measurement is the low tube current applied to perform
CT scans, particularly in the screening programmes. The intrinsic increase in image noise of low-dose CT
images may simulate the presence of a ground-glass opacity or may hide the margins of a pGGN, thus
resulting in lesion misinterpretation and inaccurate measurement [60–62].

In addition, image reading settings may play an important role in assessing nodule size, particularly in the
follow-up. Lower variability in lesion sizing has been reported when readers have the chance to consult

20.3 mm (2D) 16.0 mm (2D)

a) b)

FIGURE 2 Disagreement in measuring the solid portion of a part-solid nodule when using different
reconstruction algorithms and window settings. A part-solid nodule in the apical segment of left lower lobe is
shown. a) By using a high-spatial frequency algorithm and the lung window, the measured maximum axial
diameter of the solid portion of the nodule corresponds to 20.3 mm; b) by using a smooth algorithm and the
mediastinal window, the measured maximum axial diameter of the solid portion of the nodule corresponds to
16 mm. 2D: two-dimensional.
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previous measurements as compared to an “independent” reading session performed without any baseline
measurement [63]. Furthermore, nodule size assessment performed during follow-up by the same
radiologist and using automated software to compare images is helpful in reducing measurement
variations, particularly as regards GGNs, for which subtle changes in size and density may be better
underlined [64].

The accuracy and precision of 3D nodule volume measurement are influenced by multiple factors related
to nodule/patient characteristics and technical issues.

Regarding nodule characteristics, volume overestimation of the small nodules due to the partial volume
effect represents quite a challenge. It is a common imaging artefact when a limited spatial resolution is
used to perform CT scans and, consequently, different tissues are included in the same pixel/voxel [50, 52,
65–69]. When attenuation value is not sufficient to distinguish nodule borders, segmentation errors could
occur, as in the case of nonspherical or irregular lesions [41, 65, 68, 70–72], as well as in juxtavascular or
juxtapleural ones [72–74]. Reduced nodule attenuation, as in the case of SSNs, could also affect nodule
segmentation when using the commonest threshold density technique, because of the low attenuation
difference between nodule borders and the surrounding parenchyma [50]. Moreover, in PSNs the
ground-glass component, usually peripheral, may hinder software detection of attenuation differences with
the surrounding parenchyma, even for the solid portion [75]. Earlier studies described significantly higher
errors of volumetry when evaluating SSNs in comparison to the solid nodules [76] and low correlation of
volumetric assessment of the solid component (calculated as ratio of the solid component to the whole
volume) with the histopathological classification [77]. Thanks to the development of specific software,
volumetric measurement of SSNs has become accurate over the years with a successful segmentation of up
to 97% of the nodules [75, 78–80]. Similar results have been reported in the detection and segmentation of
PSNs and, interestingly, a quantification of the solid component was related to pathological prognostic
factors, such as lymphatic, vascular and pleural invasion [75, 81, 82].

As regards patient characteristics, cardiovascular motions affect volumetry because they are conveyed to
lung parenchyma and determine changes in the volume of pulmonary nodules, especially the smallest ones
[83]. Conflicting results are reported in the literature regarding the effect of respiratory phases on lung
volume and, as a consequence, on the nodule volume measurement. Some authors showed an inverse
relationship between inspiratory effort and nodule volume [84, 85], while others did not [65]. It should be
kept in mind that CT volumetric measurements of SSNs, regarding both the ground-glass and solid
components, showed a tendency to be larger than the histological counterpart, because of the different
inflation state of the lung applied to a focal soft tumour [49, 78].

There are several technical factors affecting nodule volume estimation, such as section thickness [40, 68,
69, 86–89] and overlapping [90, 91], pitch mode [92], reconstruction algorithm [86, 89–91, 93–95] and
intravenous contrast medium injection [95–97], as summarised in table 2. In addition, major technical
concerns exist regarding nodule volumetry during follow-up. First, different performances are reported
when using different scanner types [50, 86, 98]. Secondly, volumetry is affected by variability in the
segmentation process due to differences in the method and software used. The automated method can
introduce biases in volume measurements due to a different software performance, even though it has
been demonstrated that it reduces observer variability [113, 114]. Manual correction it is expected to act
on these biases [55, 115]. Differences in volume estimation have been reported when using different
software and different algorithms of correction of partial volume effect artefacts [57, 67, 116–118].
Therefore, it is advisable to perform nodule follow-up using the same scanner, technique and software
package.

Another relevant issue is the potential influence of tube current on volumetry. Few experiences reported a
low performance of volumetry due to tube current reduction [76, 99, 100]. A larger number of results
derived from studies using newer generation scanners did not confirm the previous observations. Indeed,
the introduction of iterative reconstructions, employed to increase image quality in favour of a further
reduction of the effective radiation dose, demonstrated an even better performance compared to that of
the traditionally used filtered-back projection reconstructions [101–112].

Effect of measurement variations on nodule growth
If we keep in mind the aforementioned exponential model of nodule growth, small change in nodule
dimension may be clinically relevant. By using 1D and 2D methods small changes in nodule dimension
may not be detected, resulting in a low sensitivity in identifying potential malignant lesions [42].
Furthermore, it has been demonstrated that growth assessment based on the maximum diameter
measurement in noncalcified lung nodules, classified as positive at NLST, results in a moderate agreement
among readers (κ=0.55) with potential implications in patient management [119]. In the same way,
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relative errors have been reported when manually measuring 1D longest diameters according to the
RECIST criteria to evaluate response to treatment of lung metastases [120]. These errors, when using 1D
and 2D measurements, can lead to a big difference in estimating growth rate, considering the multiplier
effect when volume and doubling time are estimated on the basis of diameter [42, 120].

Growth is a 3D phenomenon, therefore an asymmetrical growth could not be detected by using 1D or 2D
methods, especially if it occurs in a different plane with respect from the axial one [41]. Intuitively, the
direct assessment of nodule volume and VDT provides an accurate estimation of nodule growth [51].
Combined with lower uncertainty of measurements, the 3D method allows detection of changes even
within a shorter period of time, resulting in a higher sensitivity of volume-based techniques in growth
evaluation [26, 73] (figure 3). Estimations of nodule growth rates obtained from automated 3D volumetric
measurements showed a good correlation with 2D diameter measurements, with a greater divergence for
irregular lesions [70]. Since all the available data are included in the nodule volume definition and
calculation, irregular nodules are evaluated with small magnitude errors and asymmetric growth could be
reliably defined by using volumetric methods [41]. However, the reported volume measurement errors
vary between 20% and 25%, therefore a change in volume of ⩾25% should be considered to define a
significant growth [2, 33, 121]. In the screening setting, MARCHIANÒ et al. [122] reported similar values of
repeatability, with the 95% confidence interval for the difference in measured volumes of ±27%.

Subsolid nodules: special considerations
When evaluating SSNs, nodule density provides major and additional information in terms of malignancy
prediction.

While the proportion of ground-glass opacity was found to be a significant prognostic factor of less
invasive cancer, the presence of a solid component corresponds to the pathological finding of tumour
invasion and, therefore, represents a predictor of malignancy [2, 6]. Particularly in PSNs, a smaller solid
portion has been described as an independent differentiator of a pre-invasive lesion from an invasive
adenocarcinoma [123] and, moreover, the diameter of the solid component has a better correlation with
patient prognosis than the whole-lesion diameter [18, 124]. Finally, some typical radiological patterns, in
terms of both nodule size and density, could be related to different histological categories described in the
latest adenocarcinoma classification: the two premalignant (atypical adenomatous hyperplasia) and
pre-invasive (adenocarcinoma in situ) lesions usually appear as pGGNs with a diameter of <5 mm or
>5 mm, respectively; minimally invasive adenocarcinoma as a PSN with a solid area <5 mm; and invasive
adenocarcinoma as a larger PSN or solid nodule [2, 124, 125].

Some studies have tried to identify a “threshold size” of different densitometric components in relation to
nodule malignancy. Nodules with a ground-glass component of >50% showed a significantly better
prognosis [126]. In PSNs, LEE et al. [49] observed that a maximum diameter of the solid component of
⩽3 mm was predictive of a pre-invasive or minimally invasive histology and two volumetric measurements
(solid volume ⩾1.5 cm3; percentage of solid volume ⩾63%) were found to be independent indicators

TABLE 2 Technical factors that may affect volume measurement

Effects on volumetry

Section thickness Volume overestimation with thick sections [40, 68, 69, 86–89]
Overlapping reconstruction Volume overestimation with non-overlapping sections [90, 91]
Pitch Low accuracy with high pitch mode [92]
Reconstruction algorithms Easier nodule sampling with high spatial frequency algorithms [86,

89, 91, 93]
Volume overestimation with high spatial frequency algorithms [90,
94, 95]

Intravenous contrast medium Volume overestimation [95–97]
Scanner type Differences in volume estimation [50, 86, 98]

Higher accuracy with helical CT scanner [98]
Low radiation dose Low accuracy [76, 99, 100]
Iterative reconstruction Better performance [101–112]
Manual versus semi/automated
method

Reduced observer variability with automated system [113, 114]
Manual interaction reduces bias due to the software performance
[55, 115]

Software and algorithms package Differences in volume estimation [57, 67, 116–118]

CT: computed tomography.
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associated with increased likelihood of recurrence and/or death in patients with stage I adenocarcinoma
[127]. Likewise, the ratio of the solid component to total tumour is related with tumour histology and
therefore is a useful method of estimating prognosis [128, 129].

To reflect the changes in SSNs, not only in size but also in attenuation, another approach has been
proposed, i.e. the estimation of the mass that integrates the nodule volume and density [130]. In a clinical
evaluation, DE HOOP et al. [131], when applying nodule mass assessment (i.e. mean CT attenuation ×
volume) demonstrated a smaller measurement variability compared with diameter and volume and an
earlier detection of nodule growth. Notably, the latter is due to a better capability of detecting the
appearance or progression of a solid component in SSNs [131]. The usefulness of the system has been
proven afterwards by other experimental studies [78, 81, 132] and used in the discrimination of
histological subtypes in adenocarcinoma [133]. As for volumetric measurement, an existing interscan
variability has been described for nodule mass assessment, and an increase in nodule mass of 30% has
been regarded as a significant growth [134].

To corroborate the prognostic significance of nodule density in SSNs in terms of clinical decision making,
the Fleischner Society recommendations for managing incidental SSNs categorised nodule risk on the basis
of nodule density and not only on size and growth [6, 7].

a)

10.2 mm (2D)
11.9 mm (2D)

10.5 mm (2D)9.2 mm (2D)

c)

b)

FIGURE 3 Volume evaluation during follow-up allows the detection of nodule growth over a shorter period of
time compared to diameter estimation. a) Computed tomography (CT) axial image shows the same nodule
located in the right lower lobe as reported in figure 1c; b) a 3-month follow-up axial CT image demonstrates
minimal change in nodule diameters; c) conversely, nodule volume calculation using a three-dimensional (3D)
volumetric method demonstrates a significant increase in volume within the range of malignancy.
Histopathology revealed a carcinoid tumour. 2D: two-dimensional; TV: total volume; DT: volume doubling
time; %G: volume increase; scan inter: scan interval. Squares in the nodule represent the starting points of
the 3D analysis.
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Similarly, the American College of Radiology published the Lung CT Screening Reporting and Data
System (Lung-RADS) in 2014 [135], a scoring system that considered nodule density, in addition to size
and growth, as relevant predictor of malignancy to categorise screening-detected lung nodules. The
classification from 1 to 4X categories corresponds to an increasing risk of malignancy. Category 4X is
assigned to nodules with additional imaging features requiring a more intensive diagnostic work-up [135].

The added value of the Lung-RADS category 4X in the differentiation of benign and malignant nodules
has been evaluated for SSNs in a recent study by CHUNG et al. [136]. Six experienced chest radiologists
were asked to analyse the characteristics of 374 SSNs in the NLST database that would have been classified
as category 3, 4A, and 4B according to the Lung-RADS system. The radiologists indicated which nodules
were suspicious and that they would hence raise the Lung-RADS category to 4X. In addition, the readers
indicated which imaging characteristics made them upgrade the nodule to 4X. Results demonstrated that
the malignancy rate derived by adding morphological criteria (i.e. internal structure, presence of bullae,
solid core characteristics, borders and surrounding tissue features) is superior to the risk assessed only on
nodule type and size, with an average rate of malignancy of 53% with respect to the generic rate assigned
by conventional Lung-RADS to the 4X category (>15%) [136].

This observation emphasises the concept that the assessment of SSN characteristics by an expert
radiologist outperforms the evaluation based only on nodule size and type in predicting malignancy.

Integrating clinical and nodule characteristics: risk prediction models
Several predictors of malignancy have been identified in a number of studies that reported multivariate
analyses. When evaluating individuals with lung nodules, the probability of malignancy is estimated on the
basis of patient-related clinical factors and nodule characteristics, including size [2, 4–6]. Among the
clinical factors, older age, heavy current/former smoker, exposure to other inhaled carcinogens (asbestos,
radon or uranium), as well as the presence of emphysema or fibrosis and family history of lung cancer
have been demonstrated to be predictors of malignancy, as reported in the latest review of the Fleischner
Society guidelines for nodule management [7]. As regards nodule morphological characteristics, besides
small size, diffuse, central, laminated or popcorn calcifications, as well as fat tissue density and perifissural
location have been recognised as indicative of benign lesions. In contrast, a large nodule diameter, or the
evidence of nodule spiculation, upper lobe location, pleural indentation and VDT <400 days have been
consistently identified as factors related to a higher risk of malignancy [2].

Some of these determinants have been included and tested in composite prediction models, developed
with the scope to assist clinicians in the difficult task of nodule characterisation [3, 10, 137]. Currently the
American College of Chest Physicians guidelines suggest using the Mayo Clinic prediction model based on
patient categorisation into low (>5%), intermediate (5–65%) and high risk (>65%) of malignancy [5],
while the BTS guidelines suggest the use of the Brock and Herder models [2]. More recently, the Bayesian
inference malignancy calculator model proved to be an accurate tool for characterising pulmonary nodules
by guiding lesion-tailored diagnostic and interventional procedures during work-up [138].

In this context, it is worth mentioning that the accuracy and applicability of predictive models depend on
the population in which they were derived and validated (e.g. screening, routine and oncology), according
to differences in the prevalence of malignancy and in methods of evaluation.

Size and follow-up recommendations
The critical time for surveillance is the earliest point at which the nodule growth can be detected.
Considering nodules detected in a screening programme, KOSTIS et al. [66] described nodule size at
detection as a factor affecting the critical time for follow-up CT. Similarly, in the international guidelines
for the management of indeterminate nodules, time surveillance is dependent on the initial nodule size;
the bigger the nodule diameter the shorter the follow-up interval time [2, 4–7]. Despite the need for early
diagnosis in cases of malignant nodules, it must be kept in mind that a higher accuracy of growth rate
assessment and an improvement of malignancy risk evaluation with a longer interval time between the
follow-up CT scans have been described in the literature [6, 24, 70].

Some doubts remain regarding the duration of follow-up, not only because of the extremely long VDT of
certain lung cancers, but also because some tumours (i.e. adenocarcinoma) showed a long period of
stability before growing or even reducing in size during surveillance [23, 28, 139].

Nevertheless, the notion of a 2-year stability implying benignity is widely accepted in common clinical
practice, specifically for noncalcified solid pulmonary nodules, and the aforementioned results from the
NELSON screening trial support such practice [2, 8]. In contrast, a longer follow-up period is required for
classifying for SSNs as benign with a reasonable certainty.
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In the latest revised Fleischner Society Guidelines [7], which take into consideration data from the major
lung cancer screening projects in Europe and United States [8, 10, 11, 16, 17, 140] a new approach has
been proposed for managing incidentally identified pulmonary nodules. For solid nodules, the minimum
threshold of diameter requiring follow-up has been elevated to 6 mm in order to reduce false positives,
and a follow-up time range has been introduced to reduce the number of examinations performed in the
stable nodules. However, a longer period before the initial follow-up has been recommended for managing
SSNs, because of their indolent nature when cancerous [7]. Reports in the current literature [17, 141] state
that GGNs with diameter ⩾6 mm should be followed-up for 5 years, with time scan intervals of 2 years,
while PSN with a solid component <6 mm should be evaluated annually for 5 years. In the case of PSNs
with a solid component ⩾6 mm, after an initial follow-up, other nodule characteristics (such as
morphological features and an eventual growth) as well as the clinical setting should guide further
management [7].

Conclusions
With the diffusion of lung cancer screening programmes worldwide, the “database” of small pulmonary
nodules has become huge. Furthermore, MDCT has dramatically increased the number of small-sized
nodules identified on thin-section images. In this context, size and growth rate still represent pivotal
factors for nodule characterisation, even though some limitations in evaluating pulmonary nodules when
considering only their dimensions have been recognised. Firstly, there is no univocal method for
measuring nodules (diameter, area, volume or mass). Secondly, intrinsic errors, which can determine
variations in measurements and affect nodule growth assessment, do exist when using 1D, 2D and 3D
methods. Finally, nodule CT attenuation has become a widely accepted significant determinant of
prognosis over the past few years, specifically in SSNs. More recently, in these types of nodules, other
morphological features (i.e. internal structure, presence of bullae, solid core characteristics, borders and
surrounding tissue features) have been associated with an increased risk of malignancy.

Physicians should be aware that size and its change over time remain the most important factors
determining nodule management, as stated in the currently used international guidelines, even though
these factors should be evaluated in relation to other nodule characteristics, without overlooking the
clinical context. Therefore, predictive models that take into account several factors have been proposed as a
potential means to overcome the limitations of a size-based assessment of the malignancy risk for
indeterminate pulmonary nodules.
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