Skip to main content

Main menu

  • Home
  • Current issue
  • Past issues
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • COVID-19 submission information
    • Institutional open access agreements
    • Peer reviewer login
  • Alerts
  • Subscriptions
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

User menu

  • Log in
  • Subscribe
  • Contact Us
  • My Cart

Search

  • Advanced search
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

Login

European Respiratory Society

Advanced Search

  • Home
  • Current issue
  • Past issues
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • COVID-19 submission information
    • Institutional open access agreements
    • Peer reviewer login
  • Alerts
  • Subscriptions

A systematic review of overlapping microRNA patterns in systemic sclerosis and idiopathic pulmonary fibrosis

Gianluca Bagnato, William Neal Roberts, Jesse Roman, Sebastiano Gangemi
European Respiratory Review 2017 26: 160125; DOI: 10.1183/16000617.0125-2016
Gianluca Bagnato
1Division of Rheumatology, Dept of Clinical and Experimental Medicine, University of Messina, Messina, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: gianbagnato@gmail.com
William Neal Roberts
2Division of Rheumatology, Dept of Medicine, University of Louisville School of Medicine and Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jesse Roman
3Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, University of Louisville School of Medicine and Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sebastiano Gangemi
4Division of Allergy and Clinical Immunology, Dept of Clinical and Experimental Medicine, University of Messina, Messina, Italy
5Institute of Applied Sciences and Intelligent Systems (ISASI), Pozzuoli Unit, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Figures

  • Tables
  • Supplementary Materials
  • FIGURE 1
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 1

    Flow diagram of the systematic research method for detecting matching microRNAs (miRNAs) in systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF). The upper part of the flow diagram shows the number of papers reviewed and the detailed list of excluded manuscripts. The lower part shows the number of included papers and the remaining part of those after excluding those related to miRNAs not overlapping for SSc and IPF.

  • FIGURE 2
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 2

    Fibroblast responses to changes in miR-21-5p and miR-29 family levels. miR-21-5p and miR-29 family members can act synergistically to potentiate fibroblast functions in fibrotic conditions. The figure shows complex but established relationships supported by the literature review. Above the horizontal line is the activation of a profibrotic fibroblast in both idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). Below the line represents the normal state. Highlighted on the right surrounding the abstract fibroblast is the mechanism by which both miRNAs can regulate transforming growth factor (TGF)-β release from its latency-associated peptide (LAP) by stimulating integrin expression and collagen synthesis. The right-hand fibroblast image also shows the effect of miRNAs 21-5p and the 29 family on α-SMA expression. Small mother against decapentaplegic protein (SMAD)3 has a pivotal role in the maintenance of the loop of this finely regulated system: SMAD3 stimulates the secretion of miR-21-5p, which blocks the inhibitory effect of SMAD7 on SMAD3; in addition, SMAD3 reduces miR-29 family levels, which reinforces SMAD3 activation.

Tables

  • Figures
  • Supplementary Materials
  • TABLE 1

    Overview of putative functions of the most relevant microRNAs (miRNAs) overlapping in systemic sclerosis and idiopathic pulmonary fibrosis

    Putative functions
    miR-29a-3pCollagen gene expression – apoptosis
    miR-29b-3pCollagen gene expression
    miR-29c-3pECM-related genes expression
    miR-21-5pEMT – collagen expression – SMAD7
    miR-92a-3pMMP-1 expression
    miR-26a-5pEMT – collagen expression
    let-7d-5pEMT

    The table shows candidate functions for each major overlapping miRNA in systemic sclerosis and idiopathic pulmonary fibrosis, and provides an overview of the specific functions in fibrogenesis regulated by a specific miRNA. ECM: extracellular matrix; SMAD7: small mother against decapentaplegic protein 7; MMP-1: matrix metalloproteinase 1; EMT: epithelial–mesenchymal transition.

    • TABLE 2

      Overlapping microRNAs (miRNAs) in systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF)

      miRNAsSpecimenMethodTarget mRNADesignSubjects n[Ref.]
      29a-3pSSc and normal dermal fibroblastsmiR-29a-3p mimic/antimirBcl-2 BaxCase–controldcSSc=10, controls=10[18]
      29a-3p, 29b-3p, 29c-3p, pre-mir-29a, pre-mir-29bDermal fibroblastsqPCR, pre-mir29a/b mimicN/ACross-sectionalControls=9[17]
      29a-3p, 29b-3p, 29c-3p, pre-mir-29a, pre-mir-29b, pre-mir-29cSSc and normal skin biopsy; dermal fibroblastsqPCR, pre-miR29a/b/c mimic/antimirCOL1A1, COL3A1Case–controlSSc=12, controls=11[15]
      29c-3p, pre-mir-29cIPF and normal lung biopsy; primary mesenchymal cells and controls; pulmonary fibroblastsqPCR, miR-29c-3p overexpression/knockdown lentiviral transfectionN/ACase–controlIPF=11, controls=10[22]
      29c-3pIPF and normal lung biopsy; pulmonary fibroblasts; decellularised primary human lung; ECMqPCR, miR-29c-3p lentiviral transfectionCOL6A2, LAMA2, COL4A2, COL1A2, LAMC1, COL4A1, COL1A1, COL5A1, NID1, MFAP2Case–controlIPF=5, controls=5[23]
      21-5pSSc and normal skin biopsy; dermal fibroblastsqPCR, in situ hybridisation, miR-21-5p mimic/antimirFN1, ACTA2, COL1A1, COL1A2Case–controldcSSc=4, lcSSc=2, controls=4[28]
      9-5p, 10a-5p, 15a-5p, 21-5p, 31-5p, 125a-5p, 125b-5p, 137-3p, 181a-5p, 203a-3p, 218-5p, 381-3p, 410, let-7a-5p, let-7b-5p, let-7cSerumArray, initial qPCR for miR-146a-5p, 155-5p, let-7a-5p, 181a-5p, 454-5p, let-7b-5p, 28-3p and miR-885-5p; confirmatory qPCR for miR-21-5p, 199a-5p, 200c-3p, 31-5p, let-7a-5p and let-7d-5pN/ACase–controlRapidly progressive=12, slowly progressive IPF=12, controls for profiling=12; rapidly progressive IPF=20, slowly progressive IPF =24, controls=20 for qPCR confirmation[24]
      21-5p, 155-5pSerumqPCRN/ACase–controlIPF=65, controls=65[30]
      21-5pIPF and normal lung biopsy; MRC-5 and IMR-90, HEK-293 cellsNorthern blotting, in situ hybridisation, miR-21-5p mimic/antimirN/ACase–controlIPF=8, controls=8[31]
      21-5pIPF and normal lung biopsy; human alveolar type 2 cellsqPCR, in situ hybridisationN/ACase–controlIPF=3, controls=3[32]
      21-5p, 29a-3p, 92a-3p, 101-3p, 106a-5p, 142-3p, 155-5p, 181b-5p-5p, 184-3p, 223-3p, 342-3p, 409-3p, let-7cSerumqPCRN/ACross-sectionaldcSSc=32, lcSSc=63[21]
      17-5p, 20a-5p, 29b-3p, 92a-3p, 106a-5p, 142-3p, 145-5p, 146b-5p, 181b-5p-5p, 221-3p, 223-3p, 342-3pSerumqPCRN/ACase–controldcSSc=41, lcSSc=79, SLE=29, controls=40[20]
      26a-5p, 30a-5p, 30b-5p, 30d-5p, 92a-3p, 101-3p, 125a-5p, 126-3p, 184-3p, 203a-3p, 218-5p, 222-3p, 375-3p, let-7d-5p, let-7g-5pIPF and normal lung biopsy; pulmonary fibroblastsqPCR, miR-30a-5p, 30d-5p, 92a-3p mimic/antimirWISP1Case–controlIPF=8, controls=7[37]
      92a-3pSSc and normal skin biopsy; dermal fibroblasts; serumqPCR, miR-92a-3p mimicN/ACase–controldcSSc=23, lcSSc=38, SSD=12, DM=7, SLE=7, controls=18[34]
      17∼92 cluster (17-5p, 18a-5p, 19a-3p, 19b-3p, 20a-5p, 92a-3p)IPF and COPD lung biopsy; normal and IPF pulmonary fibroblastsqPCR, in situ hybridisation, miR-17∼92 mimic/antimirN/ACase–control>80% FVC IPF+COPD=7, 50–80% FVC IPF+COPD=8, <50% FVC IPF+COPD=9, controls=10[38]
      26a-5p, 27b-3p, 30a-5p, 30d-5p, 92a-3p, 125a-5p, 125b-5p, 140-5p, 145-5p, 197-3p, 214-3p, 377-3p, 381-3p, 486-5p, let-7g-5pSkin biopsyArray, qPCR let-7g-5p, 206-3p, 125b-5pN/A (identified by computational prediction algorithms)Case–controlSSc=3, controls=3[36]
      21-5p, 29b-3p, 31-5p, 145-5p, 146a-5p, 503-5pSSc and normal skin biopsy; dermal fibroblastsArray, qPCR for miR-21, 31, 503, 146, 145, 29bSMAD7, SMAD3 COL1A1Case–controldcSSc=5, lcSSc=2, controls=7[16]
      30a-3pSSc and normal skin; rheumatoid arthritis and normal synovial biopsy; dermal fibroblasts, fibroblasts-like synoviocytesqPCR, miR-30a-3p mimic/antimirBAFFCase–controlFLS: RA=5, controls=5;
      DF: SSc=4, controls=3
      [50]
      9-5p, 10a-5p, 15a-5p, 17-5p, 18a-5p, 20a-5p, 21-5p, 22-3p, 26a-5p, 92a-3p, 93-5p, 96-5p, 100-5p, 101-3p, 103a-3p, 106b-5p, 125a-5p, 126-3p, 130a-3p, 132-3p, 133b-3p, 134, 137-3p, 141-3p, 142-3p, 142-5p, 146a-5p, 155-5p, 181a-5p, 182-5p, 205-5p, 210, 214-3p, 222-3p, 223-3p, 301a-3p, 302c-3p, 345-5p, 370, 375-3p, 424-5p, 520g, let-7a-5p, let-7b, let-7c, let-7d-5p, let-7g-5pSerum; dermal fibroblasts; skin tissuesArray, qPCR for let-7a-5p, in situ hybridisation, let-7a mimic/antimirN/ACase–controlSerum: dcSSc=20, lcSSc=19, LSc=39, SLE=8, DM=8, controls=17;
      skin tissues: SSc=7, LSc=7, keloid=5, controls=7
      [43]
      19a-5p, 26a-5p, 30b-5p, 106b-5p, 181a-5p, 181b-5p, 203a-3p, 205-5p, 302c-3p, 409-3p, 410 let-7a-5p, let-7b-5p, let-7c, let-7d-5pSSc and normal skin biopsy; dermal fibroblasts; serumqPCR, miR-30b-5p mimicPDGFR-β, COL1A2, ACTA2Case–controldcSSc=18, lcSSc=32, controls=24[45]
      10a-5p, 15a-5p, 17-5p, 18a-5p, 20a-5p, 21-5p, 93-5p, 96-5p, 101-3p, 103a-3p, 106b-5p, 130a-3p, 132-3p, 133b-3p, 134, 137-3p, 141-3p, 142-5p, 142-3p, 155-5p, 182-5p, 210, 301a-3p, 370, 424-5p, 520g, let-7a-5p, let-7b-5p, let-7c, let-7d-5p, let-7g-5pSSc and normal skin biopsy; dermal fibroblastsArray, qPCR for miR-150, in situ hybridisation, miR-150 mimicN/ACase–controlSerum: dcSSc=20, lcSSc=20, DM=5, SLE=5, controls=20;
      skin tissues: dcSSc=5, controls=5
      [46]
      1-3p, 9-5p, 10a-5p, 15a-5p, 17-5p, 18a-5p, 20a-5p, 21-5p, 22-3p, 26a-5p, 92a-3p, 93-5p, 96-5p, 100-5p, 101-3p, 103a-3p, 106b-5p, 125a-5p, 126-3p, 128-3p, 130a-3p, 132-3p, 133b-3p, 134, 137-3p, 142-5p, 142-3p, 155-5p, 181a-5p, 182-5p, 205-5p, 210, 214-3p, 218-5p, 222-3p, 223-3p, 301a-3p, 302c-3p, 370, 375-3p, 424-5p, 520g, let-7a-5p, let-7b-5p, let-7c, let-7d-5p, let-7g-5pSSc and normal skin biopsy; dermal fibroblastsArray, qPCR for miR-196a, miR-196a mimic/antimirN/ACase–controlSerum: dcSSc=20, lcSSc=20, controls=25;
      skin tissues: SSc=5, TGF-β-stimulated=5, controls=5
      [49]
      1-3pSSc and normal dermal fibroblastsArrayN/ACase–controlSkin tissues: dcSSc=6, controls=8[54]
      142-3pSerumqPCRN/ACase–controldcSSc=23, lcSSc=38, SSD=12, controls=20, SLE=8, DM=8[51]
      9-5pIPF and normal lung biopsy; human fetal lung fibroblasts; human mesothelial cellsArray, qPCR for miR-9-5p, in situ hybridisation, pre-miR-9-5p mimic/antimirTGFBR2, NOX4, ACTA2, COL1A1, FN1Case–controlIPF=7, controls=3[55]
      31-5p, 424-5pTGF-β1 stimulated and normal human lung epithelial cells (A549)Array, miR-424-5p, 1224-5p and 23b-3p overexpression/knockdown lentiviral transfectionN/ACase–controlCells[57]
      96-5pIPF and normal lung biopsy; pulmonary fibroblastsqPCR, in situ hybridisation, miR-96-5p mimic/antimirFoxO3a, p27, p21, BIMCase–controlIPF=8, controls=8[53]
      210IPF and normal lung biopsy; lung
      mesenchymal cells
      qPCR, in situ hybridisation, miR-210 overexpression/knockdown lentiviral transfectionN/ACase–controlIPF=7, controls=6[48]
      26a-5pHuman lung epithelial cells (A549)Array (downloaded from Gene Expression Omnibus database), miR-26a-5p mimic/antimirHuman genes annotated in the biological process of “EMT” were downloaded from the Gene Ontology database (GO:0001837)Case–controlCells[41]
      26a-5p, 30a-5p, 30b-5p, 133b-3pIPF and normal lung biopsy; human fetal lung fibroblastsArray, miR-26a-5p mimicCOL1A1, COL3A1Case–controlIPF=8, controls=10 cells[40]
      let-7d-5pHuman fetal lung fibroblasts, human lung fibroblasts, human fetal
      foreskin fibroblasts
      let-7d-5p overexpression lentiviral transfectionPAI-1, HMGA2, ACTA2, CDH2, ID1, ID2, SLUG, FSP-1, FN1, KRT19Case–controlCells[47]
      140-5pHuman type II alveolar epithelial cells (A549)qPCR, miR-140-5p mimic/antimirCase–controlIPF=5, controls=5 cells[56]
      1-3p, 10a-5p, 17-5p, 27b-3p, 30a-3p, 30a-5p, 30b-3p, 30d-5p, 126-3p, 133b-3p, 181a-5p, 184-3p-3p, 203a-3p, 210, 222-3p, 370, 375-3p, 377-3p, 381-3p, 409-3p, 410, 520g, let-7d-5pIPF and normal lung biopsy; IPF, TGF-β-stimulated and normal human lung fibroblastsArray, miR-154-5p mimic/antimirMEG3, DKK2, DIXDC1, PPP2CA, FZD 4/5/6, LRP, KREMEN1, β-CATENIN, WISP1Case–controlIPF=13, controls=12; IPF=32, controls=28 for qPCR confirmation[44]
      15a-5p, 17-5p, 18a-5p, 19a-5p, 20a-5p, 21-5p, 22-3p, 27b-3p, 29a-3p, 29b-3p, 29c-3p, 30a-5p, 30b-5p, 92a-3p, 93-5p, 96-5p, 100-5p, 101-3p, 103a-3p, 106b, 125a-5p, 126-3p, 128, 130a, 140-5p, 141, 142-3p, 142-5p, 155, 181b-5p, 210, 222-3p, 223-3p, 302c-3p, 424-5p, let-7c, let-7d-5pIPF and normal lung biopsy, IPF and normal lung fibroblastsArrayN/ACase–controlRapidly progressive IPF=9, slowly progressive IPF=6, controls=10[29]
      26a-5p, 30a-3p, 30b-5p, 30d-5p, 92a-3p, 125a-5p, 126-3p, 132-3p, 134, 155-5p, 182-5p, 184-3p, 197-3p, 203a-3p, 205-5p, 214-3p, 409-3p, let-7d-5pIPF and normal lung tissues, A549 cellsArray, qPCR for 26a-5p, 30a-3p, 30b-5p, 30d-5p, 92a-3p, let-7d-5p mimic/inhibitorHMGA2, CDH2, VIM, ACTA2Case–controlIPF=10, controls=10 cells[39]
      130a-3p, 142-5pBAL fluid samples; IPF and normal macrophagesqPCRN/ACase–controlIPF=9, control=7[52]
      29a-3pSSc and normal skin biopsy; dermal fibroblastsqPCR, mir-29a mimicCOL1A1, TIMP1, TAB1Case–controlSSc=4–6, controls=4–6[19]
      130b-3pSSc and normal skin biopsy; dermal fibroblastsqPCR, miR-130b-3p mimic/antimirCOL1A1, COL1A2, FN1, ASMACase-controlSSc=14, controls=14[58]
      130b-3pIPF and normal lung biopsy; human primary type II alveolar epithelial and lung fibroblastsqPCR, miR-130b-3p mimic/antimirIGF1Case–controlIPF=4, controls=3[59]
      26a-5p, let-7d-5pHuman alveolar basal epithelial cellsqPCR, miR-26a-5p mimic/antimirLIN28BCase–controlIPF=106, controls=50 (microarray data set of GSE32538)[42]
      29b-3pIPF lung biopsyqPCR, miR-29b-3p mimicCOL1A1, COL3A1Case–controlIPF=16[25]

      The table describes all the manuscripts that reported overlapping miRNAs between SSc and IPF. The manuscripts have been categorised according to the significance, specimen analysed, miRNAs detection method employed and, where described, the mRNA target. Moreover, the design of the study and the number of subjects involved in each study, together with the reference, are reported. Bcl-2: B-cell lymphoma 2; BAX: bcl-2-like protein 4; dcSSc: diffuse cutaneous SSc; COL1A1, COL1A2, etc.: collagen, type I, alpha 1, collagen, type I, alpha 2, etc.; ECM: extracellular matrix; LAMA2: laminin, alpha 2; LAMC1: laminin, gamma 1; NID1: nidogen 1; MFAP2: microfibrillar-associated protein 2; FN1: fibronectin 1; ACTA: alpha smooth muscle actin; lcSSc: limited cutaneous SSc; MRC-5: Medical Research Council cell strain 5; HEK-293: human embryonic kidney cells 293; SLE: systemic lupus erythematosus; WISP1: WNT1-inducible-signalling pathway protein 1; SSD: scleroderma spectrum disorders; DM: dermatomyositis; COPD: chronic obstructive pulmonary disease; N/A: not available; FVC: forced vital capacity; SMAD: small mother against decapentaplegic protein; BAFF: B-cell activating factor; FLS: fibroblast-like synoviocytes; RA: rheumatoid arthritis; DF: dermal fibroblasts; LSc: localised scleroderma; PDGFR-β: platelet-derived growth factor receptor β; TGF-β: transforming growth factor-β; NOX4: NADPH oxidase 4; FoxO3a: Forkhead box O3; BIM: Bcl-2-like protein 11; EMT: epithelial–mesenchymal transition; PAI-1: plasminogen activator inhibitor-1; HMGA2: high-mobility group AT-hook 2; CDH2: cadherin-2; ID1–ID2: DNA-binding protein inhibitor 1–2; SLUG: protein snail homolog 2; FSP-1: fibroblast-specific protein 1; KRT19: keratin 19; MEG3: maternally expressed 3; DKK2: Dickkopf WNT signaling pathway inhibitor 2; DIXDC1: DIX domain containing 1; PP2CA: protein phosphatase 2CA; FZD4-5-6: frizzled-4 frizzled-5 frizzled-6; LRP: lipoprotein receptor-related protein; KREMEN: Kringle-Containing Protein Marking the Eye and the Nose; VIM: vimentin; BAL: bronchoalveolar lavage; TIMP: tissue inhibitor of metalloproteinase 1; TAB1: TGF-β activated kinase 1/MAP3K7 binding protein 1; ASMA: a smooth muscle actin; IGF: insulin-like growth factor.

      • TABLE 3

        Major overlapping miRNAs in systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF)

        SScIPF
        FibroblastsSerum expressionSkin expressionFibroblastsSerum expressionLung expression
        ExpressionEffectExpressionEffect
        29a-3p↓Mimic induces apoptosis, abrogates collagen expression, increases collagen degradation↑ in RNP+ compared to ACA+↓↓
        29b-3p↓Mimic abrogates collagen expression↑↓↓
        29c-3p↓Mimic abrogates ECM expression↓↓Overexpression abrogates collagen expression↓
        21-5p↔↑ in RNP+ compared to ACA+↑Knockdown abrogates collagen expression and EMT↑ in rapid progressive disease - associated with worse FVC↑
        92a-3p↔Overexpression induces collagen degradation↔ in SSc and in SSc-ILD↔↔
        26a-5p↓↔Overexpression abrogates collagen expression and EMT↓
        let-7d-5p↓↓↓Overexpression reduces EMT↓ in slowly and rapid progressive disease↓

        The table compares the expression levels and the effects of major overlapping miRNAs in SSc skin and fibroblasts with those observed in IPF lung and fibroblasts. Circulating serum levels for SSc and IPF patients are also reported. RNP+: SSc patients with anti-U1 ribonucleoprotein antibodies; ACA+: SSc patients with anticentromere antibodies; ECM: extracellular matrix; EMT: epithelial–mesenchymal transition; FVC: forced vital capacity; SSc-ILD: systemic sclerosis-associated interstitial lung disease. ↑: high levels; ↓: low levels; ↔: controversial results.

        Supplementary Materials

        • Figures
        • Tables
        • Supplementary Material

          W.N. Roberts ERR-0125-2016_Roberts

          J. Roman ERR-0125-2016_Roman

        PreviousNext
        Back to top
        View this article with LENS
        Vol 26 Issue 144 Table of Contents
        European Respiratory Review: 26 (144)
        • Table of Contents
        • Table of Contents (PDF)
        • Index by author
        Email

        Thank you for your interest in spreading the word on European Respiratory Society .

        NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

        Enter multiple addresses on separate lines or separate them with commas.
        A systematic review of overlapping microRNA patterns in systemic sclerosis and idiopathic pulmonary fibrosis
        (Your Name) has sent you a message from European Respiratory Society
        (Your Name) thought you would like to see the European Respiratory Society web site.
        CAPTCHA
        This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
        Print
        Citation Tools
        A systematic review of overlapping microRNA patterns in systemic sclerosis and idiopathic pulmonary fibrosis
        Gianluca Bagnato, William Neal Roberts, Jesse Roman, Sebastiano Gangemi
        European Respiratory Review Jun 2017, 26 (144) 160125; DOI: 10.1183/16000617.0125-2016

        Citation Manager Formats

        • BibTeX
        • Bookends
        • EasyBib
        • EndNote (tagged)
        • EndNote 8 (xml)
        • Medlars
        • Mendeley
        • Papers
        • RefWorks Tagged
        • Ref Manager
        • RIS
        • Zotero

        Share
        A systematic review of overlapping microRNA patterns in systemic sclerosis and idiopathic pulmonary fibrosis
        Gianluca Bagnato, William Neal Roberts, Jesse Roman, Sebastiano Gangemi
        European Respiratory Review Jun 2017, 26 (144) 160125; DOI: 10.1183/16000617.0125-2016
        del.icio.us logo Digg logo Reddit logo Technorati logo Twitter logo CiteULike logo Connotea logo Facebook logo Google logo Mendeley logo
        Full Text (PDF)

        Jump To

        • Article
          • Abstract
          • Abstract
          • Introduction
          • Methods
          • Results
          • Discussion
          • Disclosures
          • Footnotes
          • References
        • Figures & Data
        • Info & Metrics
        • PDF

        Subjects

        • Genetics
        • Interstitial and orphan lung disease
        • Tweet Widget
        • Facebook Like
        • Google Plus One

        More in this TOC Section

        • Role of air pollutants in airway epithelial barrier dysfunction
        • E-cigarettes and nicotine abstinence
        • Lung imaging in cystic fibrosis
        Show more Review

        Related Articles

        Navigate

        • Home
        • Current issue
        • Archive

        About the ERR

        • Journal information
        • Editorial board
        • Reviewers
        • Press
        • Permissions and reprints
        • Advertising
        • Sponsorship

        The European Respiratory Society

        • Society home
        • myERS
        • Privacy policy
        • Accessibility

        ERS publications

        • European Respiratory Journal
        • ERJ Open Research
        • European Respiratory Review
        • Breathe
        • ERS books online
        • ERS Bookshop

        Help

        • Feedback

        For authors

        • Instructions for authors
        • Publication ethics and malpractice
        • Submit a manuscript

        For readers

        • Alerts
        • Subjects
        • RSS

        Subscriptions

        • Accessing the ERS publications

        Contact us

        European Respiratory Society
        442 Glossop Road
        Sheffield S10 2PX
        United Kingdom
        Tel: +44 114 2672860
        Email: journals@ersnet.org

        ISSN

        Print ISSN: 0905-9180
        Online ISSN: 1600-0617

        Copyright © 2023 by the European Respiratory Society