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ABSTRACT Asthma is a heterogeneous condition, with dyspnoea during exercise affecting individuals to
a variable degree. This narrative review explores the mechanisms and measurement of exertional dyspnoea
in asthma and summarises the available evidence for the efficacy of various interventions on exertional
dyspnoea. Studies on the mechanisms of dyspnoea in asthma have largely utilised direct
bronchoprovocation challenges, rather than exercise, which may invoke different physiological
mechanisms. Thus, the description of dyspnoea during methacholine challenge can differ from what is
experienced during daily activities, including exercise. Dyspnoea perception during exercise is influenced
by many interacting variables, such as asthma severity and phenotype, bronchoconstriction, dynamic
hyperinflation, respiratory drive and psychological factors. In addition to the intensity of dyspnoea, the
qualitative description of dyspnoea may give important clues as to the underlying mechanism and may be
an important endpoint for future interventional studies. There is currently little evidence demonstrating
whether pharmacological or non-pharmacological interventions specifically improve exertional dyspnoea,
which is an important area for future research.
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Introduction
Dyspnoea is a complex symptom experienced by many patients with chronic lung diseases and may
occur at rest or with exertion. It is defined as “a subjective experience of breathing discomfort that
consists of qualitatively distinct sensations that vary in intensity” [1]. The sensation of breathing
discomfort results from incompletely understood interactions between physiological, psychological, social
and environmental factors [1, 2]. The mechanisms of dyspnoea in asthma have been extensively researched
and reviewed [3–7].

Dyspnoea is a common symptom in asthma and can be captured under various other symptoms,
including chest tightness, or can be interpreted and expressed as activity limitation. Symptoms are used to
assess asthma control, and resting lung function is used to assess risk for future exacerbations [8];
however, the relationship between dyspnoea and objective measures of resting lung function in asthma is
poor [9, 10]. Asthma is a heterogeneous condition with many different and overlapping clinical
phenotypes and endotypes, including eosinophilic versus non-eosinophilic, allergic versus non-allergic and
high versus poor symptom perceivers [11–14]. Many patients with severe or near fatal asthma, for
example, have poor perception of dyspnoea symptoms [15–17].

Exertional dyspnoea may contribute to activity limitation and impaired quality of life, but it is a highly
variable symptom in asthma [18]. For example, many individuals, particularly those with poor dyspnoea
perception, are more limited by leg fatigue than dyspnoea during exercise [19], whereas others may have
no limitations whatsoever, even during strenuous exercise. The exact mechanisms of exertional dyspnoea
have been poorly explored compared with dyspnoea experienced during direct bronchoprovocation or
under resistive loads. While exercise itself is an indirect bronchoprovocation challenge (as are eucapnic
voluntary hyperventilation or mannitol), the intensity and quality of dyspnoea experienced during direct
bronchoprovocation (i.e. with methacholine) may not reflect the experience of dyspnoea during exercise or
activities in daily life. Recent evidence suggests that exertional dyspnoea in asthma is qualitatively different
from that during methacholine testing [20] and results from bronchoconstriction, mechanical limitations
due to dynamic lung hyperinflation [21], ventilatory effort [20] and psychological factors [22].
Importantly, resting measures of lung function, such as forced expiratory volume in 1 s (FEV1), and results
of direct bronchoprovocation testing do not predict exertional symptoms or physiological adaptations
during exercise in asthma.

Understanding the various contributing factors and the impact of exertional dyspnoea for an individual
with asthma can be difficult given the variable and heterogeneous nature of asthma. In many clinical
studies, multidimensional symptom scores are used to measure asthma symptoms and their burden or
impact, but exertional dyspnoea is not universally addressed within these scores. There are relatively few
studies specifically addressing exertional dyspnoea in asthma, and those available are limited by high
inter-individual variability in dyspnoea perception, heterogeneity in patient severity, the type of exercise
used, and inconsistent assessment of dyspnoea intensity and quality. The objectives of this review are to
1) describe the pathophysiological mechanisms contributing to exertional dyspnoea in asthma, 2) explore
the description and quantification of exertional dyspnoea in asthma, and 3) describe the effect of
interventions on exertional dyspnoea in asthma.

Mechanisms of exertional dyspnoea in asthma
The mechanisms of exercise limitation and exertional dyspnoea are complex and are incompletely
understood. In general, dyspnoea emerges from two interrelated neurophysiological mechanisms, a sensory
component that identifies afferent respiratory information and an affective component, which identifies
this information as disturbing or unpleasant [23, 24]. Many factors contribute to exercise limitation in
asthma, including bronchoconstriction, dynamic hyperinflation (DH), respiratory muscle strength,
psychological factors and others.
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Bronchoconstriction and small airways disease
The importance of bronchoconstriction in exertional dyspnoea is complex, as most individuals with asthma
do not develop a decrease in FEV1 during short exercise sessions, and those with exercise-induced
bronchoconstriction (EIB) usually develop a reduction in FEV1 post-exercise [25, 26]. Importantly, EIB can
occur without symptoms, whereas EIB in association with asthma symptoms is considered as exercise-induced
asthma (EIA) [27]. Some individuals with EIA do develop a reduction in FEV1 during exercise [28]. The type
and duration of exercise may be important in EIA, as SUMAN et al. [29] demonstrated that, while FEV1 and
peak expiratory flow did not decrease during a 6-min progressive treadmill exercise test, there were 20% and
26% decreases in peak expiratory flow and FEV1, respectively, during a 20-min test.

Many studies have examined the relationship between dyspnoea and the degree of decline in FEV1 after
methacholine. While methacholine accurately mimics the physiological derangements and quality of
dyspnoea experienced during acute asthma exacerbations [30], it may not mimic the sensations
experienced during exercise. Bronchoconstriction induced prior to exercise may modulate dyspnoea
intensity, however. In a study of 15 asthmatic patients of varying severity by MAHLER et al. [31], either
methacholine or a bronchodilator was given prior to cardiopulmonary exercise testing (CPET). When
given prior to exercise, methacholine resulted in a 36% decline in pre-exercise FEV1, a 20% decline in
post-exercise FEV1, a slight decrease in peak exercise work rate, and higher dyspnoea intensity compared
to a baseline CPET or when a bronchodilator was given prior to CPET [31].

Small airway disease probably contributes to exertional dyspnoea. Although no gold standard exists,
dysfunction of the small airways can be assessed by various techniques, including impulse oscillometry or
with the forced expiratory flow at 25–75% of forced vital capacity (FEF25–75%). Small airway disease is
associated with more severe EIB [32] and more severe bronchial hyperresponsiveness to methacholine [33]
but it is inconsistently associated with exertional breathlessness [33–35].

Mechanical factors: dynamic hyperinflation
DH is a recognised consequence of spontaneous and induced bronchoconstriction, but controversy exists
regarding the mechanism. Although there is some evidence that DH is an “active” phenomenon due to
persistent inspiratory muscle activity throughout expiration (often termed inspiratory muscle “braking”) [36,
37], it is likely that DH is largely a passive consequence of expiratory flow limitation [30, 38, 39]. The
differences between static hyperinflation and DH at rest, or DH provoked during exercise, are important,
because the sensory consequences are different: DH is related to the degree of exertional dyspnoea whereas
static hyperinflation is not [40]. DH occurs when end-expiratory lung volume progressively increases during
bronchoconstriction or exercise, forcing tidal volume (VT) to the non-compliant portion of the respiratory
system pressure–volume relationship. End-expiratory lung volume necessarily increases when there is a
discrepancy between the volume to exhale, the time needed to completely exhale and the time between
inspirations (the respiratory frequency) [40]. DH results in excessive elastic loading of the inspiratory
muscles, which must overcome both an inspiratory threshold from positive end-expiratory pressure and
work against the inward recoil of the lung and chest wall [38, 41]. During exercise, DH is indicated by a
decrease in the inspiratory capacity (IC), which reflects an increase in end-expiratory lung volume as long as
total lung capacity (TLC) remains constant and there is no respiratory muscle weakness. The mechanical
consequence of DH is that further increases in VT are constrained by reduced dynamic compliance and
increased elastic load, leading to increasing dyspnoea intensity (figure 1) [38, 39, 42]. The neuromechanical
uncoupling that ensues probably explains the quality and intensity of dyspnoea experienced during DH. As
thoracic volume approaches the TLC, the inspiratory muscles become functionally weak due to
disadvantageous length–tension relationships, yet the muscles must still work against higher inspiratory and
elastic loads. Inspiratory effort and respiratory drive must therefore be substantially higher to produce a
given change in VT, which is perceived as unsatisfied inspiration and dyspnoea [6, 30, 38].

In asthma, DH occurs during bronchoconstriction provoked by methacholine, but DH only occurs in 36–65%
of subjects during exercise and, therefore, is not the dominant mechanism of exertional dyspnoea in many
individuals [20, 21, 43]. Those individuals with asthma who develop EIB more frequently develop DH during
exercise than asthmatics without EIB [44]. Expiratory flow limitation during normal resting tidal breathing
and a reduced resting IC are associated with exercise limitation and DH in chronic obstructive pulmonary
disease (COPD) [45, 46], but this finding is infrequently present in asthmatics at rest [43, 46, 47]. However, in
one study, the 15% of asthmatic individuals who had more pronounced airflow obstruction at rest (FEV1

<80% predicted) developed expiratory flow limitation and DH early during exercise, and these individuals
reported greater exertional dyspnoea than those not developing expiratory flow limitation and DH during
exercise (figure 2) [43]. Therefore, when a reduction in IC does occur during exercise, it is an important
determinant of maximal exercise capacity in both COPD and asthma [43, 45, 48]. Furthermore, changes in IC
better explain dyspnoea than changes in FEV1 in most [39, 42], but not all, studies [49].
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Respiratory muscle function
There are conflicting data on the importance of respiratory muscle strength in relation to dyspnoea in
asthma. Some authors have found reduced inspiratory muscle strength in asthmatic individuals [50], while
others have found that respiratory muscle strength was similar to controls [42, 51]. Two studies have
found no effect of corticosteroids on respiratory muscle strength [51, 52]; however, the study by PEREZ

et al. [51] found that respiratory muscle endurance was reduced only in steroid-dependent asthma, and
this best correlated with the degree of hyperinflation (as measured by functional residual capacity/TLC). In
contrast, in another group of steroid-dependent asthmatics, PICADO et al. [53] found that muscular
endurance was not related to steroid treatment. A study by WEINER et al. [54] suggested that respiratory
muscle weakness and reduced efficiency were correlated with hyperinflation, and improvements in muscle
function following administration of a bronchodilator were related to the reduction in hyperinflation, not
the improvement in FEV1. This suggests that respiratory muscle dysfunction in asthma is a consequence of
altered muscle length–tension relationships from hyperinflation and not a primary problem. Respiratory
muscle strength correlates poorly with exercise capacity whether measured by peak oxygen consumption
(V′O2) or peak work rate during CPET [55]. Furthermore, the relationship between respiratory muscle
strength and exertional dyspnoea is not clear, with no significant correlation found in several studies [55, 56].
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Emotional and affective factors
Mood and psychological factors undoubtedly influence the reporting and perception of dyspnoea [57] and
activity limitation [18]. Negative emotions affect the perceived unpleasantness of dyspnoea [58]. Anxiety
and depression are common in asthma and can increase the perception of dyspnoea [58]; however, data are
conflicting as to the exact relationship between dyspnoea and anxiety. Unpleasant emotional stimuli increase
airway resistance and perceived dyspnoea at rest in asthma, which is probably mediated by cholinergic
pathways [59, 60]. A study of 715 subjects by JANSON et al. [57] reported correlations between depression/
anxiety and asthma-related symptoms, such as breathlessness at rest and during activity. However, they did
not find any correlation between anxiety or depression and a self-reported asthma diagnosis, or any
objective measures of bronchial hyperresponsiveness such as FEV1, peak expiratory flow variability or blood
eosinophils. Existing data support the importance of emotional states, particularly anxiety, on dyspnoea at
rest and during direct bronchoprovocation challenge [61, 62]. However, no studies have examined the effect
of emotional and affective factors on exertional dyspnoea during exercise. In a study of moderate-to-severe
Brazilian asthma subjects by MENDES et al. [63], lower aerobic capacity during CPET was associated with
reduced health-related quality of life and depressive symptoms independent of body mass index, age and
FEV1; however, they did not report any data with regard to dyspnoea during or after exercise.

Comorbidities, differential diagnoses and other modifying factors
Several other characteristics, including obesity, concurrent laryngeal dysfunction or hyperventilation
disorders, may influence dyspnoea on exertion. There can also be explanations for dyspnoea unrelated to
asthma or EIB, which may be uncovered by using CPET. For example, in a retrospective analysis of 39
patients with difficult asthma complaining of exertional dyspnoea, 14 patients had a hyperventilation
disorder, two had deconditioning, one had cardiac ischaemia and nine individuals had two simultaneous
explanatory features diagnosed by CPET [64]. Nasal obstruction and other chronic nasal symptoms, which
are common in asthma, have been reported to be associated with dyspnoea in COPD [65]. However,
whether nasal disease contributes to dyspnoea in asthma has not been investigated.

Obese individuals are frequently misdiagnosed as having asthma, possibly due to their increased prevalence
of respiratory symptoms compared to non-obese individuals, which could be related to deconditioning or
an altered perception of dyspnoea. In a recent study, the main difference between obese individuals
misdiagnosed with asthma and obese individuals with asthma was that misdiagnosed individuals had
higher perceptions of dyspnoea during methacholine challenge or exercise testing, despite the absence of
airflow obstruction or bronchial hyperreactivity and higher peak V′O2 in comparison to obese asthmatics [66].
Is dyspnoea perception different in obese compared with non-obese asthmatics? CORTÉS-TÉLLES et al. [67]
found that there were no differences between well-controlled obese asthmatic subjects and normal-weight
asthmatics in terms of ventilatory responses to exercise or exercise-related dyspnoea scores for a given
work rate, but they did find significantly higher leg fatigue in the obese patients.

An important mimic of EIB is exercise-induced laryngeal obstruction (EILO), which usually results from
supraglottic narrowing during exercise and may contribute to exertional dyspnoea. EILO can mimic
asthma symptoms in individuals without asthma and is concurrently present in 4.8–14% of individuals
with asthma, particularly in females [68, 69]. Importantly, the description of dyspnoea (difficulty on
inspiration), methacholine challenge and inspiratory obstruction on flow–volume loops do not accurately
identify those with EILO from those without EILO, and this condition is ideally diagnosed with
laryngoscopy during exercise [69].

Dysfunctional breathing, particularly hyperventilation, is present in 17–29% of individuals with asthma
and is associated with psychiatric comorbidity (anxiety and panic disorder), poor asthma control and
frequent exacerbations [70, 71]. An excessively high respiratory rate due to dysfunctional breathing
patterns can exacerbate DH during exercise or induce bronchoconstriction (similar to a eucapnic voluntary
hyperventilation challenge) [72]. Furthermore, the frequent association of dysfunctional breathing with
anxiety disorders could influence the perception of dyspnoea for a given degree of effort. The prevalence
of a hyperventilation syndrome in uncontrolled asthma is probably underestimated. This diagnosis should
be considered in patients who have disproportionate respiratory symptoms or an inappropriate level of
ventilation during exercise without any other organic cause. It is important to consider the diagnosis of
hyperventilation syndrome, as it may interfere with obtaining control of asthma symptoms.

Measurement of dyspnoea quality and intensity
Tools for measuring dyspnoea in asthma
In asthma, the language used to describe dyspnoea can vary, with different descriptive terms chosen
during acute exacerbations compared to during methacholine challenge or exercise [20, 73, 74].
Bronchoconstriction and increased mechanical loading due hyperinflation, whether during acute
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bronchoconstriction or exercise, are associated with different descriptions of dyspnoea [20, 30, 74].
Furthermore, because the severity of bronchoconstriction affects the quality of dyspnoea [20, 39],
qualitative descriptors may be as relevant as the magnitude or intensity of dyspnoea [73].

Common descriptors of dyspnoea reported in clinical studies are shown in table 1 [20, 30, 73–75]. Across
a variety of clinical and experimental settings, three dominant descriptive symptom clusters emerge:
1) chest tightness and/or constriction, 2) increased work and/or effort to breathe, and 3) unsatisfactory
inspiration or “inability to take a deep breath in” [20, 30, 39, 75–77]. The intensity of dyspnoea is most
often assessed according to a symptom scale, with the modified Borg scale [78], which measures dyspnoea
on a scale of 0–10 arbitrary units, being used most frequently. The Borg scale is useful to assess exertional
dyspnoea intensity in asthmatic individuals during exercise, is reproducible and responsive to treatment
changes, and relates to physiological parameters such as 1) peak inspiratory flow rate, 2) VT to forced vital
capacity ratio, 3) respiratory frequency, and 4) peak inspiratory mouth pressure [31]. The Visual Analogue
Scale (VAS) is also a reliable, reproducible measurement of dyspnoea intensity during exercise that
correlates with Borg scale measurements of dyspnoea and with minute ventilation (V′E) [79]. Other
methods of measuring dyspnoea, such as the Baseline Dyspnea Index, the Medical Research Council
dyspnoea scale and St George’s Respiratory Questionnaire, have been used in asthma studies, although less
frequently than Borg and VAS [80, 81].

In clinical practice and clinical trials, composite scores are frequently used to assess asthma symptoms,
control and quality of life. Among the most frequently used scores are the Asthma Control Questionnaire
(ACQ), the Asthma Control Test (ACT) and the Asthma Quality of Life Questionnaire (AQLQ) [82–85].
All of these questionnaires contain questions on patient-reported dyspnoea frequency and activity
limitation, but do not explicitly distinguish between dyspnoea at rest, after exposures to irritants/triggers or
during exercise/activity. Recently, two questionnaires have been developed to measure the emotional and
affective component of dyspnoea in respiratory diseases: the Dyspnea-12 [86] and the Multidimensional
Dyspnea Profile [87, 88]. These tools have been validated in asthma patients, but only the Dyspnea-12
assessed the correlation of components with objective exercise capacity (6-min walking distance). These
brief questionnaires, which include some of the descriptors of dyspnoea found in table 1 and their
emotional consequences, could be useful in future studies to assess the physiological and mechanistic
correlates of the emotional and affective components of exertional dyspnoea.

Measuring dyspnoea perception during bronchoconstriction
Although our understanding of the relationship between dyspnoea labelling and mechanism is incomplete,
current evidence suggests that a description of chest tightness is more closely linked to mild
bronchoconstriction [30], and a sensation of increased work/effort is more closely linked to more severe
bronchoconstriction or DH [21, 30, 38, 39]. Dyspnoea intensity varies widely between patients at a given
degree of physiological impairment, and the correlations between changes in Borg score and changes in
FEV1 or IC vary widely across studies. In patients being treated with albuterol in an emergency
department for acute asthma exacerbations, the “chest tightness” label predominated before treatment,
which rapidly improved after albuterol, while the perceived ability to “breathe more” also improved with
treatment [75]. The sensation of increased “work and effort” to breathe was less common than chest
tightness, however, and did not change significantly with treatment. Dyspnoea intensity varied greatly
between patients at any given degree of FEV1 reduction and, although Borg scores decreased with

TABLE 1 List of dyspnoea descriptors commonly used in clinical studies

Symptom cluster Descriptor

Chest tightness My chest is constricted
My chest feels tight

Unsatisfactory inspiration I cannot get enough air
My breathing does not go all the way in
I cannot take a deep breath in

Increased work or effort My breathing requires more work
My breathing requires more effort
My breathing is heavy
I feel that I am breathing more

Adapted from [20, 21, 67, 75].
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treatment, changes in dyspnoea were only weakly correlated with changes in FEV1 in the acute
exacerbation setting [75].

Similarly, in most studies using methacholine to provoke bronchoconstriction, descriptors of chest
tightness predominate over symptoms of work/effort, “air hunger” or unsatisfactory inspiration [20, 76].
This finding is not consistent in the literature, however. In one study by LOUGHEED et al. [39], in which
methacholine provoked a large degree of decline in FEV1 (>50% baseline), “difficulty taking a deep breath”
and increased “work/effort” descriptions were more common than “chest tightness”, suggesting that the
severity of bronchoconstriction and attendant dynamic mechanical responses influence the character of
dyspnoea. The intensity of dyspnoea after methacholine was highly correlated with the degree of DH
(r=0.74), and a change in IC back to baseline was the most important correlate of improved breathlessness
during recovery [39]. In another study by KILLIAN et al. [76], in which only 13.7% of patients experienced
a >30% reduction in FEV1 with methacholine, chest tightness was the most prevalent and most intense
dyspnoea descriptor. The differences in the quality of dyspnoea between these studies are related to the
degree of bronchoconstriction provoked: chest tightness is more prominent during mild
bronchoconstriction [20, 30, 76], with work/effort descriptors becoming dominant with more severe
bronchoconstriction as it results in lung hyperinflation, which augments the mechanical load on the
respiratory muscles [39, 73].

As in the acute exacerbation setting, dyspnoea intensity during methacholine challenge varies widely
between patients, with poor symptom perceivers and normal or high symptom perceivers. Inter-individual
variability in dyspnoea intensity for a given change in FEV1 is largely attributable to the degree of DH, as
measured by change in IC [38, 39]. In a study that used both methacholine challenge and exercise testing,
Borg scores varied from 0 to 9 (10 being maximal) following a 20% drop in FEV1 from methacholine, and
dyspnoea intensity correlated weakly with FEV1 during bronchoconstriction (r=0.31) [9]. The group of
patients who reported high symptom intensity after a methacholine-induced decline in FEV1 of 20% also
reported higher Borg scores during exercise testing, whereas the low symptom perceivers from
methacholine reported Borg scores during exercise that were similar to the normal expected range [9]. In
that study, however, there were no data on qualitative dyspnoea descriptors, so it was uncertain whether
dyspnoea quality differed between patients who perceive low, moderate or high symptom intensity. COLI

et al. [77] addressed this question by assessing changes in IC, FEV1 and Borg score, as well as assessing
dyspnoea descriptors after a methacholine challenge. They confirmed that most patients describe chest
tightness to a greater extent than work/effort, and that these language descriptors were similarly
distributed between “normoperceivers”, “hyperperceivers” and “hypoperceivers”. It is important to
highlight the clinical importance of these so-called “hypoperceivers”. Individuals with near-fatal asthma
exhibit reduced dyspnoea intensity in response to various challenges, including hypoxia, hypercapnia [15]
and exercise [19]. In one study, the presence of a Borg dyspnoea score ⩽6 at maximal exercise had a
sensitivity of 100% for discriminating patients with near-fatal asthma from those without an episode of
near-fatal asthma [19]. Furthermore, individuals with asthma and blunted dyspnoea perception have a
higher rate of emergency department visits, hospitalisations, near-fatal exacerbations and deaths [89].

Measuring dyspnoea perception during exercise
Given the contrasting effects of airflow obstruction severity and DH on the qualitative description of
dyspnoea during methacholine inhalation, LAVENEZIANA et al. [20] investigated whether dyspnoea intensity
and quality differed after methacholine compared with a short exercise session in patients with stable
asthma. Hyperinflation occurred in 18 out of 19 individuals following the methacholine challenge, and
most of the variability in dyspnoea intensity was explained by hyperinflation (as indicated by the decrease
in IC) and the change in FEV1 [20], consistent with previous studies [38, 39]. In this study, 68% of
patients reported chest tightness as opposed to 18% describing inspiratory effort after methacholine [20],
which may be explained by the use of low-dose methacholine and relatively small decreases in FEV1

compared to studies that found that >30% decreases in FEV1 provoke sensations of inspiratory difficulty [39].

During CPET, the predominant symptom description was that of increased inspiratory effort (72%) rather
than chest tightness (figure 3) [20]. Unlike with methacholine, the main correlate of dyspnoea intensity
during CPET was V′E, not DH. A minority of asthmatic subjects exhibited hyperinflation during exercise,
but those who did reported a higher intensity of dyspnoea, reflecting increased demand on the respiratory
muscles [20]. This study from LAVENEZIANA et al. [20], along with previous studies of exertional dyspnoea
in asthma [19, 29], confirmed that significant airflow obstruction and DH are not very common during
brief exercise sessions. Thus, work/effort descriptors of dyspnoea are associated with severe airflow
obstruction and hyperinflation during methacholine inhalation, but these same descriptors predominate
during exercise, even in the absence of hyperinflation, suggesting that increased central respiratory drive
(higher V′E) provokes the sensation of work/effort during exercise.
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Nevertheless, individuals with mild asthma can develop hyperinflation during exercise, and their
description of dyspnoea evolves over the course of exertion. During cycle exercise at a constant work rate,
a change in the qualitative description of dyspnoea was related to important inflection points in the
VT/V′E relationship [21]. When plotting VT as a function of V′E during exercise, VT increases until an
inflection point or plateau occurs (figure 4). In most individuals with asthma, this inflection point occurs
near peak exercise and at a preserved inspiratory reserve volume (IRV), i.e. without hyperinflation, similar
to healthy individuals. In those with a preserved IRV at the inflection point, the work/effort descriptor
predominated, even after the VT/V′E inflection point, and the intensity of dyspnoea increased linearly.
However, in some individuals who developed a critical reduction in IRV, the VT/V′E inflection point
occurred at a lower VT and at a reduced IRV, reflecting hyperinflation. At this point, mechanical
constraints to VT expansion imposed an increased load on the respiratory system, and the dominant
dyspnoea descriptor changed from work/effort to “difficult/unsatisfied inspiration”. These results suggested
that the quality of dyspnoea during exercise could inform the clinician whether a critically reduced IRV is
reached (with the description of difficult or unsatisfied inspiration as opposed to work/effort); however,
this cannot yet be incorporated into clinical practice until replicated in larger studies, using different
languages and in more severe patients [21]. Pharmacological or non-pharmacological interventions that
delay the onset of this inflection point and critical reduction in IRV could potentially reduce exertional
dyspnoea, but this has yet to be demonstrated. Although all patients in this study had mild asthma, those
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symptom-limited constant work rate cycle exercise. Patients who reached a critically low IRV at the VT
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with hyperinflation and a critical reduction in IRV had greater resting and exercise expiratory flow
limitation and a trend to lower FEF25–75% (46±13% versus 61±18% predicted; p=0.06). This suggests that a
small airway obstruction could be a cause or predisposition for air trapping and DH during exercise in
mild asthmatics and therefore could explain the perceptual differences in exertional dyspnoea quality
observed in mild asthmatics with otherwise normal resting lung function [21]. The evolution of dyspnoea
quality and its mechanistic correlates in moderate or severe asthmatic patients has not yet been studied.

Limitations in exertional dyspnoea measurement
Linguistic and cultural variations in descriptors presented to subjects and linguistic differences in dyspnoea
labelling could also explain differences between the Italian study by LAVENEZIANA et al. [20] and the
Canadian study by LOUGHEED et al. [39], in which inspiratory difficulty predominated during methacholine
challenge. It is also important to recognise that the studies discussed above provided no data on the
reproducibility or consistency of dyspnoea descriptors in individual patients for a given stimulus.
Furthermore, these dyspnoea descriptors may not be specific for asthma and could reflect concurrent
laryngeal dysfunction, hyperventilation or dysfunctional breathing [69, 72]. Dyspnoea quantification (using
the Borg or VAS) during incremental or constant work rate cycle exercise testing may not reproduce the
type of effort or correlate with symptoms encountered during activities in daily life.

Effects of pharmacological and non-pharmacological interventions on exertional
dyspnoea
Bronchodilators and exertional dyspnoea
Bronchodilator-induced changes to dyspnoea at rest may be related to the dilation of larger central airways
based on measures of airway conductance [90], as there is no relation between dyspnoea while breathing
against a respiratory load and decrease in FEV1 following bronchoconstriction [91]. Supporting this notion
is a randomised, double-blind crossover study by SCHERMER et al. [92], which showed that immediate
changes in FEV1 after a long-acting β2-agonist (LABA) did not lead to a simultaneous improvement in
perceived dyspnoea, but that dyspnoea improvement took 10–30 min. In the study by MAHLER et al. [31],
acute bronchoconstriction before exercise increased the intensity of exertional dyspnoea, but there was no
effect of bronchodilation with a β2-agonist before exercise on dyspnoea during the effort. Although
albuterol rapidly changes the quality of dyspnoea in asthmatic patients suffering acute exacerbations, it is
not known whether bronchodilators taken before exercise affect the descriptive character of exertional
dyspnoea [75].

There are surprisingly few studies reporting the effects of long-acting bronchodilators on exertional
dyspnoea. Long-acting anti-cholinergic medications (LAACs), such as tiotropium, in addition to inhaled
corticosteroid (ICS) or ICS/LABA therapy, may improve lung function and asthma control but minimally
improve asthma symptom scores (such as ACQ, ACT and AQLQ) and there are no studies investigating
the effects of LAACs on exercise performance or exertional dyspnoea in asthmatics [93–96]. There are
conflicting data regarding the effects of LABAs on exertional dyspnoea over and above the effects of ICSs
and short-acting bronchodilators [97, 98].

Inhaled corticosteroids and dyspnoea
The effect of ICSs on dyspnoea per se is controversial. Some studies have shown that ICSs increase the
perception of dyspnoea after various bronchoprovocation challenges in asthma, but the methods of
quantifying asthma symptoms differed across these studies [99, 100]. Others have found individuals with
severe asthma and who are taking ICSs had blunted dyspnoea perception [101–103]. Dyspnoea perception
was inversely related to the degree of sputum eosinophilia in one study [101], so the disparate results
between studies could be explained by heterogeneity in the type of airway inflammation and severity of
included patients, differences in duration of ICS treatment, or concurrent use of LABAs. Indeed, the
potential modulating effect of concurrent use of a LABA with ICS was demonstrated by NATHAN et al.
[98], who found that fluticasone/salmeterol significantly improved strenuous activity symptoms on the
AQLQ compared to fluticasone alone and placebo, whereas salmeterol alone was no better than placebo.
None of these studies used exercise challenge or evaluated exercise-related symptoms in relation to ICS
initiation or withdrawal. One recent study of 14 individuals with well-controlled mild asthma, all of whom
were receiving ICS or an ICS/LABA combination, found small but nonsignificantly higher Borg scores at a
given work rate during CPET, but otherwise identical ventilatory and cardiovascular responses compared
with controls [104].

Non-pharmacological interventions for exertional dyspnoea
Interestingly, exercise training itself may help improve exertional dyspnoea in asthma. A small prospective
cohort of mild intermittent asthmatics found that aerobic training improves exercise capacity but also
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reduces dyspnoea levels at submaximal and maximal exercise in asthmatics compared to control subjects,
probably by reducing the required level of ventilation (V′E) at each work rate [105]. A 3-month
randomised trial compared aerobic exercise training plus education and breathing exercises to a control
group receiving education and breathing exercises alone [106]. They demonstrated improvements in
physical limitation, frequency of symptoms and psychosocial distress as well as a reduction in asthma
symptoms, anxiety and depression scores in the aerobic training group. Although there was an
improvement in peak V′O2 with exercise training, they did not report any change in dyspnoea score at an
iso-work rate or iso-V′E during post-intervention CPET in this study, in contrast to the previously
discussed cohort study [105, 106]. TURNER et al. [107] found similar results in a group of older (mean age
65 years) moderate-to-severe asthmatics who were randomised to a 6-week course of exercise classes
compared to standard medical care. All domains on the AQLQ improved in the exercise group compared
to the control group, in addition to a significant increase in the 6-min walk distance. However, Borg
dyspnoea score at the end of the 6-min walk distance did not improve in either group post-intervention
[107]. A Cochrane review in 2013 summarised the evidence for exercise training in asthma, and concluded
that exercise training is well tolerated and improves asthma symptoms, cardiovascular fitness and
health-related quality of life but has no effects on lung function [108]. However, with regards to asthma
symptoms, exertional dyspnoea was not specifically reported, and the heterogeneity of symptom
assessment instruments in the nine included studies did not allow pooling of data. Three of the included
studies reported fewer days of symptoms, five reported no changes and one study reported improvement
[108]. The mechanisms through which exercise training improves exertional symptoms could relate to
improving peripheral muscle conditioning, improved emotional wellbeing, modification of dyspnoea
perception, or a disease-modifying effect of exercise on asthma. For example, a more recent trial found
that 12 weeks of aerobic training improved bronchial hyperresponsiveness, inflammatory markers and
patient-reported asthma control and quality of life, with particular improvement in the Activity Limitation
domain on the AQLQ [109].

Inspiratory muscle training (IMT) has also been studied in relation to exertional dyspnoea [110]. A
Cochrane review including five randomised controlled trials involving a total of 113 patients found that
IMT improves respiratory muscle strength as measured by maximal mouth pressures (mean increase
13.34 cmH2O), but concluded that there was inadequate evidence to support or refute a role for IMT for
asthma [111]. Of the included studies, only one addressed exertional dyspnoea using an incremental cycle
ergometer [112]. In this study, TURNER et al. [112] found improved peak V′O2 and reduced dyspnoea
ratings at minute 4 and at peak exercise in the IMT group, whereas no change in Borg score at peak
exercise was observed in the placebo group. However, the change in peak exercise Borg dyspnoea score
with IMT was −0.8 arbitrary units, below the minimally important difference threshold of 1.0 unit
established for patients with other chronic cardiorespiratory diseases [113, 114]. Therefore, although IMT
cannot be recommended at the present time, the existing data warrant further studies to clarify the effect
of IMT on dyspnoea intensity and quality.

Conclusions
Asthma is a heterogeneous condition with exertional dyspnoea manifesting as a common but highly
variable symptom that is not well captured in asthma control tests or scores. In contrast to dyspnoea
during provoked bronchoconstriction, the mechanisms leading to exertional dyspnoea are incompletely
understood. The available evidence suggests that the pathophysiology of exertional dyspnoea is different
from that during direct bronchoprovocation and cannot be reliably predicted from resting lung function
tests. Hence, the language used to describe dyspnoea during exercise can be categorically different from
that during methacholine challenge or acute exacerbations. When available, exercise testing with
quantification of dyspnoea intensity using a validated score and measurement of qualitative dyspnoea
descriptors can be useful to elucidate the reasons for exertional dyspnoea. A comprehensive evaluation is
necessary to consider and to rule out differential diagnoses, comorbidities and contributory factors such as
laryngeal dysfunction or hyperventilation. The magnitude of EIB and DH, as well as mechanical
ventilatory constraints, may modulate exertional dyspnoea in some patients, but many other factors
probably contribute, including central respiratory drive, small airways disease, emotional and affective
factors, and comorbidities. There are limited or conflicting data on the effects of long-acting
bronchodilators and ICSs on exertional dyspnoea, but exercise training seems to improve exertional
symptoms through several potential mechanisms.
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