Skip to main content

Main menu

  • Home
  • Current issue
  • Past issues
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • COVID-19 submission information
    • Institutional open access agreements
    • Peer reviewer login
  • Alerts
  • Subscriptions
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

User menu

  • Log in
  • Subscribe
  • Contact Us
  • My Cart

Search

  • Advanced search
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

Login

European Respiratory Society

Advanced Search

  • Home
  • Current issue
  • Past issues
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • COVID-19 submission information
    • Institutional open access agreements
    • Peer reviewer login
  • Alerts
  • Subscriptions

The threat of multidrug-resistant/extensively drug-resistant Gram-negative respiratory infections: another pandemic

Daniel Reynolds, Jason P. Burnham, Cristina Vazquez Guillamet, Mikaela McCabe, Valerie Yuenger, Kevin Betthauser, Scott T. Micek, Marin H. Kollef
European Respiratory Review 2022 31: 220068; DOI: 10.1183/16000617.0068-2022
Daniel Reynolds
1Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jason P. Burnham
2Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cristina Vazquez Guillamet
2Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mikaela McCabe
3Dept of Pharmacy Practice, University of Health Sciences and Pharmacy, St. Louis, MO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Valerie Yuenger
3Dept of Pharmacy Practice, University of Health Sciences and Pharmacy, St. Louis, MO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kevin Betthauser
3Dept of Pharmacy Practice, University of Health Sciences and Pharmacy, St. Louis, MO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Scott T. Micek
3Dept of Pharmacy Practice, University of Health Sciences and Pharmacy, St. Louis, MO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marin H. Kollef
1Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: kollefm@wustl.edu
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Figures

  • Tables
  • FIGURE 1
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 1

    Global deaths in 2019 directly attributable to Gram-negative antimicrobial resistance by pathogen–antimicrobial. Data from [11]. 3GCR: third-generation cephalosporin resistance; AGR: aminoglycoside resistance; CR: carbapenem resistance; FQR: fluoroquinolone resistance.

  • FIGURE 2
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 2

    Mechanisms of antibiotic resistance in Gram-negative bacteria. Shown are loss of porin channels which reduce antibiotic movement across the bacterial membrane; β-lactamases in the periplasmic space inactivating β-lactams; increased transmembrane efflux pump expression expelling antibiotics from within the bacteria; antibiotic-modifying enzymes altering antibiotics so they cannot interact with end targets; antibiotic target and ribosomal mutations interfering with antibiotic actions; metabolic bypass mechanisms allowing alternative enzyme pathways bypassing antibiotic inhibitory effects; and lipopolysaccharide mutations limiting specific antibiotics such as polymyxins from disrupting the cell membrane.

  • FIGURE 3
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 3

    Molecular, functional and phenotypic classification of β-lactamase enzymes. ESBL: extended-spectrum β-lactamase; KPC: Klebsiella pneumoniae carbapenemases; OXA: OXA-β-lactamases; NDM: New Delhi metallo-β-lactamase; VIM: Verona integron-encoded metallo-β-lactamase; IMP: imipenem's metallo-β-lactamase.

  • FIGURE 4
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 4

    Clinical approach to the treatment of microbiologically confirmed or suspected multidrug-resistant (MDR) Gram-negative bacterial infection. XDR: extremely drug-resistant; CTZ-TAZ: ceftolozane/tazobactam; CEF-AVI: centazidime-avibactam; CEFID: cefiderocol; IMI-REL: imipenem-cilastatin; AG: aminoglycoside; RIF: rifampicin; ESBL: extended-spectrum β-lactamase producing; MER: meropenem; FQ: fluoroquinolone; ERT: ertapenem; AMO-CLA: amoxicillin-clavulanate; FOS: fosfomycin; NTF: nitrofurantoin; TMP-SMX: trimethoprim-sulfamethoxazole; CRAB: carbapenem-resistant Acinetobacter baumannii; ERA: eravacycline; PLZ: plazomicin; COL-PMX: colistin-polymyxin B; TIG: tigecycline; CRE: carbapenem-resistant Enterobacterales; AZT: aztreonam; MER-VAB: meropenem-vaborbactam. #: high risk of mortality is considered >15%.

  • FIGURE 5
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 5

    The importance of appropriate timing, duration and spectrum of antimicrobial activity.

Tables

  • Figures
  • TABLE 1

    The “PES” score to assess the risk of pneumonia due to Pseudomonas aeruginosa, Enterobacteriaceae with extended-spectrum β-lactamases and methicillin-resistant Staphylococcus aureus pathogens

    Age, years
     <400
     40–651
     >652
    Male1
    Previous antibiotic use2
    Chronic respiratory disorder2
    Chronic renal disease3
    At emergency
     Consciousness impairment2
     Fever−1

    Risk scores for infection are low: ≤1, moderate: 2–4, high: ≥5.

    • TABLE 2

      Antibiotic mechanisms of resistance of Gram-negative organisms

      Resistance mechanismPathogens commonly harbouring mechanismAntibiotic classes impacted by mechanismTherapeutic options to overcome mechanism
      Enzymatic inactivation
       ESBLEnterobacterales, P. aeruginosa, A. baumannii, S. maltophiliaPenicillins, cephalosporins (all), aztreonamCarbapenems non-BL based on susceptibility testing
       Amp-CInducible: E. cloacae, C. freundii, K. aerogenes
      Stable derepressed: E. coli, A. baumannii, Shigella spp.
      Plasmid-mediated: K. pneumoniae, E. coli, Salmonella spp.
      Strong inducers: cephamycins, aminopenicillins, first-generation cephalosporins
      Weak inducers: piperacillin-tazobactam, third-generation cephalosporins, aztreonam
      Cefepime
      Carbapenem non-BL based on susceptibility testing
      Carbapenemases
       KPCEnterobacteralesPenicillins, cephalosporins (all), carbapenems, aztreonamNewer-generation BL/BLI Cefiderocol non-BL based on susceptibility testing
       MBL (NDM, VIM, IMP)P. aeruginosa, S. maltophilia, EnterobacteralesPenicillins, cephalosporins (all), carbapenemsCeftazidime/avibactam PLUS aztreonam cefiderocol non-BL based on susceptibility testing
       OXA-48Acinetobacter, EnterobacteralesPenicillins, cephalosporins (narrow), carbapenemsCeftazidime/avibactam Cefiderocol non-BL based on susceptibility testing
      Other inactivating enzymes
       AMEEnterobacterales, Acinetobacter, Pseudomonas, S. maltophiliaAminoglycosidesBased on susceptibility testing
      Porin mutations
       OprD proteinPseudomonas, AcinetobacterAminoglycosides, carbapenemsBased on susceptibility testing
       Omp proteinsEnterobacterales, AcinetobacterAminoglycosides, carbapenems, tigecycline
      Efflux pumps
       MexAB-OprMPseudomonasβ-lactams including carbapenems, macrolides, fluoroquinolones, tetracyclines, TMP/SMXBased on susceptibility testing
       MexXY-OprMPseudomonasAminoglycosides
       MexCD-OprJPseudomonasβ-lactams including carbapenems
      Target site modification
       16s rRNA mutation or methylation 30S ribosomal mutationPseudomonas, EnterobacteralesAminoglycosidesBased on susceptibility testing
       Topoisomerase IV or DNA gyrase mutationPseudomonas, Enterobacterales, Acinetobacter, S. maltophiliaFluoroquinolones
       23S rRNA mutation or methylation 50S ribosomal mutationEnterobacteralesMacrolides
       RNA polymerase mutationEnterobacteralesRifampin
       DHFR overproduction or DHPS mutationEnterobacteralesTMP/SMX
       Lipid A neutralisationEnterobacterales, Pseudomonas, AcinetobacterColistin
       PBP mutationPseudomonasβ-lactams including carbapenems

      ESBL: extended-spectrum β-lactamases; KPC: Klebsiella pneumoniae carbapenemases; MBL: metallo-β-lactamases; NDM: New Delhi MBL; VIM: Verona integron-encoded MBL; IMP: imipenem's MBL; OXA: OXA-β-lactamases; AME: aminoglycoside-modifying enzymes; DHFR: dihydrofolate reductase; DHPS: dihydropteroate synthase; PBP: penicillin-binding protein; P. aeruginosa: Pseudomonas aeruginosa; A. baumannii: Acinetobacter baumannii; S. maltophilia: Stenotrophomonas maltophilia; BL: β-lactam; E. cloacae: Enterobacter cloacae; C. freundii: Citrobacter freundii; K. aerogenes: Klebsiella aerogenes; E. coli: Escherichia coli; K. pneumoniae: Klebsiella pneumoniae; BLI: β-lactam inhibitor; TMP: trimethoprim; SMX: sulfamethoxazole.

      • TABLE 3

        Novel and pipeline antibiotic treatment options for Gram-negative respiratory infections

        Drug class and indication(s)#Notable activity¶Development phaseComments
        Novel antibiotics
         Ceftolozane/  tazobactamBL/BLI HABP/VABPESBL-E, MDR P. aeruginosaFDA/EMA approvedVerify ESBL-E
        No CRE activity
         Ceftazidime/  avibactamBL/BLI HABP/VABPMDR P. aeruginosa, CRE (class A, KPC), AmpC and ESBL-EFDA/EMA approvedNo MBL activity
        Not reliable against A. baumannii
        Limited anaerobic activity
         Imipenem/  cilastatin/  relebactamBL/BLI HABP/VABPCRE (KPC), ESBL-E, MDR P. aeruginosaFDA/EMA approvedNo additional activity against A. baumannii, compared to imipenem
        No MBL activity
        Anaerobe and MSSA activity
         Meropenem/  vaborbactamBL/BLI HABP/VABPCRE (KPC), ESBL-E, non-MDR P. aeruginosa and non-MDR A. baumanniiFDA/EMA approvedNo additional activity against MDR P. aeruginosa or MDR A. baumannii compared to meropenem
        No MBL activity
        Anaerobe and MSSA activity
         CefiderocolBL HABP/VABPCRE (KPC and MBL), ESBL-E, MDR A. baumannii and P. aeruginosaFDA/EMA approvedInactive against Gram-positives and anaerobes
         DelafloxacinFluoroquinolone
        CABP
        ESBL-EFDA/EMA approvedLimited P. aeruginosa activity
        Broad Gram-positive and atypical coverage
         EravacyclineFluorocycline
        No indications
        CRE (KPC and MBL), EBSL-E, MDR A. baumanniiFDA/EMA approvedLimited clinical efficacy data against MDR infections
        Often lower MICs than tigecycline
        Low rates of and in vitro activity against C. difficile
         OmadacyclineTetracycline CABPESBL-E, KPC, MBL, MDR A. baumanniiFDA/EMA approvedNo Pseudomonas or Proteus spp. activity
        Broad Gram-positive and atypical coverage
         PlazomicinAminoglycoside
        No indications
        CRE (KPC and MBL), ESBL-EFDA/EMA approvedVariable P. aeruginosa activity
        No A. baumannii activity
        Limited safety and efficacy data
        Consider in combination therapy regimens
        Pipeline antibiotics
         ArbekacinAminoglycosideAminoglycoside-inactivating Gram-positive and Gram-negative pathogensPhase IIIHighly active against MRSA and shows activity against MDR-P. aeruginosa and -A. baumannii
         Aztreonam/  avibactamMonobactam/BLIESBL, KPC, MBL, AmpC, OXA-48Phase IIINo increased activity to P. aeruginosa compared to aztreonam monotherapy
        No A. baumannii activity
         Cefepime/  enmetazobactamBL/BLIESBL, AmpC, limited evidence of KPC and OXA-48Phase IIINo increased activity to P. aeruginosa compared to cefepime monotherapy
        No class B β-lactamase activity
         Cefepime/  taniborbactamBL/BLIESBL, KPC, class B β-lactamases (VIM, NDM, SPM-1, GIM-1), AmpC, OXA-48Phase IIIAdds activity to cefepime against CRE and carbapenem-resistant P. aeruginosa
         Cefepime/  zidebactamBL/BLIESBL, KPC, MBLs, AmpC, OXA-48Phase IIIActive against carbapenem-resistant P. aeruginosa
        Limited Acinetobacter spp. activity
         MurepavadinOMPTAHighly active against MDR P. aeruginosaPhase IIIShowed activity against colistin, ceftolozane/tazobactam and tobramycin nonsusceptible P. aeruginosa
         SulopenemCarbapenemESBL, AmpCPhase IIIDoes not provide additional activity to current carbapenems

        BL: β-lactam; BLI: β-lactamase inhibitor; HABP: hospital-acquired bacterial pneumonia; VABP: ventilator-associated bacterial pneumonia; ESBL-E: extended spectrum β-lactamase Enterobacterales; MDR: multidrug-resistant; P. aeruginosa: Pseudomonas aeruginosa; FDA: United States Food and Drug Administration; EMA: European Medicines Agency; CRE: carbapenem-resistant Enterobacteriaceae; KPC: Klebsiella pneumoniae carbapenemase; MBL: metallo-β-lactamase; A. baumannii: Acinetobacter baumannii; MSSA: methicillin-sensitive Staphylococcus aureus; CABP: community-acquired bacterial pneumonia; MIC: minimum inhibitory concentration; C difficile: Clostridium difficile; OXA: OXA-β-lactamases; VIM: Verona integron-encoded metallo-β-lactamases; NDM: New Delhi metallo-β-lactamases. #: EMA or FDA; ¶: inclusive of in vitro and in vivo data, which may not correlate with clinical efficacy.

        • TABLE 4

          Monoclonal antibody treatment options for Gram-negative respiratory infections

          TargetGram-negative target(s)Development phaseStudied place in therapy
          A1102LPS-O-antigen D-galactan-IIIK. pneumoniaePre-clinicalPrevention
          A1124LPS-O-antigen o25bE. coliPre-clinicalPrevention
          AR-101LPS 011 exopolysaccharideP. aeruginosaPhase IITreatment
          AR-105Alginate exopolysaccharideP. aeruginosaPhase IIPrevention and treatment
          Anti-Hyr1Hyr1 peptide 5A. baumannii and K. pneumoniaePre-clinicalPrevention
          KB001-APcrv proteinP. aeruginosaPhase II/IIIPrevention
          MEDI3902Pcrv protein and Psl exopolysaccharideP. aeruginosaPhase IIPrevention

          LPS: lipopolysaccharide; K. pneumoniae: Klebsiella pneumoniae; E. coli: Escherichia coli; P. aeruginosa: Pseudomonas aeruginosa; A. baumannii: Acinetobacter baumannii.

          • TABLE 5

            Bacteriophage therapies for Gram-negative respiratory infections

            Phage componentsBacterial targetDevelopment phaseAdministration route
            AB-PA01 cocktailPa193, Pa204, Pa222, Pa223P. aeruginosaPre-clinicalIntravenous ± nebulised
            AB-PA01 m1Pa193, Pa204, Pa222, Pa223, Pa176P. aeruginosaPre-clinicalIntravenous ± nebulised
            Acinetobacter therapies2ϕ ± ϕAb124A. baumanniiPre-clinicalTopical or nebulised
            Achromobacter cocktailNot specifiedA. xylosoxidansPre-clinicalOral + nebulised
            Navy Phage cocktail 1Paϕ1, PaSKWϕ17, PaSKWϕ22P. aeruginosaPre-clinicalIntravenous ± nebulised
            Navy Phage cocktail 2PaATFϕ1 and PaATFϕ3P. aeruginosaPre-clinicalIntravenous
            Adaptive Therapeutics phageBdPF16phi4281B. dolosaPre-clinicalIntravenous

            P. aeruginosa: Pseudomonas aeruginosa; A. baumannii: Acinetobacter baumannii; A. xylosoxidans: Achromobacter xylosoxidans; B. dolosa; Burkholderia dolosa.

            • TABLE 6

              Oligonucleotides for Gram-negative respiratory infections

              Gene silenced and typical functionSilencing clinical resultDevelopment phaseBacterial target
              CTX-M-15 ASOblaCTX−M-15
              Encodes resistance to third-generation cephalosporins
              Reduced MIC to third-generation cephalosporinsPre-clinicalE. coli; other Gram-negatives
              MexB siRNAmexB
              Encodes efflux pump component
              Restored activity of resistant antibioticsPre-clinicalE. coli; other Gram-negatives
              NDM-1 ASOblaNDM-1
              Encodes carbapenemases
              Restored activity of resistant antibioticsPre-clinicalP. aeruginosa; other Gram-negatives

              NDM: New Delhi metallo-β-lactamases; MIC: minimum inhibitory concentration; E. coli: Escherichia coli; P. aeruginosa: Pseudomonas aeruginosa.

              • TABLE 7

                Key components of an effective antimicrobial stewardship programme

                DescriptionOutcomes
                Pre-authorisationPrescribers are required to gain approval prior to use of certain antimicrobialsEnsures appropriate antibiotic selection and dosing
                Prevents unnecessary initiation of antibiotics
                Prospective audit and feedbackExternal review of antibiotics after initiation, with suggestions from experts on optimal useReduction in unnecessary use of broad-spectrum antibiotics
                Facility-specific treatment guidelinesSpecific treatment guidelines for common conditions, such as community-acquired pneumonia, UTI and surgical prophylaxis, taking into account national guidelines and local susceptibilities and formulary optionsSimplifies antibiotic prescribing for common conditions
                Allows for consensus between stewardship team and prescribers
                Antibiotic time-outsProvider-led reassessment of the continuing need for antibiotics after additional clinical information has returnedImproves the appropriateness of antibiotic use
                Encourages antibiotic de-escalation when appropriate
                Pharmacy-based interventionsPrescribing interventions by pharmacy to optimise antibiotic use
                May be incorporated into electronic health record
                Dose optimisation, dose adjustments based on renal function, changing intravenous antibiotics to oral formulation
                Rapid diagnosticsEarly pathogen identification using technology such as PCR to identify bacterial infection prior to awaiting culture resultsEarlier identification of causative organism can lead to antibiotic de-escalation and optimisation of antibiotics
                Clinical decision support systemIncorporation of clinical and patient-specific data into electronic health record to provide providers with relevant information prior to prescribing antibioticsDecreased overall antibiotic use and improved use of antibiotics in patients with sepsis

                UTI: urinary tract infection

                PreviousNext
                Back to top
                View this article with LENS
                Vol 31 Issue 166 Table of Contents
                European Respiratory Review: 31 (166)
                • Table of Contents
                • Index by author
                Email

                Thank you for your interest in spreading the word on European Respiratory Society .

                NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

                Enter multiple addresses on separate lines or separate them with commas.
                The threat of multidrug-resistant/extensively drug-resistant Gram-negative respiratory infections: another pandemic
                (Your Name) has sent you a message from European Respiratory Society
                (Your Name) thought you would like to see the European Respiratory Society web site.
                CAPTCHA
                This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
                Print
                Citation Tools
                The threat of multidrug-resistant/extensively drug-resistant Gram-negative respiratory infections: another pandemic
                Daniel Reynolds, Jason P. Burnham, Cristina Vazquez Guillamet, Mikaela McCabe, Valerie Yuenger, Kevin Betthauser, Scott T. Micek, Marin H. Kollef
                European Respiratory Review Dec 2022, 31 (166) 220068; DOI: 10.1183/16000617.0068-2022

                Citation Manager Formats

                • BibTeX
                • Bookends
                • EasyBib
                • EndNote (tagged)
                • EndNote 8 (xml)
                • Medlars
                • Mendeley
                • Papers
                • RefWorks Tagged
                • Ref Manager
                • RIS
                • Zotero

                Share
                The threat of multidrug-resistant/extensively drug-resistant Gram-negative respiratory infections: another pandemic
                Daniel Reynolds, Jason P. Burnham, Cristina Vazquez Guillamet, Mikaela McCabe, Valerie Yuenger, Kevin Betthauser, Scott T. Micek, Marin H. Kollef
                European Respiratory Review Dec 2022, 31 (166) 220068; DOI: 10.1183/16000617.0068-2022
                Reddit logo Technorati logo Twitter logo Connotea logo Facebook logo Mendeley logo
                Full Text (PDF)

                Jump To

                • Article
                  • Abstract
                  • Abstract
                  • Introduction
                  • Antibiotic resistant Gram-negative pulmonary infections: key organisms and their epidemiology
                  • Overview of main resistance mechanisms
                  • Impact of Gram-negative antibiotic-resistant pulmonary infection on outcomes
                  • Novel and pipeline antibiotics
                  • Monoclonal antibodies
                  • Bacteriophage therapy
                  • Oligonucleotides
                  • Role of stewardship in curbing MDR spread
                  • Conclusions
                  • Footnotes
                  • References
                • Figures & Data
                • Info & Metrics
                • PDF

                Subjects

                • Respiratory infections and tuberculosis
                • Tweet Widget
                • Facebook Like
                • Google Plus One

                More in this TOC Section

                Series

                • Supplemental oxygen and noninvasive ventilation
                • Nonpharmacological management of psychological distress in COPD
                • Lung transplantation for COPD/pulmonary emphysema
                Show more Series

                Respiratory infections

                • New antibiotics for Gram-negative pneumonia
                • Severe community-acquired pneumonia
                • Pulmonary aspergillosis: diagnosis and treatment
                Show more Respiratory infections

                Related Articles

                Navigate

                • Home
                • Current issue
                • Archive

                About the ERR

                • Journal information
                • Editorial board
                • Press
                • Permissions and reprints
                • Advertising
                • Sponsorship

                The European Respiratory Society

                • Society home
                • myERS
                • Privacy policy
                • Accessibility

                ERS publications

                • European Respiratory Journal
                • ERJ Open Research
                • European Respiratory Review
                • Breathe
                • ERS books online
                • ERS Bookshop

                Help

                • Feedback

                For authors

                • Instructions for authors
                • Publication ethics and malpractice
                • Submit a manuscript

                For readers

                • Alerts
                • Subjects
                • RSS

                Subscriptions

                • Accessing the ERS publications

                Contact us

                European Respiratory Society
                442 Glossop Road
                Sheffield S10 2PX
                United Kingdom
                Tel: +44 114 2672860
                Email: journals@ersnet.org

                ISSN

                Print ISSN: 0905-9180
                Online ISSN: 1600-0617

                Copyright © 2023 by the European Respiratory Society