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Pharmacological actions of statins:

potential utility in COPD
R.P. Young*, R. Hopkins* and T.E. Eaton#

ABSTRACT: Chronic obstructive pulmonary disease (COPD) is characterised by minimally

reversible airflow limitation and features of systemic inflammation. Current therapies for COPD

have been shown to reduce symptoms and infective exacerbations and to improve quality of life.

However, these drugs have little effect on the natural history of the disease (progressive decline

in lung function and exercise tolerance) and do not improve mortality. The anti-inflammatory

effects of statins on both pulmonary and systemic inflammation through inhibition of guanosine

triphosphatase and nuclear factor-kB mediated activation of inflammatory and matrix remodelling

pathways could have substantial benefits in patients with COPD due to the following. 1) Inhibition

of cytokine production (tumour necrosis factor-a, interleukin (IL)-6 and IL-8) and neutrophil

infiltration into the lung; 2) inhibition of the fibrotic activity in the lung leading to small airways

fibrosis and irreversible airflow limitation; 3) antioxidant and anti-inflammatory (IL-6 mediated)

effects on skeletal muscle; 4) reduced inflammatory response to pulmonary infection; and 5)

inhibition of the development (or reversal) of epithelial-mesenchymal transition, a precursor event

to lung cancer. This review examines the pleiotropic pharmacological action of statins which

inhibit key inflammatory and remodelling pathways in COPD and concludes that statins have

considerable potential as adjunct therapy in COPD.
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C
hronic obstructive pulmonary disease
(COPD) occurs as a result of the combined
effects of smoking exposure and genetic

susceptibility to the damaging effects of smoking.
COPD is characterised by progressive, minimally
reversible airflow limitation that results from
varying combinations of parenchymal destruction
(emphysema) and fixed small airways disease from
smooth muscle hypertrophy and airway fibrosis
[1–3]. COPD is also a systemic disease with
progressive muscle wasting of the skeletal and
respiratory system, which further limits exercise
capacity [4–6]. Other systemic manifestations of
COPD include coronary artery disease (CAD),
osteoporosis and anaemia [4, 7]. Although goblet
cell hyperplasia and excessive mucus production
are also clinical manifestations in COPD they do
not appear to be associated with poor outcomes in
COPD, unlike reduced expiratory volumes and
systemic inflammation [3].

PATHOPHYSIOLOGY OF COPD
Smoking has been shown to account for ,85% of
cases diagnosed with COPD, while exposure to

other aero-pollutants such as organic and inorganic
work dusts, heavy air pollution or precipitants of
allergic inflammation may also play a role [3]. The
potential effects of smoking on the lung, systemic
circulation and muscle is shown in figure 1.
Smoking initiates a ubiquitous inflammation orche-
strated by the bronchial epithelium with release of
interleukin (IL)-8 and subsequent sequestration of
neutrophils from the pulmonary capillaries into
respiratory bronchioles and airway lumen [8–10].
IL-8 stimulates further release of neutrophils from
the bone marrow [9]. Activated neutrophils in the
pulmonary tissue (respiratory bronchioles and
alveolar walls) release neutrophil elastase which
contributes to elastin degradation [8]. Other pro-
teases with possible roles in COPD include sereine
proteases, cysteine proteases or chymotrypsin.
Smoke exposure also incites the release of other
inflammatory cytokines from a variety of cells
including IL-6, tumour necrosis factor (TNF)-a, IL-
1b, transforming growth factor (TGF)-b1 and
granulocyte-monocyte colony-stimulating factor
(GM-CSF) [1, 11]. Inhalation of cigarette smoke
results in a huge exogenous oxidant load on the
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lung from reactive oxygen species (ROS), which inactivates many
of the anti-protease mediators, most notably a1-antitrypsin (and
possibly a1-anti-chymotrypsin and serine antiproteases), result-
ing in an acquired anti-protease deficiency [12, 13]. The effect of
IL-8 and neutrophil influx into the pulmonary parenchyma is
accompanied by the influx of macrophages and CD8+ T-
lymphocytes [14]. Macrophages are thought to become activated
and release a number of matrix metalloproteases (most notably
MMP1, MMP2, MMP9, MMP12 and MMP15), which have the
ability to degrade both elastin and collagen leading to further
lung parenchymal damage [10, 11, 15]. The neutrophils are
known to release a high concentration of endogenous oxidants,
which add to those derived from smoking and worsen the global
anti-protease effect through inactivation of systemic anti-pro-
teases (e.g. a1-antitrypsin) and inhibition of local anti-proteases
(e.g. tissue inhibitors of metalloproteinases) [8].

The oxidant load derived from the lung (exogenous and
endogenous) crosses the endothelium where, in combination
with elevated circulating cytokines, it results in systemic
inflammation in the vascular system [4, 7, 12]. Nicotine from
smoke provides agonist activity to the nicotine acetylcholine

receptor found throughout the airways and is thought to
initiate the release of fibronectin leading to pulmonary airway
fibrosis by fibroblasts [16, 17]. The latter is thought to be
mediated by IL-8 and TGF-b1 is released as part of the
inflammatory responses [16, 17] leading to excess collagen
relative to elastin (impaired repair). Finally, recent studies
suggest that dysregulated apoptosis (programmed cell death)
of structural cells (epithelial and endothelial cells) and
inflammatory cells (polymorphic neutrophils) occurs in
patients with COPD [18, 19]. It has been shown that neutrophil
apoptosis is reduced in the sputum of patients with COPD and
is associated with elevated IL-6 and IL-8 levels [19]. This
observation was found to be mediated by nuclear factor (NF)-
kB activation and is consistent with other studies that show
these cytokines are associated with inhibition of apoptosis [20].
Prolonging the lifespan of neutrophils in the lung would result
in persisting neutrophil-mediated inflammation and matrix
remodelling.

It has also been proposed that high levels of cytokines
(primarily IL-6), inflammatory mediators and/or ROS in the
systemic circulation, derived in a large part from the
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FIGURE 1. Proposed pathogenesis of chronic obstructive pulmonary disease. ROS: reactive oxygen species; LPS: lipopolysaccharide; PAH: polyaromatic
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pulmonary circulation (the ‘‘spill over’’ effect) [4, 7], may lead
to muscle wasting and decreased muscle function [17–22].
Apoptosis has also been implicated in muscle wasting, as seen
in COPD patients [18, 19], and may be important in survival
[19–22]. Collectively, smoking appears to incite an inflamma-
tory response and high oxidant load that, over time, prema-
turely ages the body [23] through lung destruction
(emphysema), poor elastic recoil of tissues (reduced airway
compliance), maladaptive or excessive healing (airway fibro-
sis), and wasting of skeletal and respiratory muscles resulting
in poor exercise tolerance. These processes are ‘‘exaggerated’’
in smokers who are genetically predisposed to COPD and
result in progressive loss of lung function, muscle wasting and
exercise intolerance.

There is growing epidemiological and molecular evidence that
COPD is closely associated with lung cancer [24–26]. Like
COPD, lung cancer develops in only the minority of long-term
smokers, estimated to be 10–15% [27]. Recently, it has been
shown that 60–90% of those diagnosed with lung cancer have
pre-existing impaired lung function (consistent with COPD)
and/or emphysema on computed tomography scanning [24–
26]. This relationship is comparable to that observed between
obesity and type 2 diabetes. These epidemiological studies
suggest that factors conferring susceptibility to COPD may also
confer susceptibility to lung cancer mediated through genetic
variants underlying the pathogenic pathways, as described
above and as shown in figures 1 and 2 [28].

There is also a growing interest in the role that epithelial-
mesenchymal transition (EMT) plays in lung carcinogenesis
(fig. 2) [29, 30]. In this process, bronchial epithelial cell (BEC)
integrity and function is disrupted by matrix remodelling and
growth factor release that underlies COPD, such as TGF-b and
MMPs, and promotes EMT. The effect of growth factors on
EMT has been shown to be promoted by collagen 1, linking
remodelling (COPD) with EMT [30]. In animal models, the
guanosine triphosphatase (GTPase) proteins (i.e. GTP-binding
proteins e.g. Ras, Rho and Rac) have been linked to the
development of lung cancer, with NF-kB mediating this effect
in a COPD mouse model [31]. In vitro studies show that
inhibition of GTPase can reverse EMT and restore the
epithelium to its normal morphology [32]. Finally, there is a
link between EMT and damage to DNA which results in the
formation of DNA adducts and somatic mutations forming
oncogenes (e.g. k-Ras) and inhibiting tumour suppressor genes,
which are thought to underlie lung cancer development [31].
Although several pathological pathways are likely to be
involved in the development of COPD and EMT (figs 1 and
2), many are mediated intracellularly by GTPases [29]. These
signalling molecules require isoprenylation to be active and, as
described above, are critical for cellular function through up-
regulating effects on transcription binding factors, such as NF-
kB and activator protein-1, central to gene expression in COPD
[33] and lung cancer development [29]. If EMT is an important
pre-malignant event then the inflammation and matrix
remodelling processes that lead to COPD may also lead to
lung cancer, thereby explaining this close relationship in an
overlapping group of genetically susceptible smokers [28]. If
this were true, then any pharmacological agent that could
attenuate the inflammatory and matrix remodelling processes

underlying COPD might also reduce the risk (and develop-
ment) of lung cancer.

EPIDEMIOLOGY OF COPD
Despite the inflammatory and aging effects of smoking on not
just the lungs but the arteries and muscles of the body, why do
only an estimated 20% of smokers develop clinically significant
COPD [3]? Numerous studies have shown that COPD and
lung function have a strong genetic component, especially in
the presence of smoking history [34–36]. Based on widely
divergent drug metabolite levels, classic pharmacogenetic
studies have been able to define high or low drug metabolisers
that were subsequently linked to genetic variants of metabolis-
ing enzymes [37]. Similarly, after o40 yrs of smoking, forced
expiratory volume in 1 s (FEV1) in smokers can be categorised
according to approximately bi- or tri-modal distribution with
the majority (70–80%) maintaining normal (or near normal)
lung function (termed resistant smokers), while the remainder
have accelerated decline in FEV1 and are identified as
susceptible [3, 38–40]. This latter group may eventually be
diagnosed with COPD; however, due to the insidious breath-
lessness and under-utilisation of spirometry, 50–80% of people
with COPD remain undiagnosed [41].

This susceptibility to the effects of smoking is conferred by a
variable combination of low penetrant variants in genes
encoding proteins that are closely linked to the pathogenic
pathways described above [42]. It has been proposed that
reduced FEV1 in smokers is a general barometer of a smoker’s
susceptibility to the adverse effects of smoking and explains
the reported two to five-fold increased risk of other smoking
related complications, such as CAD, lung cancer and stroke, in
comparison to smokers with normal lung function [38]. It has
been shown that both cardiovascular and all-cause mortality
are more closely linked to reduced FEV1 than to smoking
status [43, 44], and maybe mediated by over-lapping inflam-
matory mediators (e.g. C-reactive protein (CRP), TNF-a and
IL-6). Therefore, smoking is an accelerant to an established pro-
inflammatory tendency which may be genetically conferred
[28, 45] and may lead to premature aging of the lungs and
arteries.

CURRENT TREATMENT IN COPD
The mainstay of treatment in COPD is short- and long-acting b-
agonist therapy to relax smooth muscle and dilate airways [2].
This approach is very successful in relieving the brocho-
constriction in asthma where hyperreactive airways and
smooth muscle constriction are important. The bronchodilating
response to this treatment is considerably less in COPD due to
small airway fibrosis and emphysema secondary to matrix
remodelling (imbalance of elastin/collagen content). Inhaled
corticosteroids are also used to inhibit airway inflammation of
COPD although it is strongly neutrophil driven rather than the
T-helper (TH) type-2 inflammatory response of asthma, where
activated lymphocytes are thought to play a central role [2].
Given these significant differences in pathogenic pathways
underlying COPD and asthma, it is perhaps not surprising that
current treatments in COPD modestly improve symptoms but
do no restore patients back to normal lung function. Given that
corticosteroids do little for neutrophilic inflammation [2, 11], it
is also not surprising that COPD is characterised by a
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progressive decline in lung function, exercise tolerance and
premature death despite these treatments. Although some
studies suggest marginal benefits on mortality from inhaled
corticosteroids or combined b-agonist/corticosteroid therapy,
the data are not terribly convincing [46–48]. Based on these
limitations [49, 50], interest has turned to treatments with
greater impact on neutrophil or macrophage derived inflam-
mation [50–53].

COPD AND SYSTEMIC INFLAMMATION
There are a growing number of studies showing that CRP is a
marker of systemic inflammation and a possible effector
molecule in vascular disease [4–6]. Several cross-sectional
and prospective studies have shown the close inverse relation-
ship between high-sensitivity CRP and lung function [54–56].
CRP is synthesised and released by the liver into the systemic
circulation in response to IL-6 released by inflammatory
stimuli. This link between IL-6, CRP and COPD is supported
by population studies showing an inverse relationship
between serum IL-6 levels and FEV1 [5, 57, 58], and murine
models of emphysema resulting from IL-6 overexpression [59].
Interestingly, a1-antitrypsin is also an acute-phase protein
released by the liver at the time of inflammation. It should be

noted that serum IL6 and IL-8 levels are elevated in smokers
with COPD in excess of those with normal lung function [8, 11,
19]. It would appear conceivable that, in those disposed to
COPD, smoking initiates an increase in the cytokines IL-6 and
IL-8 which might underlie the systemic (‘‘spill over’’ effect [4,
7]) and pulmonary inflammation, respectively. This could
explain the observation that patients with COPD have a greater
than two-fold risk of coronary heart disease [6]. Genetic
variation may confer important effects on the expression of
these effector molecules (e.g. CRP, IL-6 and IL-8) that then
mediate the downstream effects on COPD [60] and lung cancer
[45, 61, 62]. The heavy oxidant load derived from smoking has
effects both locally in lung parenchyma and systemically on
muscle function. Given these diverse pathways and anatomic-
ally distant events, what evidence exists to suggest that statin
therapy (or 3-hydroxy-3-methylglutaryl coenzyme A reductase
inhibitors) might affect any of these pathological events?

STATIN EFFECTS ON CLINICAL OUTCOMES IN COPD:
AN OVERVIEW
Statins are known to inhibit endogenous cholesterol synthesis
in hepatocytes by blocking the synthesis of cholesterol in the
mevalonate pathway. This explains the ability of statins to
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lower serum cholesterol. However, evidence from both human
and animal studies has shown that statins have strong
immune-modulating effects in both the systemic [63] and
pulmonary circulation [64, 65], which may have useful anti-
inflammatory actions in COPD (table 1) [52, 65–88].

Recently, there have been a number of observational studies
suggesting that patients with COPD and taking statins have
reduced hospitalisation for COPD exacerbations, lower mortal-
ity from COPD exacerbations (or chest infections) and lower

cardiovascular mortality compared to those not taking statins
(fig. 3) [89, 91–95]. In three recently published reviews,
beneficial effects were consistently found in those taking
statins [66, 99, 100] and appear to be irrespective of
concomitant corticosteroid use [67]. In addition to these
reported benefits, several observational studies have shown
that statin use also reduces decline in FEV1 and lowers the risk
of lung cancer (fig. 3) (reviewed in [66, 90, 96–98, 101]). A
number of observational studies have also examined the effect
of taking statins in patients from the general population with

TABLE 1 Summary of statin mediated pharmacological effects on pulmonary inflammation and remodeling

COPD pathway Study type Statin effect on pathogenic pathways [Ref.]

Cytokine production MM, HM in vitro (liver cell line), HM

in vivo (mononuclear cells)

Reduce IL-6 induced CRP production by hepatocytes [52, 67, 68]

HM in vitro (VSM cells and PBE

cells)

Reduce IL-8 production by VSM cells [69, 70]

MM Inhibition of neutrophil accumulation and IL-8 and TNF-a concentration in BALF in rats [71]

HM in vivo (serum), MM Reduce production of IL-b1 and TNF-a [52, 72]

MM Reduced expression of IFN-c TNF-a and MMP12 in whole lung [73]

Matrix remodelling MM Reduced lung parenchymal destruction and MMP 9 activity in smoke exposed rat lung [74, 75]

HM ex vivo (bronchial epithelial

cells)

Reduce release of MMP2 and MMP9 from bronchial epithelial cells from

lung transplant patients

[70]

Neutrophil/macrophage

influx

HM ex vivo (bronchial epithelial

cells), HM in vivo (PMN)

Reduce neutrophil influx in lung transplant recipients by inhibiting release of

IL-8 and GM-CSF from bronchial epithelial cells

[70, 76, 77]

HM in vitro (PMN),

HM in vivo (serum)

Reduce neutrophil endothelial adhesion and transendothelial migration [76, 78–80]

MM Reduce neutrophil influx and inhibit the development of elastase induced

pulmonary emphysema in mice

[74, 75]

MM, HM ex vivo

(human monocytes)

Reduce CRP-induced monocyte migration by inhibition of

ICAM-1 in human monocytes

[81]

MM, HM in vitro (endothelial cells),

HM in vivo (BALF)

Reduced concentration of neutrophils and lymphocytes in BALF [74, 75]

MM, HM in vitro Reduce chemokine and adhesion molecule expression to reduce migration of

inflammatory cells into the airways

[74, 81, 82]

Epithelial/endothelial

integrity

MM Promotes alveolar cell regeneration and restores endothelial cell function [75]

MM Reduce LPS-induced IL-6 gene expression leading to reduced lung vascular leak and

pulmonary inflammation in mice lung

[83]

HM in vitro (endothelial and smooth

muscle cells)

Inhibition of VEGF in smooth muscle cells and endothelial cells [84]

Apoptosis HM in vitro (macrophages

and PMN)

Enhances clearance of apoptotic cells in alveolar

macrophages from patients with COPD

[85]

HM in vitro (endothelial cells), HM in

vitro (endothelial and smooth

muscle cells)

Increase apoptosis in human vascular endothelial cells [84, 86]

Oxidant response HM in vivo (PMN) Reduce IL-8 release from neutrophils and neutrophil derived reactive oxidant species [77]

HM in vivo (serum), MM Strong anti-oxidant properties [87, 88]

Mucus production MM Reduced LPS-induced goblet cell hyperplasia in bronchial epithelium and Muc5A

induced mucus hypersecretion

[71]

CRP level HM in vitro (liver cell) Reduce CRP levels at the transcriptional level thorough Rac-1 mediated inhibition of

STAT3 phosphorylation

[67]

COPD: chronic obstructive pulmonary disease; CRP: C-reactive protein; MM: murine model; HM: human model; VSM: vascular smooth muscle; PBE: primary bronchial

epithelial; PMN: polymorphic neutrophil; BALF: bronchoalveolar lavage fluid; IL: interleukin; TNF: tumour necrosis factor; IFN: interferon; MMP: matrix metalloproteinase;

GM-CSF: granulocyte-monocyte colony-stimulating factor; ICAM: intracellular adhesion molecule; LPS: lipopolysaccharide; VEGF: vascular endothelial growth factor.
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community acquired pneumonia (table 2) [102–109]. However,
unlike the studies in COPD, the results in pneumonia are not
consistent. This probably reflects the heterogeneity of the study
populations with respect to many possible confounding factors
(e.g. sampling, age and smoking) but specifically the presence
of COPD (where systemic-pulmonary inflammation is pre-
existing) [7].

Such diverse and clinically significant benefits in patients with
COPD might, at first glance, appear unlikely to be attributable to
a single drug (figs 1 and 2). Indeed, some benefits from statin
use have been attributed to the ‘‘healthy user effect’’; however,
there is little, if any, convincing data to support this hypothesis
[66]. Importantly, statin use in patients with COPD should be
associated with greater mortality (confounding by indication)
due to the consistently higher incidence of coexisting cardio-
vascular diseases [89–93, 96–98, 101]; 48% of statin users have
CAD versus 8% in nonusers [66]. Yet in patients with COPD,
despite comparable lung function [66], statin use consistently
confers lower mortality compared to nonuse. It was estimated
from the observational studies that 25–30% of patients with
COPD are currently prescribed statins [66].

The data from randomised control trials (RCTs) examining
statin use in COPD is limited to just two studies [110, 111]. In a
sub-analysis of a large randomised trial of statin therapy and
its effects on cardiovascular disease (the Heart Protection

Study), a trend towards reduced respiratory death (30%
reduction) and reduced COPD exacerbations (20% reduction)
was reported [110]. The only RCT of statin therapy specifically
in patients with COPD was reported from 125 patients in
Taiwan and showed that those randomised to pravastatin for
6 months had a 54% increase in exercise tolerance [111].
Therefore, both observational and randomised studies have
reported clinically important benefits of statin therapy in
patients with COPD. What is more compelling is that, in the
absence of further confirmatory RCT data, the known
pharmacological actions of statins on systemic and pulmonary
inflammation can explain all the beneficial effects reported to
date (table 1).

STATINS EFFECTS ON SYSTEMIC INFLAMMATION IN
COPD
In a prior review, YOUNG et al. [38] argued that impaired lung
function is a strong predictor of cardiovascular death, both
independent of and additive with the risk conferred by
smoking. It has also been proposed that CAD in patients with
COPD results, in part, from the spill over effect of pulmonary
derived inflammatory cytokines (e.g. IL-6 and TNF-a) under-
lying COPD [4, 7]. As stated previously, both cross sectional
and prospective studies show that serum CRP and IL-6 are
inversely related to FEV1 implying a possible causal relation-
ship [54–56]. A recent study showed that, at a therapeutic dose,

All-cause mortality
High CVS risk (total) 19720 0.53 (0.43–0.65) [89]

0.49 (0.41–0.58) [89]
0.99 (0.51–1.94) [90]
0.67 (0.52–0.86) [91]

0.57 (0.38–0.87) [92]
0.62 (0.43–0.91) [93]
0.19 (0.08–0.47) [93]
0.51 (0.40–0.64) [94]
0.43 (0.18–0.99) [95]

0.48 (0.39–0.59) [89]
0.89 (0.64–1.26) [89]

0.71 (0.56–0.90) [89]
0.71 (0.64–0.77) [89]

0.45 (0.42–0.48) [96]
0.70 (0.60–0.81) [97]
0.55 (0.41–0.74) [98]

COPD

N Patients OR/HR/RR (95% CI) [Ref.]

Low CVS risk (total) 103004 COPD
Hospital cohort 418 Population
All-cause mortality 3371 PVD population

Chest infection/exacerbation mortality
Following COPD exacerbation 854 COPD
Following pneumonia or influenza 76232 Population
Following COPD exacerbation 76232 COPD
Following pneumonia 11212 COPD
Following COPD exacerbation 185 COPD

Myocardial infarction
High CVS risk (total) 19720 COPD
Low CVS risk (total) 103004 COPD

Hospitalisation for COPD
High CVS risk (total) 19720 COPD
Low CVS risk (total) 103004 COPD

Lung cancer
Diagnosis of lung cancer 483733 Population
Diagnosis of lung cancer 62842 Population
Diagnosis of lung cancer 30076 Population

■
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FIGURE 3. Morbidity and mortality benefits with statin use in observational studies on a logarithmic scale. CVS: cardiovascular; COPD: chronic obstructive pulmonary

disease. Data are presented as odds ratio (95% confidence interval), except hospital cohort which is presented as relative risk (95% confidence interval) and following COPD

exacerbation which is presented as hazard ratio (95% confidence interval).
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statin therapy was associated with a 50% reduction in GTPase
(Rho) activity of circulating polymorphic neutrophils that
correlated with a reduction in serum CRP [112]. NOHRIA et al.
[112] proposed that this effect might explain the significant
mortality reduction seen with statin use in subjects with
normal lipids (Jupiter RCT [113]), which again correlated with
CRP reduction [113]. In summary, when statins inhibit
systemic inflammation (e.g. CRP and IL-6 derived from
pulmonary inflammation), a clinically important reduction in
mortality can be achieved. As death from CAD is common in
COPD patients [7, 53, 66] and reduced FEV1 is itself a marker
of increased CAD risk, it could be argued that on this basis
alone statins might be prescribed for patients with COPD.

Patients with COPD may be profoundly limited by exertional
breathlessness attributed, in a large part, to skeletal muscle
wasting and atrophy. This limitation of physical activity is not
in keeping with airflow limitation (FEV1) and has been
attributed to the combined effects of elevated oxidative stress
and IL-6, i.e. another systemic inflammation based comorbidity
[7, 17–22]. In the only RCT of statin therapy in COPD, statin
use was associated with a 54% increase in exercise tolerance
[111]. This increase correlated with a reduction in high
sensitivity-CRP and IL-6 suggesting a reduction in systemic
inflammation mediated this clinically important end-point
[111]. The question remains, through what mechanisms could
statins modify pulmonary inflammation and related remodel-
ling effects in patients with COPD (or even smokers with mild
airflow limitation) in addition to traditional inhaler therapies?

STATIN EFFECTS ON PULMONARY INFLAMMATION IN
COPD
It has been recently appreciated that statins have profound anti-
inflammatory effects that might explain their beneficial role in
reducing respiratory morbidity and mortality in COPD (table 1)
[66–101, 114–121]. Studies have shown that statins reduce
neutrophil influx in the lung which might have a strong effect
on attenuating the downstream inflammatory events, such as
macrophage influx, lymphocyte activation and inhibition of
cytokine release, in particular IL-8 that appears central to the

neutrophil inflammation of the lung [67–77, 80–88]. The
inhibition of IL-6, IL-8 and GM-CSF expression by statins has
been shown in cell cultures of human BEC [65, 70]. Statins have
also been shown to modify airway inflammation in animal
models and matrix remodelling, notably inhibiting emphysema
formation [73–75]. Statins also have effects on IL-6 levels in the
systemic circulation and the effects of anti-oxidants on muscle
atrophy [70, 73–77, 80, 87, 88]. Statins also inhibit apoptosis,
which has been linked to both COPD and lung cancer [83–86,
116]. The many pathways affected by statins are shown in
figures 1 and 2, where the site of an inhibitory effect of statins
based on animal or human studies are clearly shown (table 1).

Statins could conceivably affect these pathways through their
inhibition of intracellular prenylation and inhibition of the
GTP-binding proteins that underlie these inflammatory path-
ways [76, 117, 118]. Given these diverse actions on key
components of the pathways underlying COPD, it is possible
that such effects might explain the benefits observed in the
observational studies. In particular, if statins reduce the release
of IL-8 in the lungs of COPD patients, then attenuation of
neutrophilic inflammation could have considerable down-
stream effects, such as reduced inflammatory cells in the lungs
[81] and reduced remodelling of lung tissue to restore elastin
content relative to collagen. If statins reduce the oxidant
burden in the systemic circulation [87, 88] and the catabolic
state conferred by IL-6 release, then wasting and respiratory
muscle function might be improved [21, 22, 87, 88]. It is
interesting to note that the inhibitory effect of statins in
hepatocytes in blocking cholesterol synthesis might also block
cytokine production (primarily IL-6), underlying the prema-
ture aging and associated morbidities from smoking-induced
systemic inflammation [21].

Statins have also been shown in murine models, through
inhibition of GTPase (prenylation), to reverse the hypoxia-
induced pulmonary hypertension [119, 120]; a known late
complication of COPD causing heart failure. Given the
suspected relationship between inflammation, apoptosis and
malignant transformation (particularly EMT), it is possible that

TABLE 2 Mortality benefit of statin use in the general population diagnosed with community acquired pneumonia

Cohort Subject n Risk reduction [Ref.]

Retrospective cohort study in teaching hospital 787 0.36 (0.14–0.92) 64% reduction in 30-day mortality [102]

Population based prospective cohort study 3415 0.78 (0.57–1.07) 22% reduction in mortality or admission to an ICU [103]

Population based retrospective nested case–control 6089 0.47 (0.25–0.88) 53% reduction in fatal pneumonia [104]

Prospective hospital based observational study 1007 0.46 (0.25–0.85) 54% reduction in 30-day mortality [105]

Population based cohort study 29900 0.69 (0.58–0.82) 31% reduction in 30-day mortality [106]

0.75 (0.65–0.86) 25% reduction in 90-day mortality

Retrospective national cohort study 8652 0.54 (0.42–0.70) 46% reduction in 30-day mortality [107]

Population based case–control study 2235 0.81 (0.46–1.42) 19% reduction in risk of pneumonia (after excluding

those with CAD)

[108]

Population based cohort study 3681 0.33 (0.19–0.58) 67% reduction in 30-day mortality [109]

0.45 (0.32–0.62) 55% reduction in long-term mortality

Data are presented as odds ratio (95% confidence interval). Data for population based case–control study and cohort study are presented as hazard ration (95%

confidence interval). ICU: intensive care unit; CAD: coronary artery disease.
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statin therapy may have chemo-preventive actions on lung
cancer [28, 85]; as suggested by the three large observational
studies reporting up to a 50% reduction in lung cancer risk
(fig. 3) [96–98].

Further support for the protective role of statins on lung
inflammation comes from lung transplant studies that show
concomitant use of statins reduces post-transplant bronchioli-
tis and improves lung function compared to patients not
receiving statins [70, 76, 82, 121]. This is an inflammatory-
based complication of lung transplantation with over lapping
pathology with COPD, including small airway inflammation
dominated by airway fibrosis (bronchiolitis obliterans). Similar
pharmacological effects from statins on tissue inflammation
and remodelling has been seen in atherosclerosis [122–124] and
cardiac transplantation [125].

SUMMARY
Current therapy in COPD relieves symptoms and reduces
hospitalisation but does not change the natural history of the
disease (pulmonary inflammation, systemic inflammation and
lung function decline) or outcome (respiratory mortality,
cardiovascular mortality or all-cause mortality) [50, 126].
Statin therapy may improve all these outcomes to some
degree, as suggested by an extensive review of the observa-
tional studies [66] and two recent systematic reviews [99, 100],
which all consistently show benefit over harm. A large RCT,
underpowered to address a statin effect on respiratory
outcomes, showed a trend towards lower respiratory death
and COPD exacerbations [110]. A small RCT of statin therapy
in COPD patients showed an improvement in exercise
tolerance [111], probably mediated through systemic inflam-
mation [4, 7, 49]. Clearly, large RCTs are needed to specifically
test these potential benefits in patients with COPD. However,
based merely on the robust observation that reduced FEV1 is
an independent marker of cardiovascular disease and that the
latter is a common cause of death in patients with COPD, statin
therapy could be initiated for this indication alone [7, 39, 66].
Based on new incites into the pleiotropic effects of statins on
matrix remodelling, response to oxidant load and, most
importantly, cytokine driven inflammation in the lung and
circulation (spill over effect) [4, 7], there is compelling evidence
to suggest statins may confer considerably wider benefits to
patients with COPD.
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